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Abstract

The problem of determining the temperature, displacement and stress fields
around a single crack in an anisotropic slab is considered. The problem is
reduced to Fredholm integral equations which may be solved numerically.

1. Introduction

It is now widely accepted that the behaviour of some anisotropic materials closely
models the behaviour of certain fibre-reinforced composites (see, for example,
Spencer [10]). This has caused a renewed interest in anisotropic materials in
recent years, and a number of new solutions to boundary-value problems have
been obtained. Specifically, Clements [4, 5] has presented solutions to problems
involving cracks in anisotropic slabs and anisotropic layered materials while
Tauchert and Akoz [13], Akoz and Tauchert [1], Clements [6], Clements and Toy
[8], Atkinson and Clements [2] and Chang [3] have solved various thermostatic
and thermoelastic problems for anisotropic materials. References to various
other works in this area may be found in the review article by Tauchert [12].

In the present paper the problem of determining the temperature, displacement
and stress fields around a crack in an anisotropic slab is considered. The bounding
planes of the slab are subjected to an arbitrary temperature distribution and
arbitrary tractions. Over the crack the heat flux and the tractions are prescribed.
For these boundary conditions the problem is reduced to a number of Fredholm
integral equations which may be solved numerically. Numerical results are
obtained for a particular transversely isotropic material and the results are used
to make some qualitative comments about the nature of the stress near the crack tip.

243

https://doi.org/10.1017/S0334270000002058 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002058


244 D. L. Clements and T. R. Tauchert

2. Statement of problem and basic equations

[2]

Take Cartesian coordinates xv x2, xa in a homogeneous anisotropic elastic slab.
Contained in the slab is a crack in the region x2 = 0, | x11 < a, —oo < x3 < oo (Fig. 1).
On the faces of the crack the heat flux and the tractions are prescribed. On the
faces of the slab at x2 = ± h the temperature and tractions are prescribed. It is
required to find the displacement and stress fields throughout the slab.

2h

Fig. 1. Location of the crack in the slab.

In Clements [6] some representations are derived for the temperature T, displace-
ment uk and stress ati in an anisotropic material. These representations take the
form

T = - m i^Aip) exp (ipz') dp, (2.1)
it Jo

i r°°
uk = - 0% \ {£ Aka Ea(p) exp (ipZoJ + Ck A(p)p~l exp {ipz )} dp, (2.2)

"" Jo a
*« = - # f °°{S A,a ^ ( P ) (P exp (ipz,,) + (iNy - fa) A(p) exp (ipz')} dp, (2.3)

It Jo a

where ^ denotes the real part of a complex number and A(p) and £•„(/»), a = 1,2,3,
are functions to be determined from boundary conditions. Also, in (2.1)—(2.3) the
constants r (in z' = X1 + TXZ), pa (in za = x1+pax2), Aka, Ck, Lija and Nit are
related to the coefficients of heat conduction ^ , the elastic constants ci;fcJ) and the
stress-temperature coefficients fa in a way which is indicated in Clements [6].
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At this point it is appropriate to note that the repeated suffix summation con-
vention (summing from 1 to 3) will be used throughout the paper for Latin
suffices only. Summation over Greek suffices (also from 1 to 3) will always be
indicated explicitly.

The representations (2.1)—(2.3) tend to zero as x2->-oo. The corresponding
expressions for T, uk and af;- which tend to zero as x2-> — oo will also be useful
in the subsequent analysis. They may be derived by following the procedure used
in Clements [6] and take the form

T=-a \XA{p)exp(-ipz')dp, (2.4)
w Jo

77 Jo a
(2.5)

<7i3- = - - 0t f °°{£ Lm EJp) ip exp ( - ipzj - (iNti - ft,-) A(j>) exp ( - ipz')} dp,
n JO a

(2.6)

where, as in (2.1)-(2.3), the A(j>) and Ea(p), a = 1,2,3, are unknown functions
which will be determined from the boundary conditions. The constants in (2.4)-
(2.6) are the same as those in (2.1)—(2.3).

