ENUMERATION OF CERTAIN SUBGROUPS OF ABELIAN *p*-GROUPS

by I. J. DAVIES (Received 10th May, 1961)

The number of distinct types of Abelian group of prime-power order p^n is equal to the number of partitions of *n*. Let $(\rho) = (\rho_1, \rho_2, ..., \rho_r)$ be a partition of *n* and let $(\mu) = (\mu_1, \mu_2, ..., \mu_s)$ be a partition of *m*, with $\rho_1 \ge \rho_2 \ge ... \ge \rho_r$ and $\mu_1 \ge \mu_2 \ge ... \ge \mu_s$, $\rho_i \ge \mu_i$, $r \ge s$, n > m. The number of subgroups of type (μ) in an Abelian *p*-group of type (ρ) is a function of the two partitions (ρ) , (μ) and *p*, and has been determined as a polynomial in *p* with integer coefficients by Yeh (1), Delsarte (2) and Kinosita (3). Their results differ in form but are equivalent.

P. Hall (4) suggested a refinement of this problem in which we require the number of subgroups of type (μ) in an Abelian *p*-group of type (ρ) which have a quotient group of type (λ). The result, which is a function $g_{\lambda\mu}^{\rho}(p)$ of the three partitions (ρ), (λ), (μ) and *p*, is known to be a polynomial in *p* of degree $\sum_{i} (i-1)(\rho_i - \lambda_i - \mu_i)$, and the coefficient of its highest power is the coefficient of the Schur function { ρ } in the product of the Schur functions { λ }{ μ }. The precise form of the polynomial is however not known in general.

In this note, the polynomial is determined when

$$\begin{aligned} (\rho) &= (m_1^{n_1}, m_2^{n_2}, \dots, m_s^{n_s}), \\ (\lambda) &= (m_1^{n_1-r_1}, (m_1-k)^{r_1}, m_2^{n_2-r_2}, (m_2-k)^{r_2}, \dots, m_s^{n_s-r_s}, (m_s-k)^{r_s}) \\ (\mu) &= (k^{r_1+r_2+\dots+r_s}). \end{aligned}$$

and $(\mu) = (k^2)$

where $r_1 + r_2 + ... + r_s = r$. The result is given in the Theorem which is proved by means of the two lemmas which follow.

Lemma 1. The number of subgroups F of type (k^r) in an Abelian p-group E of type (m^n) such that the quotient group E/F is of type $(m^{n-r}, (m-k)^r)$, where $r \leq n, k \leq m$, is

where

$$p^{kr(n-r)}\phi(n, r; 1/p),$$

$$\phi(s+t, s; u) = \frac{(1-u)(1-u^2)\dots(1-u^{s+t})}{(1-u)\dots(1-u^s)(1-u)\dots(1-u^t)}, s, t > 0.$$

Proof. From the work of Yeh, Delsarte and Kinosita, it can be shown that the number of subgroups F of type (k^r) in an Abelian *p*-group E of type (m^n) is $p^{kr(n-r)}\phi(n, r; 1/p)$. It remains to prove that E/F, for every such subgroup F, is of the required type.

E.M.S.—A

I. J. DAVIES

Let $E = C_1 C_2 ... C_n$, where C_i is a cyclic group of order p^m , let $F = B_1 B_2 ... B_r$, where B_i is a cyclic group of order p^k , and let $E' = C_1 C_2 ... C_r$ with the quotient group E'/F isomorphic to a group F'. We shall need two results.

- (i) The quotient group of a cyclic group with respect to a subgroup is also cyclic, and so C_i/B_i is isomorphic to a cyclic group D_i of order p^{m-k} .
- (ii) If X, Y are any two groups such that $X \cap Y = 1$ and, for some group Z, the quotient group Z/X is isomorphic to Y, then Z is the direct product XY of X and Y.

Now $C_i = B_i D_i$, so that $E' = \prod_{i=1}^r C_i \approx \prod_{i=1}^r (B_i D_i) = \prod_{i=1}^r B_i \prod_{i=1}^r D_i = F \prod_{i=1}^r D_i$.

Since E' is also equal to FF', we see that $F' = \prod_{1}^{r} D_i$, i.e. F' is isomorphic to the direct product of r cyclic groups D_i of orders p^{m-k} . Thus $\frac{C_1C_2...C_r}{B_1B_2...B_r}$ is of type $((m-k)^r)$. It follows that E/F, which is $\frac{C_1C_2...C_rC_{r+1}...C_n}{B_1...B_r}$, is of type $(m^{n-r}, (m-k)^r)$ and the result follows.

