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Abstract

It is shown that the complex semigroup algebra of a free monoid of rank at least two is *-primitive, where
* denotes the involution on the algebra induced by word-reversal on the monoid.

2000 Mathematics subject classification: primary 16S10, 16S36, 20M25.

Let A be an algebra over the complex field C that admits an involution *; thus * is a
mapping A —> A such that for all a, b e A and k e C

(a + by = a* + b\ (ab)* = b*a\ a** = a, (ka)* = ka\

where k denotes the complex conjugate of k. A right module V for A is termed a
*-module if and only if it admits an inner product (| > such that

(ua\v) — (u\va*) for all u, v e V and a e A.

We say that A is ^-primitive if and only if it has a faithful irreducible *-module.
The complex semigroup algebra of a semigroup S is denoted by C[S]. For a

nonempty set X, the free monoid and the free group on X are denoted, respectively,
by Mx and Gx. Note that C[MX] is the free complex algebra-with-unity on X. It is
well known and easy to see that each of the algebras C[MX] and C[GX] possesses an
involution. Let * denote the involution on C[MX] defined by

*«,•>>,• I := ^ a , y T for a, e C, y, e Mx,
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where y~ denotes the reverse of the word y,, and let t denote the involution on
defined by

f o r a<

Now suppose that X has at least 2 elements. It was shown by Formanek [4] that
C[GX] is primitive (that is, has a faithful irreducible right module); and his argument
can be adapted to also show that C[MX] is primitive (see [8, Chapter 9, Ex. 17]).
Subsequently, explicit constructions for faithful irreducible right modules for C[MX]
and C[Gx] were provided by McGregor ([7] and [6]); and alternative constructions,
without cardinality restrictions, appeared in [1] and [2]. As was pointed out by
Irving [5], the module constructed for CfG*] in [6] is in fact a t-module; thus <C[GX]
is t-primitive. The purpose of the present paper is to show that <C[MX] is *-primitive.
This does not appear to follow from the construction in [7]. To obtain the result, we
adapt the procedure that establishes the t-primitivity of £[GX].

The symbols N and Z denote, respectively, the sets of all positive integers and all
integers and |5 | denotes the cardinal of a set 5. Let X be a set with |X| > 2 and let
s, t be distinct elements of X. The identity of Gx (the empty word) is denoted by 1
and the set [x~x : x e X) by X"1. If g e GX\{1] has reduced form g — g,g2 •••£„,
where gt, g2, • • •, g« e X U X~\ then we write

l(g):=n, g" := g;
lg-[ ..-g;1,

g n • = g n , g b • = g \ g i - - - g n - \ ( = 1 i f « = ! ) •

We also take 1(1) = 0 . Next, we write

L:=\geG
g has reduced form skgt g2 • • • gn for ) , , ,
A: e Z \ { 0 } , 0 < « < \k\, g, e X U X - ' J * '

and E := [g e Gx : g £ L and gb € L}. As in [6], we use these sets to define subsets
Jif, # , ^ + , ^ - , ^ , and 38 of Gx x Z by .if := L x {0}, S := E x {0},

^ + : = {(w, n):weE, wn e X and n e N},

fy~ : = {(w, -n) :weE, wn e X" 1 and n e N},

^ : = ^ + U ^ - , a n d ^ : = i f U ^ U ^ . We also define a subset ^ * of ^ by

^ * :={(f, 3") :n e NU{0}).

In [6], ^ * is taken to be {(t, 2") : n e N}, but this change does not affect the validity
of the construction.
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It may be verified that 98 has cardinal max{|X|, No}. Let V be the complex vector
space consisting of all mappings 98 —> C of finite support, so we may write a typical
element of V in the form Yl"=i a<e> f° r some n e N, a,• e C and e, e 98. Again,
following [6], we define a right action of C[Gx] on V. First, we define ex e V for
e e 98 and x e X by the rules below:

for all (w, 0) € i", (w, 0)x = (wx, 0) e Sf U S,

(w, 1) 6 <#< + if ty e X,

for all (u>, 0) € S, (w, 0)x =• ( ^ " , 0 ) 6 i f i f t y n = ^ ~ ' ,

(iy:, 0) 6 $ otherwise,

for all (ty.it) e 9/, (w, k)x = \ W'
[(w, k + 1) otherwise.

It can be shown that for all x e X\{s} the mapping 98 -> 38, e i-» ex is a
permutation. Thus we may extend it by linearity to an invertible mapping V -> V,
v \~* vx. Although the rule e i-» es for e e 98 does not give a permutation of 98,
it also extends to an invertible mapping V -> V, v h+ vs. For all v e V we take
v\ :— v. Next, we define vx'1 e V for all v e V and all JC € X by vx'1 = w, where
wx = v. This enables us to define a right action of Gx on V and hence a right action
ofC[Cx]on V.