For the purposes of the present paper, it is convenient to write the temperature,
displacement and stress as the sum of three fields. Specifically, we write

r=r<1'+r'2>+r«3>, (2.7)

^ ^ ^ (2.9)

where, from (2.1H2.3),

= la rA<"(j>)exp(ipz')dp, (2.10)
" Jo

17 JO a
(S Aka E<P(p) exp ((pzj + CkA<u Wr1 exp {ipz')} dp, (2.11)

( 2 Lija E<»(j,) ip exp (;>zj+(iNi} - j3«) A™(j>) exp (ipz')} dp (2.12)
0 a
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and, from (2.4)-(2.6),

= -» [^ A^(j>)txp{-ipz')dp, (2.13)
"• J o

(2.14)

a'f =--m f"{S^n2'^)Vexp(-/>za)-0W< i-j5w)^'2)(^)exp(-ipz')}dp.
T JO a

(2.15)
For T(3), w£3) and a^1 we consider the regions 0<x2<h and — h<x2<0 separately.
Hence

r<3) = - 0t (^A+ip) exp (J>Z') dp for 0 < *2 < h, (2.16)
7T JO

W<?> = i « ["{S ^ t o £+(p) exp (ipzj + Ck A+(p)p-i exp (ipz')} dp
IT JO a

forO<x2<h, (2.17)

aif = i » r{'ELijaE+ip)ipexp(ipza)+(iNij-pii)A+(p)exp(ipz')}dp
~ J0 a

forO<x2<h, (2.18)

-m['°A-{p)Qxp{~ipz')dp for-h<x2<0, (2.19)
«• Jo

TT J

ag> = --» r{I,Lija
T Jo a'

o a

for - / K x 2 < 0 , (2.20)

for -h<x2<0. (2.21)

3. Temperature field

On x2 = 0, |xx\ <a the heat flux is prescribed so that the boundary condition in
this region is

Also, the temperature T is prescribed on the faces x2 = + h of the slab so that

onx2 = h (3.2)

https://doi.org/10.1017/S0334270000002058 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002058


[5] A thermoelastic crack problem 247

and
7' = g2(x1) onxz = -h (3.3)

where g1 and g2 are given. We wish to find the temperature field throughout the
slab.

A solution to this problem has been obtained by Clements and Tauchert [7].
The temperature is given by (2.7), (2.10), (2.13), (2.15) and (2.19) with

(3.4)

= (A12 + \ 2 f)"1 A(j>), (3.5)

(3.6)

V(p), (3.7)

where the bar denotes the complex conjugate and the functions Q(p), U(j>),
V(p) are given by

Q(P) = - {(A*+A22 r ) - 1 exp [ip(r -f)h]- (A12+Aa f)-*} D, (3.8)

U(p) = [Bx(j?) exp ( - ipfh) - B2(j>) exp (ipfh)] D, (3.9)

V(p) = [-51(p)exp(i>fA)+^(p)exp(-i>fA)] D (3.10)

with

D = {exp [(P(T -f)h\- exp [ - ,>(T - f) A]}"1 (3.11)

and B^p) and 52(/>) may be determined from the equation

&(*i) for i = 1,2. (3.12)
ft Joo

The A{p) in (3.4H3.7) is given by

A(j>) = ("VO Ji(P') dt + i f%(/) Jo(/>') A. (3-13)
Jo Jo

where s(t) and r(/) are obtained from the Fredholm equations

r(r) + r f °^«»»(«, 0 r(«) rfw = r f ^ ^ for 0 < r < a, (3.14)
Jo J_j(/':-M'J)*

5(0 + rJV»(«,0j(«)^ = J ^ ^ * forO<f<a, (3.15)

where

fa' (3.16)
Jo
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In (3.16) JN denotes the Bessel function of order N, while

S(p)=2^[(X12 + X22r)Q{p)]. (3.17)