Lemma 2. The number of subgroups F of type $(k^{r_1+r_2})$, where $r_1+r_2 = r$, in an Abelian p-group E of type $(m_1^{n_1}, m_2^{n_2})$, $m_1 > m_2$, such that E/F is of type $(m_1^{n_1-r_1}, (m_1-k)^{r_1}, m_2^{n_2-r_2}, (m_2-k)^{r_2})$, where $r_1 \leq n_1, r_2 \leq n_2, k \leq m_2$, is

$$p^{k[r_1(N_1-R_1)+r_2(N_2-R_2)]}\phi(n_1, r_1; 1/p)\phi(n_2, r_2; 1/p),$$

where $N_t = \sum_{1}^{t} n_i, R_t = \sum_{1}^{t} r_i.$

Proof. Let *E* be generated by n_1 elements x_i , each of order p^{m_1} , and n_2 elements y_j , each of order p^{m_2} . Let $a_i = x_i^{p^{m_1-k}}$, $i = 1, 2, ..., n_1$, and $b_j = y_j^{p^{m_2-k}}$, $j = 1, 2, ..., n_2$. Then $a_i^{p^k} = b_j^{p^k} = 1$. Let the cyclic groups generated by x_i and y_j be C_{1i} and C_{2j} respectively. Every C_{1i} has one and only one subgroup of order p^k , namely that generated by a_i , and every C_{2j} has one and only one subgroup of order p^k , namely that generated by b_j . We denote these by $[a_i]$ and $[b_j]$.

The number of subgroups generated by r_1 of the a_i 's is, as in Lemma 1, $p^{kr_1(n_1-r_1)}\phi(n_1, r_1; 1/p)$ and the number of subgroups generated by r_2 of the b_j 's is $p^{kr_2(n_2-r_2)}\phi(n_2, r_2; 1/p)$. Consider a particular subgroup generated by r_2 of the b_j 's, say the one generated by $b_1, b_2, \ldots, b_{r_2}$. If any of these b_j 's is replaced by $b_j \times a_{r_1+1}^{\alpha_1}a_{r_1+2}^{\alpha_2}...a_{n_1}^{\alpha_{n_1}-r_1}$, where $\alpha_1, \ldots, \alpha_{n_1-r_1}$ have any prescribed values in the range 0, 1, 2, ..., p^k-1 , then the group generated by this "augmented" generator is also a cyclic group of order p^k . The number of these monomials $a_{r_1+1}^{\alpha_1}a_{r_1+2}^{\alpha_2}...a_{n_1}^{\alpha_{n_1}-r_1}$ is $p^{k(n_1-r_1)}$, since every index α can range from 0 to p^k-1 and the number of a_i 's involved is n_1-r_1 . Further, any of these monomials may be used to "augment" any of the r_2 b_j 's and so, in this way, we can construct $p^{kr_2(n_2-r_2)}\phi(n_2, r_2; 1/p) \times p^{kr_2(n_1-r_1)}$ subgroups of

2

type (k^{r_2}) and consequently

 $p^{k[r_1(N_1-R_1)+r_2(N_2-R_2)]}\phi(n_1, r_1; 1/p)\phi(n_2, r_2; 1/p)$

subgroups of type $(k^{r_1+r_2})$.

It remains to prove that the quotient groups of these subgroups with respect to E are of the type $(m_1^{n_1-r_1}, (m_1-k)^{r_1}, m_2^{n_2-r_2}, (m_2-k)^{r_2})$ and, further, that there are no other subgroups of E of type $(k^{r_1+r_2})$ having this type of quotient group.

Let F be one of the subgroups of type $(k^{r_1+r_2})$. Without loss of generality, we may take it to be

$$[a_1][a_2]...[a_{r_1}][M_1b_1][M_2b_2]...[M_{r_2}b_{r_2}],$$

where M_j is any of the monomials $a_{r_1+1}^{\alpha_1} a_{r_1+2}^{\alpha_2} \dots a_{n_1-r_1}^{\alpha_{n_1-r_1}}$, $(\alpha = 0, 1, \dots, p^k - 1)$, and M_i 's in different brackets might possibly be the same. (Note, however, that $[M_j b_j]$ and $[M_j b_r]$, $r \neq j$, have no elements in common except the identity.)

Then the quotient groups $\frac{C_{1i}}{[a_i]}$, $i = 1, 2, ..., r_1$, are cyclic of order p^{m_1-k} ,

and so, as in Lemma 1, $\frac{C_{11}C_{12}...C_{1r_1}}{[a_1][a_2]...[a_{r_1}]}$ is of type $((m_1-k)^{r_1})$. Since $M_j^{p^k} = 1$, every $M_j y_j$ generates a cyclic group C'_{2j} of order p^{m_2} .

