A PROPERTY OF THE COMPLEX SEMIGROUP ALGEBRA OF A FREE MONOID

M. J. CRABB, C. M. MCGREGOR and W. D. MUNN

(Received 26 January 2005; revised 20 April 2005)

Communicated by D. Easdown

Abstract

It is shown that the complex semigroup algebra of a free monoid of rank at least two is *-primitive, where * denotes the involution on the algebra induced by word-reversal on the monoid.

2000 Mathematics subject classification: primary $16 \mathrm{~S} 10,16 \mathrm{~S} 36,20 \mathrm{M} 25$.

Let A be an algebra over the complex field \mathbb{C} that admits an involution $*$; thus $*$ is a mapping $A \rightarrow A$ such that for all $a, b \in A$ and $\lambda \in \mathbb{C}$

$$
(a+b)^{*}=a^{*}+b^{*}, \quad(a b)^{*}=b^{*} a^{*}, \quad a^{* *}=a, \quad(\lambda a)^{*}=\bar{\lambda} a^{*}
$$

where $\bar{\lambda}$ denotes the complex conjugate of λ. A right module V for A is termed a *-module if and only if it admits an inner product $\langle 1\rangle$ such that

$$
\langle u a \mid v\rangle=\left\langle u \mid v a^{*}\right\rangle \quad \text { for all } u, v \in V \text { and } a \in A .
$$

We say that A is $*$-primitive if and only if it has a faithful irreducible $*$-module.
The complex semigroup algebra of a semigroup S is denoted by $\mathbb{C}[S]$. For a nonempty set X, the free monoid and the free group on X are denoted, respectively, by M_{X} and G_{X}. Note that $\mathbb{C}\left[M_{X}\right]$ is the free complex algebra-with-unity on X. It is well known and easy to see that each of the algebras $\mathbb{C}\left[M_{X}\right]$ and $\mathbb{C}\left[G_{X}\right]$ possesses an involution. Let $*$ denote the involution on $\mathbb{C}\left[M_{X}\right]$ defined by

$$
\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)^{*}:=\sum_{i=1}^{n} \overline{\alpha_{i}} \overleftarrow{y_{i}} \quad \text { for } \alpha_{i} \in \mathbb{C}, y_{i} \in M_{X}
$$

(C) 2006 Australian Mathematical Society 1446-7887/06 $\$$ A $2.00+0.00$
where $\overleftarrow{y_{i}}$ denotes the reverse of the word y_{i}, and let \dagger denote the involution on $\mathbb{C}\left[G_{X}\right]$ defined by

$$
\left(\sum_{i=1}^{n} \alpha_{i} g_{i}\right)^{+}:=\sum_{i=1}^{n} \overline{\alpha_{i}} g_{i}^{-1} \quad \text { for } \alpha_{i} \in \mathbb{C}, g_{i} \in G_{X}
$$

Now suppose that X has at least 2 elements. It was shown by Formanek [4] that $\mathbb{C}\left[G_{X}\right]$ is primitive (that is, has a faithful irreducible right module); and his argument can be adapted to also show that $\mathbb{C}\left[M_{X}\right]$ is primitive (see [8, Chapter 9, Ex. 17]). Subsequently, explicit constructions for faithful irreducible right modules for $\mathbb{C}\left[M_{X}\right]$ and $\mathbb{C}\left[G_{X}\right]$ were provided by McGregor ([7] and [6]); and alternative constructions, without cardinality restrictions, appeared in [1] and [2]. As was pointed out by Irving [5], the module constructed for $\mathbb{C}\left[G_{X}\right]$ in [6] is in fact a \dagger-module; thus $\mathbb{C}\left[G_{X}\right]$ is \dagger-primitive. The purpose of the present paper is to show that $\mathbb{C}\left[M_{X}\right]$ is $*$-primitive. This does not appear to follow from the construction in [7]. To obtain the result, we adapt the procedure that establishes the \dagger-primitivity of $\mathbb{C}\left[G_{X}\right]$.