Finally, the/^w) in (3.14) and (3.15) is defined by

A00 = / ( « ) + - * f V o O (*u+^22 T) + POO (A12+A^ f)] exp (fen) *> 4>. (3.18)
"• J o

4. The displacement and stress fields

As indicated in Section 2, the displacement and stress components are written
as the sum of three separate fields UJP* and off for/? = 1,2,3. NOWW^' + M^2' and.
oty + off are given by (2.11H2.15) and are continuous throughout the slab.
In 0<x2<h u[3) and CT$> are given by (2.17) and (2.18) while in -h<x2<0 these
quantities are given by (2.20) and (2.21). Hence the requirement that the stress
oi2 be continuous across x2 = 0 yields

ip lL{L^E+(j,)-L^£^p)}] + i[NaA^)+17aA-^)]-pia[AHp)-A-(p)] = 0.

(4.1)
Equation (4.1) may be rearranged to yield

(4.2)
a a

Denoting these expressions by F£p) we obtain

£200 = Mai Flp) - Mai{Ni2 + i/3i2} A+(p)p-\ (4.3)

EZ(J>) = Mai F%{p) + Mat{Ni2 + ipi%}A-(p)p-\ (4.4)
where

The displacement uk on x2 = 0 outside the crack must be continuous and hence,
from (2.17) and (2.20),

f
JO

[2 {AkaE+<j>) -Aka£-{p)} + CkA+{p)p-i + CkA-{p)p-i] exp{ipxj dp
O a

= 0 for | x± | > a. (4.6)

Use of (4.3) and (4.4) in (4.6) yields

[fftâ aOO + **00]exp(i/«i)# = 0 fo r | ^ |>o , (4.7)
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where

(4.8)

On x2 = 0 over the crack the tractions ai2
 = A(*i) a r e prescribed. Hence, from

(2.9H2-21), we obtain

- at fV<G>) ( P + S (A*, ̂ i1 '+Ate ̂ 2 ) ) v+(«v« - iS<2) A^ip)
T JO a

+( - iff* - j3i2) ̂ <2»(p)} exp ( />^ rfp = P , ^ for \Xl\<a. (4.9)

Also, on x2 = ± /i the tractions are prescribed. Hence

2 Ate £« '(/>) V e xP (fePa *) + S Ate E« '(P) '> exp (i>pa A)

= ~ E Ate M*y f*0») »> exp {ippa A) - S Li2a
a a

+ ( - ifta - ft,) ^«2>(^) exp (i>fA) + (IN*

+ Gil(/>), (4.10)

L Ate E^(P) >P exp ( - ipPcc h) + 2 Ate ^a 'O) (P exp ( - ippa h)
a a

= - E Ate &* Fj<J>) W exp ( - ippa h) + 2 Ate ttajP* - «ft«)
a a

;?-(/>) i exp ( - iPPa h)+(iNi2 - ft^ >!<"(/») exp ( - iprh)

xA-(j>)exp(-ipfh)] + Giz(p), (4.11)
where

if Jo

-« fw Jo

In (4.12) and (4.13), gn(xj) and ^ ( x j are the specified tractions on x2 = A and
x2 = — h respectively.
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It is convenient at this stage to introduce the matrices

R = [Li2a exp (-ippah)], S = [Li2a exp (ippa h)],

M=[Mai], G=[Gt], H=[Hi], (4.14)

£<" = [£^>] for 7=1 ,2 , F=[Fa].

Hence (4.10) and (4.11) may be written

(4.15)

(4.16)

where the precise forms for G and H may be readily obtained by comparing (4.10)
and (4.15) and also (4.11) and (4.16). Equations (4.15) and (4.16) may be used to
solve for Ea> and E™. We obtain

(4.17)

£<2» = QF+ Y, (4.18)
where

Q = -(R-tS-S-ilQ-iilt+SM-M), (4.19)

X = (J?"1 S-S-1 R)-1^-1 G-S-1 H), (4.20)

Y = (R-1 S- S-1 R)-1^-1 ff- S-1 G). (4.21)