The first lemma states that, with respect to this action, V is a t-module.

LEMMA 1 (Irving [5]). Let {|) be the inner product on V defined by

foralle,fe&, (e\f) = V if e = f'
10 otherwise.

Then {ua\v} — {u\var) for all u, v € V and a e <C[GX].

We now gather together some further properties of V for ease of reference. These
properties are straightforward consequences of the action on V and are mostly stated
in [6, Lemma 1].

LEMMA 2. (i) et e°2f + foralle e&+, et~x e^'foralle e^"\
(ii) for all e e 98, there exists n e M such that et" e lW+ and et~" e <W~;

(iii) (sr, 0)g € i f for all r e N and g eGx with l(g) < r;
(iv) for all r € Nandg,g' € Gx withl(g), l(g') < r, (sr,0)g = (sr,0)g' implies

0 O

Next, as in the proof of [3, Theorem 1.1], we define a homomorphism 0 : C[MX] —>
€[GX] by 6{x) := x + x~] for all JC € X. Any mapping X -> €[GX] extends
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uniquely to a monoid homomorphism Mx —> (C[GX], •) and hence to an algebra
homomorphism C[MX] —>• C[GX]. The lemma below lists some properties of 9.

LEMMA 3. (i) 9 is an injective homomorphism;
(ii) for each n e N, there exists a polynomial /„ over Z of degree n such that, for

allx e X,xn+x-" = fn(9(x))\
(iii) for all a e €[MX], (9(a))f = 9{a*).

PROOF, (i) We may regard Mx as a submonoid of Gx. Let a e C[A/x]\{0}.
Consider an element w of supp(a) with l(w) maximal. Then w e supp(#(a)), which
shows that 9(a) ^ 0. Hence 9 is injective.

(ii) This can be established by induction. In fact, /„ is closely related to the «th
Chebychev polynomial of the first type.

(iii) For all x e X, (0(x))f = x + x~l = 9(x) and so, for all y € Mx, (9(y)Y =
9(Y). Hence, for all a e C[MX], (0(fl))f = 9{a*). D

Denote the element (t, 1) of 9& by ex and define W c V by

W := {ex9(a) : a e €[MX]}.

Then W is a nonzero subspace of V. Next, we define o : W x C[MX] —• W by
u) o a = u;^(a) for w e W, a 6 £[MX]. It is straightforward to see that o is a right
action of C[Mx] on W. We now show that W is faithful and irreducible under this
action.

LEMMA 4. W is a faithful module for C[MX].

PROOF. Let a e C[Mx]\{0}. Then, by Lemma 3 (i), 9(a) e C[Gx]\{0}. Thus
9(a) = Yl"=\a<8i f°r some n e N, some distinct elements g, e Gx, and some
coefficients a,, not all zero. Take

r := max{/(g,) : / = 1,...,«} + 5

and write

w:= ex(t
2 + r2)(sr +s~r).

Since (t2 + f-2)(sr + s~r) = 9(f2(t)fr(s)), by Lemma 3 (ii), we have that w e W.
The action of t and of s on certain elements of 38 can be represented diagrammatically
as

t: > ( r 1 , - l ) ^ ( r ' , 0 ) ^ ( l , 0 ) - > ( r , o ) - > ( M ) - > . ( r , 2 ) - > • • • ,

s : • ( r 1 , - 1 ) - • ( r 1 , 0 ) - • (t, 0 ) - • (r , 1) - > - ( r , 2 ) - > - ( r , 3 ) - • • • • .

https://doi.org/10.1017/S1446788700014658 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014658


[5] A property of the complex semigroup algebra of a free monoid 101

Hence we have that

(1) w = [(t, 3) + ( l , 0 ) ] ( i r + s - r )

= ±(r, r + 3) - ( r \ -r + 4) + (sr, 0) + (s~r, 0).

From the choice of r,

(2) ±(r, r + 3)g ,e ^ + , ( r 1 , - r + 4)g, e ^ " for / = 1, 2 , . . . , « ;

and

(3) {(*"', 0)g,: i = l ,2 «}n{(sr,0)g,, : i = 1,2, . . . , « } = 0.

Now, by Lemma 2 (iv), since the g, are distinct so are the elements (sr, 0)g, for
/ = 1, . . . , / ; . However, by Lemma 2 (iii), these lie in Jzf. Hence, from (l)-(3),
w6{a) ^ 0, that is, w o a ^ 0. Thus W is faithful. •

LEMMA 5. W is an irreducible module for <C[MX].

