ENUMERATION OF CERTAIN SUBGROUPS OF ABELIAN p-GROUPS

by I. J. DAVIES

(Received 10th May, 1961)
The number of distinct types of Abelian group of prime-power order p^{n} is equal to the number of partitions of n. Let $(\rho)=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{r}\right)$ be a partition of n and let $(\mu)=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{s}\right)$ be a partition of m, with $\rho_{1} \geqq \rho_{2} \geqq \ldots \geqq \rho_{r}$ and $\mu_{1} \geqq \mu_{2} \geqq \ldots \geqq \mu_{s}, \rho_{i} \geqq \mu_{i}, r \geqq s, n>m$. The number of subgroups of type (μ) in an Abelian p-group of type (ρ) is a function of the two partitions (ρ), (μ) and p, and has been determined as a polynomial in p with integer coefficients by Yeh (1), Delsarte (2) and Kinosita (3). Their results differ in form but are equivalent.
P. Hall (4) suggested a refinement of this problem in which we require the number of subgroups of type (μ) in an Abelian p-group of type (ρ) which have a quotient group of type (λ). The result, which is a function $g_{\lambda \mu}^{\rho}(p)$ of the three partitions $(\rho),(\lambda),(\mu)$ and p, is known to be a polynomial in p of degree $\sum_{i}(i-1)\left(\rho_{i}-\lambda_{i}-\mu_{i}\right)$, and the coefficient of its highest power is the coefficient of the Schur function $\{\rho\}$ in the product of the Schur functions $\{\lambda\}\{\mu\}$. The precise form of the polynomial is however not known in general.

In this note, the polynomial is determined when

$$
\begin{aligned}
& (\rho)=\left(m_{1}^{n_{1}}, m_{2}^{n_{2}}, \ldots, m_{s}^{n_{s}}\right), \\
& (\lambda)=\left(m_{1}^{n_{1}}, r_{1},\left(m_{1}-k\right)^{r_{1}}, m_{2}^{n_{2}-r_{2}},\left(m_{2}-k\right)^{r_{2}}, \ldots, m_{s}^{n_{s}-r_{s}},\left(m_{s}-k\right)^{r_{s}}\right)
\end{aligned}
$$

and $\quad(\mu)=\left(k^{r_{1}+r_{2}+\ldots+r_{s}}\right)$,
where $r_{1}+r_{2}+\ldots+r_{s}=r$. The result is given in the Theorem which is proved by means of the two lemmas which follow.

Lemma 1. The number of subgroups F of type (k^{r}) in an Abelian p-group E of type (m^{n}) such that the quotient group E/F is of type $\left(m^{n-r},(m-k)^{r}\right)$, where $r \leqq n, k \leqq m$, is
where

$$
p^{k r(n-r)} \phi(n, r ; 1 / p)
$$

$$
\phi(s+t, s ; u)=\frac{(1-u)\left(1-u^{2}\right) \ldots\left(1-u^{s+t}\right)}{(1-u) \ldots\left(1-u^{s}\right)(1-u) \ldots\left(1-u^{t}\right)}, \quad s, t>0 .
$$

Proof. From the work of Yeh, Delsarte and Kinosita, it can be shown that the number of subgroups F of type (k^{r}) in an Abelian p-group E of type $\left(m^{n}\right)$ is $p^{k r(n-r)} \phi(n, r ; 1 / p)$. It remains to prove that E / F, for every such subgroup F, is of the required type.
E.M.S.-A

I. J. DAVIES

Let $E=C_{1} C_{2} \ldots C_{n}$, where C_{i} is a cyclic group of order p^{m}, let $F=B_{1} B_{2} \ldots B_{r}$, where B_{i} is a cyclic group of order p^{k}, and let $E^{\prime}=C_{1} C_{2} \ldots C_{r}$ with the quotient group E^{\prime} / F isomorphic to a group F^{\prime}. We shall need two results.
(i) The quotient group of a cyclic group with respect to a subgroup is also cyclic, and so C_{i} / B_{i} is isomorphic to a cyclic group D_{i} of order p^{m-k}.
(ii) If X, Y are any two groups such that $X \cap Y=1$ and, for some group Z, the quotient group Z / X is isomorphic to Y, then Z is the direct product $X Y$ of X and Y.
Now $C_{i}=B_{i} D_{i}$, so that $E^{\prime}=\prod_{1}^{r} C_{i}=\prod_{1}^{r}\left(B_{i} D_{i}\right)=\prod_{1}^{r} B_{i} \prod_{1}^{r} D_{i}=F \prod_{1}^{r} D_{i}$. Since E^{\prime} is also equal to $F F^{\prime}$, we see that $F^{\prime}=\prod_{1}^{r} D_{i}$, i.e. F^{\prime} is isomorphic to the direct product of r cyclic groups D_{i} of orders p^{m-k}. Thus $\frac{C_{1} C_{2} \ldots C_{r}}{B_{1} B_{2} \ldots B_{r}}$ is of type $\left((m-k)^{r}\right)$. It follows that E / F, which is $\frac{C_{1} C_{2} \ldots C_{r} C_{r+1} \ldots C_{n}}{B_{1} \ldots B_{r}}$, is of type ($\left.m^{n-r},(m-k)^{r}\right)$ and the result follows.

