MAXIMAL GROUPS ON WHICH THE PERMANENT IS MULTIPLICATIVE

LeROY B. BEASLEY

Let Δ_{n} be the set of all $n \times n$, non-singular matrices of the form $P D$, where P is a permutation matrix and D is a diagonal matrix with complex entries. In (1, conjecture 12), Marcus and Minc asked: Is Δ_{n} a maximal group on which the permanent function is multiplicative? (that is, per $A B=$ per A per B). The field over which the entries range was not mentioned in the conjecture; however, we assume that the complex number field was intended. Corollary 1 answers this in the affirmative. In fact, Δ_{n} is the only maximal group (or semigroup) on which the permanent is multiplicative. Let ρ_{i} be the set of all non-zero entries in the i th row and let λ_{j} be the set of all non-zero entries in the j th column.

Theorem. Δ_{n} is the maximal semigroup of $n \times n$ matrices with ρ_{i} and λ_{j} non-empty for all $i, j=1, \ldots, n$ on which the permanent function is multiplicative.

Proof. If K is a maximal semigroup of $n \times n$ matrices with ρ_{i} and λ_{j} nonempty for all $i, j=1, \ldots, n$ on which the permanent is multiplicative, then $\Delta_{n} \leqq K$, since for any matrix A, per $Q A=$ per Q per A, where Q is either a permutation matrix or a diagonal matrix.

Suppose that $\Delta_{n}<K$, and let $A \in K-\Delta_{n}$. Then, in A there is at least one row with at least two non-zero entries. We shall show that this implies the existence of a matrix $F \in K$, such that $\operatorname{per}\left(F^{2}\right) \neq(\text { per } F)^{2}$. Since every permutation matrix is in K, we may assume that the nth row of A has at least two non-zero entries, and that $a_{n n} \neq 0$.

Let

$$
\delta_{i}{ }^{A}=\left\{\begin{array}{ll}
\bar{a}_{n i} & \text { if } a_{n i} \neq 0 \\
1 & \text { if } a_{n i}=0
\end{array} \text { for } i=1, \ldots, n,\right.
$$

and let $\delta^{A}=\operatorname{diag}\left(\delta_{1}{ }^{4}, \ldots, \delta_{n}{ }^{4}\right)$. Now the matrix $B=A \delta^{A}$ is such that all entries in the nth row are real and positive or zero.

In $B, b_{n n} \neq 0$ and at least one other element of the nth row is non-zero. Let μ be a diagonal matrix such that μ_{i} is real and strictly positive, for $i=1, \ldots, n$. If any entry $a_{n i}$ in the nth row of B is zero, then we show that, for suitable μ and some permutation matrix P such that $p_{n n}=1, H=(\mu P B)^{2}$ is in K and has at least one more non-zero entry in the nth row than $\operatorname{did} A$. Let $G=\mu P B$, so that $H=G^{2}$. We first show that if $b_{n j} \neq 0$, then $h_{n j} \neq 0$.

Received December 20, 1967.

The element $g_{n j}=\mu_{n} b_{n j} \neq 0$ and

$$
h_{n j}=\sum_{k=1}^{n} g_{n k} g_{k j}=g_{n n} g_{n j}+\sum_{k=1}^{n-1} g_{n k} g_{k j}=\mu_{n}^{2} b_{n n} b_{n j}+\sum_{k=1}^{n-1} \mu_{n} \mu_{k} b_{n, k} b_{\lambda-1}(k), j,
$$

where $P\left(\phi_{i j}\right)=\left(\phi_{\lambda(i), j}\right)$. Thus, for $\mu_{n n}$ sufficiently larger than μ_{i}, $i=1, \ldots, n-1, h_{n j} \neq 0$.

Next we show that whereas $b_{n i}=0$, we can choose μ and P so that $h_{n i} \neq 0$. Some element in the i th column of B, say $b_{q i}$, is non-zero. Choose P so that premultiplication by P interchanges the q th and j th rows of B. Thus, $g_{j i} \neq 0$, and the element

$$
h_{n i}=\sum_{k=1}^{n} g_{n k} g_{k i}=g_{n j} g_{j i}+\sum_{\substack{k=1 ; \\ k \neq j}}^{n} g_{n k} g_{k i}=\mu_{n} \mu_{j} b_{n j} b_{\lambda-1}(j), i+\sum_{\substack{k=1 ; \\ k \neq j}}^{n} \mu_{n} \mu_{k} b_{n k} b_{\lambda-1}(k), i .
$$

Thus, for μ_{i} sufficiently larger than $\mu_{k}, k=1, \ldots, n-1, k \neq i$, we obtain $h_{n i} \neq 0$. Note that here μ_{n} being large does not affect the result since the last term, $\mu_{n}{ }^{2} b_{n k} b_{\lambda-1(n), i}=\mu_{n}{ }^{2} b_{n k} b_{n i}$, in the sum is zero.