Thus $\frac{C'_{2j}}{[M_i b_i]}$ is cyclic of order p^{m_2-k} and it follows that

$$\frac{C_{11}C_{12}...C_{1r_1}C_{21}C_{22}...C_{2r_2}}{F}$$

is of type $((m_1-k)^{r_1}, (m_2-k)^{r_2})$. But since $C_{1, r_1+1}C_{1, r_1+2}...C_{1n_1}C_{21}...C_{2r_2}$ is the same group as $C_{1,r_1+1}...C_{1n_1}C'_{2r_2}$, we can write E in either of the forms

$$C_{11}...C_{1r_1}...C_{1n_1}C_{21}...C_{2r_2}C_{2, r_2+1}...C_{2n_2}$$
$$C_{11}...C_{1r_1}...C_{1n_1}C'_{21}...C'_{2r_2}C_{2, r_2+1}...C_{2n_2}$$

and so E/F is of type $(\lambda) = (m_1^{n_1-r_1}, (m_1-k)^{r_1}, m_2^{n_2-r_2}, (m_2-k)^{r_2}).$

To show that there are no other subgroups of E of type $(k^{r_1+r_2})$ having a quotient group of type (λ), we note that we are obliged to use r_1 of the n_1 a_i 's to give the $(m_1 - k)^{r_1}$ part of (λ). We must then choose r_2 elements of order p^k so as to give the $(m_2 - k)^{r_2}$ part of (λ) without affecting the $m_1^{n_1 - r_1}$ and $m_2^{n_2-r_2}$ parts. These r_2 elements must contain a non-vanishing monomial in the b_i 's and may contain also a monomial in the a_i 's. A monomial in $a_1, a_2, \ldots, a_{r_1}$, say N_i , will give a group $[N_i b_i]$ of order p^k , but

$$[a_1]...[a_{r_1}][N_1b_1]...[N_{r_2}b_{r_2}]$$

is nothing more than $[a_1] \dots [a_{r_1}][b_1] \dots [b_{r_2}]$. Hence the only monomials in the a_i 's which give distinct subgroups F of the required type are the M_i as defined above, which proves the lemma.

I. J. DAVIES

Using these lemmas, we can now prove the main result.

Theorem. If
$$(\rho) = (m_1^{n_1}, m_2^{n_2}, ..., m_s^{n_s}), m_1 > m_2 > ... > m_s, and
 $(\lambda) = (m_1^{n_1 - r_1}, (m_1 - k)^{r_1}, m_2^{n_2 - r_2}, (m_2 - k)^{r_2}, ..., m_s^{n_s - r_s}, (m_s - k)^{r_s}),$$$

where $r_1 + r_2 + ... + r_s = r$, $r_i \leq n_i$ (i = 1, ..., s) and $k \leq m_s$, then the number of subgroups F of an Abelian p-group E of type (ρ) which are of type $(k^{r_1+r_2+...+r_s})$ and for which E/F is of type (λ) is

$$g_{\lambda, kr}^{\rho}(p) = p^{k \sum_{i=1}^{s} r_{i}(N_{i} - R_{i})} \prod_{i=1}^{s} \phi(n_{i}, r_{i}; 1/p).$$

Proof. We assume the result is true for a group E' of type $(\rho') = (m_1^{n_1}, ..., m_t^{n_t})$, t < s. We now have to form the direct product of E' with n_{t+1} cyclic groups of orders $p^{m_{t+1}}$. Let these be generated by z_d where $d = 1, 2, ..., n_{t+1}$. Let $w_d = z_d^{p^{m_{t+1}-k}}$ so that $w_d^{p^k} = 1$. The number of subgroups of type $(k^{r_{t+1}})$ generated by the w_d 's is, as in Lemma 1, equal to

$$p^{kr_{t+1}(n_{t+1}-r_{t+1})}\phi(n_{t+1}, r_{t+1}; 1/p).$$

But any w_d can be "augmented", as in Lemma 2, by a monomial

$$a_{r_1+1}^{\alpha_1}a_{r_1+2}^{\alpha_2}...a_{n_1}^{\alpha_{n_1}-r_1}b_{r_2+1}^{\beta_1}b_{r_2+2}^{\beta_2}...b_{n_2}^{\beta_{n_2}-r_2}...$$

containing $(n_1-r_1)+(n_2-r_2)+\ldots+(n_i-r_i)$ distinct symbols a_i, b_j, \ldots with every index $\alpha_i, \beta_j, \ldots$ capable of any of the values from 0 to p^k-1 . Hence the number of subgroups of type (k^{r_i+1}) which we can construct from the "augmented" w_d 's is

$$p^{kr_{t+1}(N_{t+1}-R_{t+1})}\phi(n_{t+1}, r_{t+1}; 1/p).$$

As in Lemma 2, the quotient group is of type $(m_1^{n_1-r_1}, (m_1-k)^{r_1}, ..., m_{t+1}^{n_{t+1}-r_{t+1}}, (m_{t+1}-k)^{r_{t+1}})$ and there are no further subgroups possible under the conditions for F prescribed in Lemma 2.

The theorem now follows by induction.

REFERENCES

(1) Y. YEH, On prime power Abelian Groups, Bull. Amer. Math. Soc., 54 (1948), 323-327.

(2) S. DELSARTE, Fonctions de Möbius sur les groupes abeliens finis. Ann. of Math., (2) 49 (1948), 600-609.

(3) Y. KINOSITA, On an enumeration of certain subgroups of a *p*-group. J. Osaka Inst. Sci. Tech. Part I, 1 (1949), 13-20.

(4) P. HALL, Edinburgh Mathematical Society Colloquium, St Andrews, 1955.

UNIVERSITY COLLEGE SWANSEA

4