Lemma 2. The number of subgroups F of type $\left(k^{r_{1}+r_{2}}\right)$, where $r_{1}+r_{2}=r$, in an Abelian p-group E of type $\left(m_{1}^{n_{1}}, m_{2}^{n_{2}}\right), m_{1}>m_{2}$, such that E / F is of type $\left(m_{1}^{n_{1}-r_{1}},\left(m_{1}-k\right)^{r_{1}}, m_{2}^{n_{2}-r_{2}},\left(m_{2}-k\right)^{r_{2}}\right)$, where $r_{1} \leqq n_{1}, r_{2} \leqq n_{2}, k \leqq m_{2}$, is

$$
p^{k\left[r_{1}\left(N_{1}-R_{1}\right)+r_{2}\left(N_{2}-R_{2}\right)\right]} \phi\left(n_{1}, r_{1} ; 1 / p\right) \phi\left(n_{2}, r_{2} ; 1 / p\right)
$$

where $N_{t}=\sum_{1}^{t} n_{i}, R_{t}=\sum_{i}^{t} r_{i}$.
Proof. Let E be generated by n_{1} elements x_{i}, each of order $p^{m_{1}}$, and n_{2} elements y_{j}, each of order $p^{m_{2}}$. Let $a_{i}=x_{i}^{p_{1}-k}, i=1,2, \ldots, n_{1}$, and $b_{j}=y_{j}^{p_{1} m_{2}-k}$, $j=1,2, \ldots, n_{2}$. Then $a_{i}^{p^{k}}=b_{j}^{p^{k}}=1$. Let the cyclic groups generated by x_{i} and y_{j} be $C_{1 i}$ and $C_{2 j}$ respectively. Every $C_{1 i}$ has one and only one subgroup of order p^{k}, namely that generated by \dot{a}_{i}, and every $C_{2_{j}}$ has one and only one subgroup of order p^{k}, namely that generated by b_{j}. We denote these by $\left[a_{i}\right]$ and $\left[b_{j}\right]$.

The number of subgroups generated by r_{1} of the a_{i} 's is, as in Lemma 1 , $p^{k r_{1}\left(n_{1}-r_{1}\right)} \phi\left(n_{1}, r_{1} ; 1 / p\right)$ and the number of subgroups generated by r_{2} of the b_{j} 's is $p^{k r_{2}\left(n_{2}-r_{2}\right)} \phi\left(n_{2}, r_{2} ; 1 / p\right)$. Consider a particular subgroup generated by r_{2} of the b_{j} 's, say the one generated by $b_{1}, b_{2}, \ldots, b_{r_{2}}$. If any of these b_{j} 's is replaced by $b_{j} \times a_{r_{1}+1}^{\alpha_{1}} a_{r_{1}+2}^{\alpha_{2}} \ldots a_{n_{1}}^{\alpha_{n_{1}}-r_{1}}$, where $\alpha_{1}, \ldots, \alpha_{n_{1}-r_{1}}$ have any prescribed values in the range $0,1,2, \ldots, p^{k}-1$, then the group generated by this "augmented" generator is also a cyclic group of order p^{k}. The number of these monomials $a_{r_{1}+1}^{\alpha_{1}} a_{r_{1}+2}^{\alpha_{2}} \ldots a_{n_{1}}^{\alpha_{n_{1}}-r_{1}}$ is $p^{k\left(n_{1}-r_{1}\right)}$, since every index α can range from 0 to $p^{k}-1$ and the number of a_{i} 's involved is $n_{1}-r_{1}$. Further, any of these monomials may be used to "augment" any of the $r_{2} b_{j}$'s and so, in this way, we can construct $p^{k r_{2}\left(n_{2}-r_{2}\right)} \phi\left(n_{2}, r_{2} ; 1 / p\right) \times p^{k r_{2}\left(n_{1}-r_{1}\right)}$ subgroups of
type ($k^{r_{2}}$) and consequently

$$
p^{k\left[r_{1}\left(N_{1}-R_{1}\right)+r_{2}\left(N_{2}-R_{2}\right)\right]} \phi\left(n_{1}, r_{1} ; 1 / p\right) \phi\left(n_{2}, r_{2} ; 1 / p\right)
$$

subgroups of type ($k^{r_{1}+r_{2}}$).
It remains to prove that the quotient groups of these subgroups with respect to E are of the type ($m_{1}^{n_{1}-r_{1}},\left(m_{1}-k\right)^{r_{1}}, m_{2}^{n_{2}-r_{2}},\left(m_{2}-k\right)^{r_{2}}$) and, further, that there are no other subgroups of E of type ($k^{r_{1}+r_{2}}$) having this type of quotient group.