The symbols \mathbb{N} and \mathbb{Z} denote, respectively, the sets of all positive integers and all integers and $|S|$ denotes the cardinal of a set S. Let X be a set with $|X| \geq 2$ and let s, t be distinct elements of X. The identity of G_{X} (the empty word) is denoted by 1 and the set $\left\{x^{-1}: x \in X\right\}$ by X^{-1}. If $g \in G_{X} \backslash\{1\}$ has reduced form $g=g_{1} g_{2} \cdots g_{n}$, where $g_{1}, g_{2}, \ldots, g_{n} \in X \cup X^{-1}$, then we write

$$
\begin{aligned}
l(g) & :=n, & & g^{2}:=g_{1}^{-1} g_{2}^{-1} \cdots g_{n}^{-1} \\
g^{\Omega} & :=g_{n}, & & g^{b}:=g_{1} g_{2} \cdots g_{n-1}(=1 \text { if } n=1)
\end{aligned}
$$

We also take $l(1)=0$. Next, we write

$$
L:=\left\{\begin{array}{l|l}
g \in G_{X} & \begin{array}{l}
g \text { has reduced form } s^{k} g_{1} g_{2} \cdots g_{n} \text { for } \\
k \in \mathbb{Z} \backslash\{0\}, 0 \leq n \leq|k|, g_{i} \in X \cup X^{-1}
\end{array}
\end{array}\right\} \cup\{1\}
$$

and $E:=\left\{g \in G_{X}: g \notin L\right.$ and $\left.g^{b} \in L\right\}$. As in [6], we use these sets to define subsets $\mathscr{L}, \mathscr{E}, \mathscr{U}^{+}, \mathscr{U}^{-}, \mathscr{U}$, and \mathscr{B} of $G_{X} \times \mathbb{Z}$ by $\mathscr{L}:=L \times\{0\}, \mathscr{E}:=E \times\{0\}$,

$$
\begin{aligned}
& \mathscr{U}^{+}:=\left\{(w, n): w \in E, w^{\Omega} \in X \text { and } n \in \mathbb{N}\right\}, \\
& \mathscr{U}^{-}:=\left\{(w,-n): w \in E, w^{\Omega} \in X^{-1} \text { and } n \in \mathbb{N}\right\},
\end{aligned}
$$

$\mathscr{U}:=\mathscr{U}^{+} \cup \mathscr{U}^{-}$, and $\mathscr{B}:=\mathscr{L} \cup \mathscr{E} \cup \mathscr{U}$. We also define a subset \mathscr{U}^{*} of \mathscr{U} by

$$
\mathscr{U}^{*}:=\left\{\left(t, 3^{n}\right): n \in \mathbb{N} \cup\{0\}\right\}
$$

In [6], \mathscr{U}^{*} is taken to be $\left\{\left(t, 2^{n}\right): n \in \mathbb{N}\right\}$, but this change does not affect the validity of the construction.

It may be verified that \mathscr{B} has cardinal $\max \left\{|X|, \aleph_{0}\right\}$. Let V be the complex vector space consisting of all mappings $\mathscr{B} \rightarrow \mathbb{C}$ of finite support, so we may write a typical element of V in the form $\sum_{i=1}^{n} \alpha_{i} e_{i}$ for some $n \in \mathbb{N}, \alpha_{i} \in \mathbb{C}$ and $e_{i} \in \mathscr{B}$. Again, following [6], we define a right action of $\mathbb{C}\left[G_{X}\right]$ on V. First, we define $e x \in V$ for $e \in \mathscr{B}$ and $x \in X$ by the rules below:

$$
\begin{aligned}
& \text { for all }(w, 0) \in \mathscr{L}, \quad(w, 0) x=(w x, 0) \in \mathscr{L} \cup \mathscr{E}, \\
& \text { for all }(w, 0) \in \mathscr{E}, \quad(w, 0) x= \begin{cases}(w, 1) \in \mathscr{U}^{+} & \text {if } w^{\Omega} \in X, \\
\left(w^{b}, 0\right) \in \mathscr{L} & \text { if } w^{\Omega}=x^{-1}, \\
\left(w^{-}, 0\right) \in \mathscr{E} & \text { otherwise },\end{cases} \\
& \text { for all }(w, k) \in \mathscr{U}, \quad(w, k) x= \begin{cases}-(w, k+1) & \text { if } x=s \text { and }(w, k) \in \mathscr{U}^{*}, \\
(w, k+1) & \text { otherwise. }\end{cases}
\end{aligned}
$$

It can be shown that for all $x \in X \backslash\{s\}$ the mapping $\mathscr{B} \rightarrow \mathscr{B}, e \mapsto e x$ is a permutation. Thus we may extend it by linearity to an invertible mapping $V \rightarrow V$, $v \mapsto v x$. Although the rule $e \mapsto$ es for $e \in \mathscr{B}$ does not give a permutation of \mathscr{B}, it also extends to an invertible mapping $V \rightarrow V, v \mapsto v s$. For all $v \in V$ we take $v 1:=v$. Next, we define $v x^{-1} \in V$ for all $v \in V$ and all $x \in X$ by $v x^{-1}=w$, where $w x=v$. This enables us to define a right action of G_{X} on V and hence a right action of $\mathbb{C}\left[G_{X}\right]$ on V.