Substitution of (4.17) and (4.18) into (4.9) gives

« f " [ ^ ) + ?}*0>) F*^)] /> exp ((pjcj dp = ̂ (jfj) for | Xl \ < a, (4.22)
Jo

in which

0>lxd = irPfx^-m f°°S [Lita^Jip)+^ia Ya(p)]ipexp(ipXj)dp
JO a

-3t rWit-piJA™(p)-(iN/t+pijA™(p)}exp(ipxJ4p (4.23)
Jo

and
Tjk(p) = 2 ^ 2 ii2a fi«*0»). (4-24)

Returning to (4.7), we note that the matrix Jfto is non-singular (see Stroh [11])
and hence there exists an inverse matrix U]k such that

https://doi.org/10.1017/S0334270000002058 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002058
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Thus, equation (4.7) can be written as

* f V*Q>)+Ukj R,{p)] /exp (jpxj dp~0 for | xx \ > a. (4.26)
Jo

Now equation (4.22) may be rewritten as

» f V,0>)+Uik Rk(j>)+Tjk{p) {Fk(p) + V^ Rrip)})
Jo

x ip exp {ipxx) dp = ̂ (xj for | xx \ < a, (4.27)

where

yfrj = Pfti)+* f "[U,* Rk<J>) + Tjk{p) Ukr Rr(j>)] ip exp (ipxj dp. (4.28)
Jo

Let

2fo) = Fk(j>) + Ukj Rj(p). (4.29)

Then (4.26) and (4.27) yield

® C°&k(p)iexi?(ipx1)dp = O for {xA>a, (4.30)
Jo

("[*&) + Tjk(j>) &k(j>)} ip exp {fpxj dp = Sf^ for | xx \ < a. (4.31)
Jo

Equation (4.30) will be satisfied if ̂ k{p) is taken in the form

, (4.32)

where sk{t) and rk{f), k= 1,2,3, are real functions to be determined and Jo and
Jx are Bessel functions of order zero and one respectively. Use of (4.32) in (4.31)
yields

I pcosipxjdp \ar£t)J0(pt)dt+ J Tjk(p)pcos(px^dp \ark(t)J0{pt)dt

= -M^(^i)+^(-^1)] for|jci|<fl, (4.33)

f°° ("a rco /»a
psin(pxjdp si(t)J1(j)t)dt+ Tj^psini^x^dp s^J-fo^dt

Jo Jo Jo Jo

)-#'j(-x1)] forlxj^a. (4.34)
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Interchanging the order of integration and using standard results for Bessel
functions we obtain

Jo77 r f 3 n ^ i [ i d«*ijo v*i ")* Jo Jo

xj\ foiO<x1<a, (4.35)

7 77 ^T^W^ rr^psinipxjdp \as£)Jx{pt)dt
xlaxlJ0 \X-i-l )' JO J0

= -*[^5(*i ) -^( -* i ) ] forO<*i<a. (4.36)

These Abel integral equations may be inverted to yield
forO<t<a, (4.37)

forO<t«z, (4.38)

where standard results for Bessel function have been used to obtain Kip in the
form

Jo
(4.39)

Equation (4.37) constitutes three simultaneous Fredholm integral equations for
the r,(0 while (4.38) constitutes three similar equations for the s£t). These equations
may be solved numerically and then 3^k{p) may be found through (4.32). Equations
(4.29), (4.3) and (4.4) then yield E+(p) and E~(j>) while (4.29), (4.17) and (4.18)
yield Ea)(p) and El2)(j>). Hence the displacement and stress distributions through-
out the slab may be calculated from (2.7)-(2.21).

5. Numerical results

The stress a^x^ 0) near the crack tip at r = a takes the form

(5.1)

where r = xx — a with x1 > a and the Kt are constants. In this section we use the
analysis of the previous sections to determine the values of the K{ for a particular
transversely isotropic material.