Let F be one of the subgroups of type $\left(k^{r_{1}+r_{2}}\right)$. Without loss of generality, we may take it to be

$$
\left[a_{1}\right]\left[a_{2}\right] \ldots\left[a_{r_{1}}\right]\left[M_{1} b_{1}\right]\left[M_{2} b_{2}\right] \ldots\left[M_{r_{2}} b_{r_{2}}\right],
$$

where M_{j} is any of the monomials $a_{r_{1}+1}^{\alpha_{1}} a_{r_{1}+2}^{\alpha_{2}} \ldots a_{n_{1}}^{\alpha_{n_{1}-r_{1}}},\left(\alpha=0,1, \ldots, p^{k}-1\right)$, and M_{j} 's in different brackets might possibly be the same. (Note, however, that $\left[M_{j} b_{j}\right]$ and $\left[M_{j} b_{r}\right], r \neq j$, have no elements in common except the identity.)

Then the quotient groups $\frac{C_{1 i}}{\left[a_{i}\right]}, i=1,2, \ldots, r_{1}$, are cyclic of order $p^{m_{1}-k}$, and so, as in Lemma $1, \frac{C_{11} C_{12} \ldots C_{1 r_{1}}}{\left[a_{1}\right]\left[a_{2}\right] \ldots\left[a_{r_{1}}\right]}$ is of type $\left(\left(m_{1}-k\right)^{r_{1}}\right)$.

Since $M_{j}^{p^{k}}=1$, every $M_{j} y_{j}$ generates a cyclic group $C_{2 j}^{\prime}$ of order $p^{m_{2}}$. Thus $\frac{C_{2 j}^{\prime}}{\left[M_{j} b_{j}\right]}$ is cyclic of order $p^{m_{2}-k}$ and it follows that

$$
\frac{C_{11} C_{12} \ldots C_{1 r_{1}} C_{21}^{\prime} C_{22}^{\prime} \ldots C_{2 r_{2}}^{\prime}}{F}
$$

is of type $\left(\left(m_{1}-k\right)^{r_{1}},\left(m_{2}-k\right)^{r_{r}}\right)$. But since $C_{1, r_{1}+1} C_{1, r_{1}+2} \ldots C_{1 n_{1}} C_{21} \ldots C_{2 r_{2}}$ is the same group as $C_{1, r_{1}+1} \ldots C_{1 n_{1}} C_{21}^{\prime} \ldots C_{2 r_{2}}^{\prime}$, we can write E in either of the forms

$$
\begin{aligned}
& C_{11} \ldots C_{1 r_{1}} \ldots C_{1 n_{1}} C_{21} \ldots C_{2 r_{2}} C_{2, r_{2}+1} \ldots C_{2 n_{2}} \\
& C_{11} \ldots C_{1 r_{1}} \ldots C_{1 n_{1}} C_{21}^{\prime} \ldots C_{2 r_{2}}^{\prime} C_{2, r_{2}+1} \ldots C_{2 n_{2}}
\end{aligned}
$$

and so E / F is of type $(\lambda)=\left(m_{1}^{n_{1}-r_{1}},\left(m_{1}-k\right)^{r_{1}}, m_{2}^{n_{2}-r_{2}},\left(m_{2}-k\right)^{r_{2}}\right.$.
To show that there are no other subgroups of E of type ($k^{r_{1}+r_{2}}$) having a quotient group of type (λ), we note that we are obliged to use r_{1} of the n_{1} a_{i} 's to give the $\left(m_{1}-k\right)^{r_{1}}$ part of (λ). We must then choose r_{2} elements of order p^{k} so as to give the ($\left.m_{2}-k\right)^{r_{2}}$ part of (λ) without affecting the $m_{1}^{n_{1}-r_{1}}$ and $m_{2}^{n_{2}-r_{2}}$ parts. These r_{2} elements must contain a non-vanishing monomial in the b_{j} 's and may contain also a monomial in the a_{i} 's. A monomial in $a_{1}, a_{2}, \ldots, a_{r_{1}}$, say N_{j}, will give a group $\left[N_{j} b_{j}\right]$ of order p^{k}, but

$$
\left[a_{1}\right] \ldots\left[a_{r_{1}}\right]\left[N_{1} b_{1}\right] \ldots\left[N_{r_{2}} b_{r_{2}}\right]
$$

is nothing more than $\left[a_{1}\right] \ldots\left[a_{r_{1}}\right]\left[b_{1}\right] \ldots\left[b_{r_{2}}\right]$. Hence the only monomials in the a_{i} 's which give distinct subgroups F of the required type are the M_{j} as defined above, which proves the lemma.