The first lemma states that, with respect to this action, V is a \dagger-module.
Lemma 1 (Irving [5]). Let $\langle\mid\rangle$ be the inner product on V defined by

$$
\text { for all } e, f \in \mathscr{B}, \quad\langle e \mid f\rangle= \begin{cases}1 & \text { if } e=f \\ 0 & \text { otherwise }\end{cases}
$$

Then $\langle u a \mid v\rangle=\left\langle u \mid v a^{\dagger}\right\rangle$ for all $u, v \in V$ and $a \in \mathbb{C}\left[G_{X}\right]$.
We now gather together some further properties of V for ease of reference. These properties are straightforward consequences of the action on V and are mostly stated in [6, Lemma 1].

Lemma 2. (i) et $\in \mathscr{U}^{+}$for all $e \in \mathscr{U}^{+}$, et $t^{-1} \in \mathscr{U}^{-}$for all $e \in \mathscr{U}^{-}$;
(ii) for all $e \in \mathscr{B}$, there exists $n \in \mathbb{N}$ such that et ${ }^{n} \in \mathscr{U}^{+}$and et ${ }^{-n} \in \mathscr{U}^{-}$;
(iii) $\left(s^{r}, 0\right) g \in \mathscr{L}$ for all $r \in \mathbb{N}$ and $g \in G_{X}$ with $l(g) \leq r$;
(iv) for all $r \in \mathbb{N}$ and $g, g^{\prime} \in G_{X}$ with $l(g), l\left(g^{\prime}\right) \leq r,\left(s^{r}, 0\right) g=\left(s^{r}, 0\right) g^{\prime}$ implies $g=g^{\prime}$.

Next, as in the proof of $\left[3\right.$, Theorem 1.1], we define a homomorphism $\theta: \mathbb{C}\left[M_{X}\right] \rightarrow$ $\mathbb{C}\left[G_{X}\right]$ by $\theta(x):=x+x^{-1}$ for all $x \in X$. Any mapping $X \rightarrow \mathbb{C}\left[G_{X}\right]$ extends
uniquely to a monoid homomorphism $M_{X} \rightarrow\left(\mathbb{C}\left[G_{X}\right], \cdot\right)$ and hence to an algebra homomorphism $\mathbb{C}\left[M_{X}\right] \rightarrow \mathbb{C}\left[G_{X}\right]$. The lemma below lists some properties of θ.

LEMMA 3. (i) θ is an injective homomorphism;
(ii) for each $n \in \mathbb{N}$, there exists a polynomial f_{n} over \mathbb{Z} of degree n such that, for all $x \in X, x^{n}+x^{-n}=f_{n}(\theta(x))$;
(iii) for all $a \in \mathbb{C}\left[M_{X}\right],(\theta(a))^{+}=\theta\left(a^{*}\right)$.

PROOF. (i) We may regard M_{X} as a submonoid of G_{X}. Let $a \in \mathbb{C}\left[M_{X}\right] \backslash\{0\}$. Consider an element w of $\operatorname{supp}(a)$ with $l(w)$ maximal. Then $w \in \operatorname{supp}(\theta(a))$, which shows that $\theta(a) \neq 0$. Hence θ is injective.
(ii) This can be established by induction. In fact, f_{n} is closely related to the nth Chebychev polynomial of the first type.
(iii) For all $x \in X,(\theta(x))^{\dagger}=x+x^{-1}=\theta(x)$ and so, for all $y \in M_{X},(\theta(y))^{\dagger}=$ $\theta(\overleftarrow{y})$. Hence, for all $a \in \mathbb{C}\left[M_{X}\right], \quad(\theta(a))^{\dagger}=\theta\left(a^{*}\right)$.

Denote the element $(t, 1)$ of \mathscr{B} by e_{1} and define $W \subseteq V$ by

$$
W:=\left\{e_{1} \theta(a): a \in \mathbb{C}\left[M_{X}\right]\right\}
$$

Then W is a nonzero subspace of V. Next, we define $\circ: W \times \mathbb{C}\left[M_{X}\right] \rightarrow W$ by $w \circ a=w \theta(a)$ for $w \in W, a \in \mathbb{C}\left[M_{X}\right]$. It is straightforward to see that \circ is a right action of $\mathbb{C}\left[M_{X}\right]$ on W. We now show that W is faithful and irreducible under this action.