This process may be re-applied until one arrives at a matrix C^{\prime} such that $c^{\prime}{ }_{n i}$ is non-zero for all $i=1, \ldots, n$. Let $C=C^{\prime} \delta^{C^{\prime}}$; then $C \in K, c_{n i}$ is real and $c_{n i}>0$ for all $i=1, \ldots, n$.

In a similar manner we can obtain a matrix $E \in K$, such that $e_{i n}$ is real and $e_{i n}>0$ for all $i=1, \ldots, n$. Now, for matrices α and β, where $\alpha=\operatorname{diag}\left(1, \ldots, 1, \alpha_{n}\right)$ and $\beta=\operatorname{diag}\left(1, \ldots, 1, \beta_{n}\right)$ and α_{n} and β_{n} are sufficiently large positive real numbers, $F=(E \alpha)(\beta C)$ is in $K, f_{i j} \neq 0$ for all $i, j=1, \ldots, n$, and $\operatorname{Re}\left(f_{i j}\right)$ is positive and so much greater than $\left|\operatorname{Im}\left(f_{i j}\right)\right|$ that

$$
\operatorname{Re}\left(\prod_{i=1}^{n} f_{i \tau(i)} f_{\tau(i) \sigma(i)}\right)>0
$$

for every $\sigma \in S_{n}$, the symmetric group on n letters, and every $\tau \in C_{n}$, the set of all mappings $\tau:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$.

Now,

$$
\text { per } \begin{aligned}
A B & =\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k \sigma(i)} \\
& =\sum_{\sigma \in S_{n}} \sum_{\tau \in C_{n}} \prod_{i=1}^{n} a_{i \tau(i)} b_{\tau(i) \sigma(i)}
\end{aligned}
$$

and

$$
\begin{gathered}
\text { per } A \text { per } B=\left(\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}\right)\left(\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} b_{i \sigma(i)}\right) \\
=\sum_{\sigma \in S_{n}} \sum_{\tau \in S_{n}} \prod_{i=1}^{n} a_{i \tau(i)} b_{\tau(i) \sigma(i)} .
\end{gathered}
$$

Hence, for $A, B \in K$ we must have that

$$
0=\operatorname{per} A B-\operatorname{per} A \operatorname{per} B=\sum_{\sigma \in S_{n}} \sum_{\tau \in C_{n}-S_{n}} \prod_{i=1}^{n} a_{i \tau(i)} b_{\tau(i) \sigma(i)} .
$$

In particular, when $A=B=F$, this sum must be zero. However, $\operatorname{Re}\left(\prod_{i=1}^{n} f_{i \tau(i)} f_{\tau(i) \sigma(i)}\right)>0$; hence

$$
\operatorname{Re}\left(\sum_{\sigma \in S_{n}} \sum_{\tau \in C_{n}-S_{n}} \prod_{i=1}^{n} f_{i \tau(i)} f_{\tau(i) \sigma(i)}\right)>0
$$

which contradicts the fact that $F \in K$. Therefore, $K=\Delta_{n}$. Since Δ_{n} is contained in any maximal semigroup, it is the only one.

The following corollaries are immediate consequences of the theorem.
Corollary 1. Δ_{n} is the maximal group of $n \times n$, non-singular matrices on which the permanent is multiplicative.

In the above we considered matrices with complex entries. Let $\Delta_{n}{ }^{R}$ be the set of all $n \times n$, non-singular matrices of the form $P D$, where P is a permutation matrix and D is a diagonal matrix with real entries. Then as a special case of the theorem we have the following corollary.

Corollary 2. $\Delta_{n}{ }^{R}$ is the maximal semigroup of $n \times n$, non-singular matrices with real entries on which the permanent is multiplicative.

Remark. In the semigroup of all $n \times n$ matrices, a maximal semigroup on which the permanent is multiplicative is the set of all $n \times n$ matrices with at least one row [one column] of zeros together with the set Δ_{n}.

I would like to thank Professor B. N. Moyls for his suggestions during the preparation of this paper.

Reference

1. M. Marcus and H. Minc, Permanents, Amer. Math. Monthly 72 (1965), 577-591.

University of British Columbia, Vancouver, B.C.