For transversely isotropic materials with the xt and x2 axes lying in the trans-
verse plane, the non-zero stiffness ciikl, the coefficients of linear thermal expansion
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ay, and the thermal conductivities Ay are

C m i = C2222> C1133 = C2233> C1313 = C2323» C1122>

If a rotation of a about the x2 axis is followed by a rotation of 8 about the
axis, then the constants referred to the rotated frame are

c'iikl = aim ajn akp alq cmnpq' P'ij = aim ain fimn> Kj = aim aJn Knn>

where
cos <x — sin ot sin 8 — sin tx cos 6

0 cos 8 sin 8

— sin a — cos a sin 8 cos a cos 8

For illustrative purposes we consider the constants for a crystal of zinc. Referred
to symmetry axes with the xz axis normal to the transverse plane the constants are

C Q I I — 1 0 . 0 , ^1122 — -3«*» ^1133 — ^> C3333 — O.Z,

Cms = 3.92, 106au = 60.8, l O ^ = 14.3, A^A^ = 1.17.

If the elastic constants are multiplied by 1011 then the units for these constants are
dynes/cm2, while the coefficients of thermal expansion are for a temperature
increase of one degree centigrade.

Consider a slab with h/a = 20. Further let a = 1 and suppose the crack faces and
slab faces x2 = + h are traction free. Also suppose the temperature on the slab
faces is zero while over the crack the heat flux is constant so that, in (3.1),

/(*i)=/o,

where yj, is a constant. The values of Kt for various combinations of the angles a
and 8 are given in Table 1. The quantity Ko in the table is Kx calculated for a = 0
and 8 = TT/2.

e
0
7T/2
1
0
0

0
7T/4
1.46
0
0

TABLE

7T/4
0
1.19
0

-2.02

1

TT/4

TT/4

-1.72
1.35
0.85

77/3
TT/6

-1.52
1.22
1.12

7T/2

0
0.85
0
0
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When a. = 0 and 8 = n/2, each of the planes xt = 0, / = 1,2,3, is a plane of
elastic symmetry and it is clear from Table 1 and equation (5.1) that, in this case,
the stress cr12 is singular in the plane of the crack but O& and <r32 do not exhibit
singular behaviour.

When a = 0 and 8 = TT/4, the JCX = 0 plane is a plane of elastic symmetry but
the x2 — 0 and x3 = 0 planes are not planes of the crack is similar to the above
case when a = 0 and 6 — IT/2.

When a = TT/4 and 6 = 0, the x2 = 0 plane is a plane of elastic symmetry while
the xa = 0 and x3 = 0 planes are not planes of elastic symmetry. In this case both
CT12 and CT32 exhibit singular behaviour in the plane of the crack while CT22 does not
exhibit singular behaviour.

When a = w/4 and 8 = 7T/4, or a = n/3 and 8 = 7r/6, none of the planes x{ = 0,
/ = 1,2,3, are planes of elastic symmetry and all the stresses ai2, i = 1,2,3, exhibit
singular behaviour.

When a = 7r/2 and 8 = 0, each of the planes xt = 0, i = 1,2,3, is a plane of
elastic symmetry and the singular behaviour of the stress in the plane of the crack
is similar to the first case considered above when a = 0 and 6 = n/2.

It is of interest to compare these results with those obtained by Sih [9] for the
thermal stress singularity at the tip of a crack in an isotropic material. Sih's results
show that a constant heat flux over the crack face gives rise to a singular stress
a12 in the plane of the crack while the stresses a^ and o-̂  remain non-singular.
The results obtained here indicate that this situation also holds true for anisotropic
material provided the xx = 0 plane is a plane of elastic symmetry. However, if the
xx = 0 plane is not a plane of elastic symmetry, then at least one of the stresses
CT22 and a23 is singular in the plane of the crack.

Finally, we note that the displacements induced by purely mechanical loads
applied to the surfaces of the anisotropic slab with the crack stress-free have been
studied in detail in a previous paper (Clements and Tauchert [7]). An analysis of
temperature-induced displacements can be carried out in a similar fashion using
the present formulation.
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