LEMMA 4. W is a faithful module for $\mathbb{C}\left[M_{X}\right]$.

Proof. Let $a \in \mathbb{C}\left[M_{X}\right] \backslash\{0\}$. Then, by Lemma 3 (i), $\theta(a) \in \mathbb{C}\left[G_{X}\right] \backslash\{0\}$. Thus $\theta(a)=\sum_{i=1}^{n} \alpha_{i} g_{i}$ for some $n \in \mathbb{N}$, some distinct elements $g_{i} \in G_{X}$, and some coefficients α_{i}, not all zero. Take

$$
r:=\max \left\{l\left(g_{i}\right): i=1, \ldots, n\right\}+5
$$

and write

$$
w:=e_{1}\left(t^{2}+t^{-2}\right)\left(s^{r}+s^{-r}\right)
$$

Since $\left(t^{2}+t^{-2}\right)\left(s^{r}+s^{-r}\right)=\theta\left(f_{2}(t) f_{r}(s)\right)$, by Lemma 3 (ii), we have that $w \in W$. The action of t and of s on certain elements of \mathscr{B} can be represented diagrammatically as

$$
\begin{aligned}
& t: \cdots \rightarrow\left(t^{-1},-1\right) \rightarrow\left(t^{-1}, 0\right) \rightarrow(1,0) \rightarrow(t, 0) \rightarrow(t, 1) \rightarrow(t, 2) \rightarrow \cdots, \\
& s: \cdots \rightarrow\left(t^{-1},-1\right) \rightarrow\left(t^{-1}, 0\right) \rightarrow(t, 0) \rightarrow(t, 1) \rightarrow-(t, 2) \rightarrow-(t, 3) \rightarrow \cdots .
\end{aligned}
$$

Hence we have that

$$
\begin{align*}
w & =[(t, 3)+(1,0)]\left(s^{r}+s^{-r}\right) \tag{1}\\
& = \pm(t, r+3)-\left(t^{-1},-r+4\right)+\left(s^{r}, 0\right)+\left(s^{-r}, 0\right)
\end{align*}
$$

From the choice of r,

$$
\begin{equation*}
\pm(t, r+3) g_{i} \in \mathscr{U}^{+}, \quad\left(t^{-1},-r+4\right) g_{i} \in \mathscr{U}^{-} \quad \text { for } i=1,2, \ldots, n \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\left(s^{-r}, 0\right) g_{i}: i=1,2, \ldots, n\right\} \cap\left\{\left(s^{r}, 0\right) g_{i}: i=1,2, \ldots, n\right\}=\emptyset \tag{3}
\end{equation*}
$$

Now, by Lemma 2 (iv), since the g_{i} are distinct so are the elements $\left(s^{r}, 0\right) g_{i}$ for $i=1, \ldots, n$. However, by Lemma 2 (iii), these lie in \mathscr{L}. Hence, from (1)-(3), $w \theta(a) \neq 0$, that is, $w \circ a \neq 0$. Thus W is faithful.

Lemma 5. W is an irreducible module for $\mathbb{C}\left[M_{X}\right]$.
Proof. Take $\langle\mid\rangle$ to be the inner product on V defined as in Lemma 1. Let $w \in W \backslash\{0\}$. Then $w=e_{1} \theta(a)$ for some $a \in \mathbb{C}\left[M_{X}\right]$ and so $\left\langle e_{1} \theta(a) \mid e_{1} \theta(a)\right\rangle \neq 0$. However, by Lemma 1 and Lemma 3 (iii),

$$
\left\langle e_{1} \theta(a) \mid e_{1} \theta(a)\right\rangle=\left\langle e_{1} \mid e_{1} \theta(a)(\theta(a))^{\dot{ }}\right\rangle=\left\langle e_{1} \mid w \theta\left(a^{*}\right)\right\rangle=\left\langle e_{1} \mid w \circ a^{*}\right\rangle
$$

and so the coefficient of e_{1} in $w \circ a^{*}$ is nonzero. Thus we may write $w \circ a^{*}=\sum_{i=1}^{n} \alpha_{i} e_{i}$ for some $n \in \mathbb{N}$, some distinct $e_{i} \in \mathscr{B}$ with $e_{1}=(t, 1)$, and some nonzero coefficients α_{i} for $i=1, \ldots, n$.