Using these lemmas, we can now prove the main result.
Theorem. If $(\rho)=\left(m_{1}^{n_{1}}, m_{2}^{n_{2}}, \ldots, m_{s}^{n_{s}}\right), m_{1}>m_{2}>\ldots>m_{s}$, and

$$
(\lambda)=\left(m_{1}^{n_{1}-r_{1}},\left(m_{1}-k\right)^{r_{1}}, m_{2}^{n_{2}-r_{2}},\left(m_{2}-k\right)^{r_{2}}, \ldots, m_{s}^{n_{s}-r_{s}},\left(m_{s}-k\right)^{r_{s}}\right)
$$

where $r_{1}+r_{2}+\ldots+r_{s}=r, r_{i} \leqq n_{i}(i=1, \ldots, s)$ and $k \leqq m_{s}$, then the number of subgroups F of an Abelian p-group E of type (ρ) which are of type $\left(k^{\left.r_{1}+r_{2}+\ldots+r_{s}\right)}\right.$ and for which E / F is of type (λ) is

$$
g_{\lambda, k r}^{\rho}(p)=p^{k \sum_{1}^{s} r_{i}\left(N_{i}-R_{i}\right)} \prod_{i=1}^{s} \phi\left(n_{i}, r_{i} ; 1 / p\right) .
$$

Proof. We assume the result is true for a group E^{\prime} of type $\left(\rho^{\prime}\right)=\left(m_{1}^{n_{1}}, \ldots, m_{t}^{n_{t}}\right)$, $t<s$. We now have to form the direct product of E^{\prime} with n_{t+1} cyclic groups of orders $p^{m_{t+1}}$. Let these be generated by z_{d} where $d=1,2, \ldots, n_{t+1}$. Let $w_{d}=z_{d}^{p^{m_{t+1}}}{ }^{-k}$ so that $w_{d}^{p^{k}}=1$. The number of subgroups of type $\left(k^{r_{t+1}}\right)$ generated by the w_{d} 's is, as in Lemma 1, equal to

$$
p^{k r_{t+1}\left(n_{t+1}-r_{t+1}\right)} \phi\left(n_{t+1}, r_{t+1} ; 1 / p\right)
$$

But any w_{d} can be " augmented", as in Lemma 2, by a monomial

$$
a_{r_{1}+1}^{\alpha_{1}} a_{r_{1}+2}^{\alpha_{2}} \ldots a_{n_{1}}^{\alpha_{n_{1}}-r_{1}} b_{r_{2}+1}^{\beta_{1}} b_{r_{2}+2}^{\beta_{2}} \ldots b_{n_{2}}^{\beta_{n_{2}}-r_{2}} \ldots
$$

containing $\left(n_{1}-r_{1}\right)+\left(n_{2}-r_{2}\right)+\ldots+\left(n_{t}-r_{t}\right)$ distinct symbols a_{i}, b_{j}, \ldots with every index $\alpha_{i}, \beta_{j}, \ldots$ capable of any of the values from 0 to $p^{k}-1$. Hence the number of subgroups of type ($k^{r_{t+1}}$) which we can construct from the " augmented " w_{d} 's is

$$
p^{k r_{t+1}\left(N_{t+1}-R_{t+1}\right)} \phi\left(n_{t+1}, r_{t+1} ; 1 / p\right)
$$

As in Lemma 2, the quotient group is of type $\left(m_{1}^{n_{1}-r_{1}},\left(m_{1}-k\right)^{r_{1}}, \ldots\right.$, $\left.m_{t+1}^{n_{t+1}-r_{t+1}},\left(m_{t+1}-k\right)^{r_{t+1}}\right)$ and there are no further subgroups possible under the conditions for F prescribed in Lemma 2.

The theorem now follows by induction.

REFERENCES

(1) Y. Yeh, On prime power Abelian Groups, Bull. Amer. Math. Soc., 54 (1948), 323-327.
(2) S. Delsarte, Fonctions de Möbius sur les groupes abeliens finis. Ann. of Math., (2) 49 (1948), 600-609.
(3) Y. Kinosita, On an enumeration of certain subgroups of a p-group. J. Osaka Inst. Sci. Tech. Part I, 1 (1949), 13-20.
(4) P. Hall, Edinburgh Mathematical Society Colloquium, St Andrews, 1955.

University College
Swansea