PROOF. Take (| > to be the inner product on V defined as in Lemma 1. Let
w € W\{0}. Then w = e{6{a) for some a € <L[MX] and so {ex6{a)\ex6{a)) ^ 0.
However, by Lemma 1 and Lemma 3 (iii),

< e , 0 ( a ) k , 0 ( a ) > = (et\e,9(a)(e(a)Y) = {ex\wB{a*)) = {ex\w ° a*)

and so the coefficient of e\ in wo a* is nonzero. Thus we may write wo a* = Y11=iaiei

for some n € N, some distinct e, e 38 with ex = (t, 1), and some nonzero coefficients

a, for / = 1 , . . . , n.

By Lemma 2 (i) and (ii), there exists p € N such that

ejtp 6 <?/ + , ejt p € W for / =

These 2n elements are distinct. Write (git k-) := ejtp for i — 1, . . . , n. In particular,

(g i ,* i ) = (r, \)tp = (t,p + 1). Le t / 6 N be defined by

/ := max{&, : 1 < / < n and g, = f}.

Choose m e N such that 3 m " ' > / and take q := 3m - /. Then

(4) e, r"+* = (g,, A:,+<7) = ( g , , 3 m - / + £ , ) for / = 1, . . . , « .

Let 7 € {1, . . . , n} be such that gt = t and k, — I. Then, by (4), est
pJrq = (t, 3m) and

so

(5) ejtp+q(t -s) = 2(t, T + 1), ejtp+q{rx - s~l) = 0.

https://doi.org/10.1017/S1446788700014658 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014658


102 M. J. Crabb, C. M. McGregor and W. D. Munn [6]

We next show that

(6) eit
p+q(t-s) = O, eit

p+"(r]-s->) = 0 (i ± j).

Let i e { 1 , . . . , n] with / ^ j . First, suppose that g, = t. Then k, < I and so
3m - / + kj < 3m. Further, since 3"1"1 > /, we have that 3m - / > 3"1"1 + /, and so
3m - / + k, > 3" - 1 + 1. Since e,f+« = (r, 3m - / + *,-), by (4), it follows that (6)
holds. Now suppose that g, / t. Then, from (4), we see that (6) holds in this case
also. Thus we have established (6). Since e,f"p e %~,

(7) etr
p-q(t-s) = 0, eit-p-qis~x - s'1) = 0 for i = 1,..., n.

Write u:=t + rl-s-s~l. Then, by (5)-(7),

(w o a*)(tp+q + rp-q)u = (wo a*)tp+q(t - s) + (w o a')

+ (wo a*)rp-q(t -s) + (wo a*)rp-q(r] - s'1

= 2aJ(f ,3m + l) .

Now write r := 3m - 1. Then (t, 3m + l)(fr + t~r) = (?, 2.3m) + (t, 2) and so

(r, 3m + l)(rr + f-r)w = (r, 2.3m)(f - s) + (f, 2 .3 m )( r ' - 5"')

Hence

(8) (iu o a*)(rp+« + rp-q)u(tr + rr)u = 4a7e,.

Let fe 6 C[MX] be defined by fc := fp+q(t)(t - s)fr(t)(t - s), where fp+q and / r

are the polynomials defined in Lemma 3 (ii). Then 6(b) = (tp+q + rp~q)u{tr + t~r)u
and so, from (8), w o (a*b) = (w o a*)0(b) = 4aje[. Since a, / 0, it follows that
w o £[MX] = W. Thus W is irreducible. D

The main result now follows.

THEOREM 6. Let Mx denote the free monoid on a set X with at least two elements
and let * denote the involution on C[MX] induced by word-reversal. Then €[MX] is
•^-primitive.

PROOF. By Lemmas 4 and 5, W is a faithful irreducible module for €[MX]. Now,
by Lemma 1, there exists an inner product ( | ) on V such that, for all u, v e V and
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all b e C[GX], (ub\v) = (u\vb*). Consider the restriction of this inner product to W.
Then, for all wl,w2 e W and all a e C[MX],

(wi oa\w2) = (w\6(a)\w2) — (w{\w2{0{a))')

= (u>]\w29(a*)), by Lemma 3 (iii),

Hence W is a *-module and so W is ^-primitive. •

REMARK. The construction in [7] also shows that the Banach algebra ll(Mx) is
primitive for the case |X| > 2. The question of whether / '(M*) is *-primitive in this
case remains open.
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