By Lemma 2 (i) and (ii), there exists $p \in \mathbb{N}$ such that

$$
e_{i} t^{p} \in \mathscr{U}^{+}, \quad e_{i} t^{-p} \in \mathscr{U}^{-} \quad \text { for } i=1, \ldots, n
$$

These $2 n$ elements are distinct. Write $\left(g_{i}, k_{i}\right):=e_{i} t^{p}$ for $i=1, \ldots, n$. In particular, $\left(g_{1}, k_{1}\right)=(t, 1) t^{\prime \prime}=(t, p+1)$. Let $l \in \mathbb{N}$ be defined by

$$
l:=\max \left\{k_{i}: 1 \leq i \leq n \text { and } g_{i}=t\right\}
$$

Choose $m \in \mathbb{N}$ such that $3^{m-1}>l$ and take $q:=3^{m}-l$. Then

$$
\begin{equation*}
e_{i} t^{p+q}=\left(g_{i}, k_{i}+q\right)=\left(g_{i}, 3^{m}-l+k_{i}\right) \quad \text { for } i=1, \ldots, n \tag{4}
\end{equation*}
$$

Let $j \in\{1, \ldots, n\}$ be such that $g_{j}=t$ and $k_{j}=l$. Then, by (4), $e_{j} t^{p+q}=\left(t, 3^{m}\right)$ and so

$$
\begin{equation*}
e_{j} t^{p+q}(t-s)=2\left(t, 3^{m}+1\right), \quad e_{j} t^{p+q}\left(t^{-1}-s^{-1}\right)=0 \tag{5}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
e_{i} t^{p+q}(t-s)=0, \quad e_{i} t^{p+q}\left(t^{-1}-s^{-1}\right)=0 \quad(i \neq j) \tag{6}
\end{equation*}
$$

Let $i \in\{1, \ldots, n\}$ with $i \neq j$. First, suppose that $g_{i}=t$. Then $k_{i}<l$ and so $3^{m}-l+k_{i}<3^{m}$. Further, since $3^{m-1}>l$, we have that $3^{m}-l>3^{m-1}+l$, and so $3^{m}-l+k_{i}>3^{m-1}+1$. Since $e_{i} t^{p+q}=\left(t, 3^{m}-l+k_{i}\right)$, by (4), it follows that (6) holds. Now suppose that $g_{i} \neq t$. Then, from (4), we see that (6) holds in this case also. Thus we have established (6). Since $e_{i} t^{-p} \in \mathscr{U}^{-}$,

$$
\begin{equation*}
e_{i} t^{-p-q}(t-s)=0, \quad e_{i} t^{-p-q}\left(t^{-1}-s^{-1}\right)=0 \quad \text { for } \quad i=1, \ldots, n \tag{7}
\end{equation*}
$$

Write $u:=t+t^{-1}-s-s^{-1}$. Then, by (5)-(7),

$$
\begin{aligned}
\left(w \circ a^{*}\right)\left(t^{p+q}+t^{-p-q}\right) u= & \left(w \circ a^{*}\right) t^{p+q}(t-s)+\left(w \circ a^{*}\right) t^{p+q}\left(t^{-1}-s^{-1}\right) \\
& +\left(w \circ a^{*}\right) t^{-p-q}(t-s)+\left(w \circ a^{*}\right) t^{-p-q}\left(t^{-1}-s^{-1}\right) \\
= & 2 \alpha_{j}\left(t, 3^{m}+1\right)
\end{aligned}
$$

Now write $r:=3^{m}-1$. Then $\left(t, 3^{m}+1\right)\left(t^{r}+t^{-r}\right)=\left(t, 2.3^{m}\right)+(t, 2)$ and so

$$
\begin{aligned}
\left(t, 3^{m}+1\right)\left(t^{r}+t^{-r}\right) u= & \left(t, 2.3^{m}\right)(t-s)+\left(t, 2.3^{m}\right)\left(t^{-1}-s^{-1}\right) \\
& +(t, 2)(t-s)+(t, 2)\left(t^{-1}-s^{-1}\right) \\
= & 2(t, 1)=2 e_{1}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(w \circ a^{*}\right)\left(t^{p+q}+t^{-p-q}\right) u\left(t^{r}+t^{-r}\right) u=4 \alpha_{j} e_{1} \tag{8}
\end{equation*}
$$

Let $b \in \mathbb{C}\left[M_{X}\right]$ be defined by $b:=f_{p+q}(t)(t-s) f_{r}(t)(t-s)$, where f_{p+q} and f_{r} are the polynomials defined in Lemma 3 (ii). Then $\theta(b)=\left(t^{p+q}+t^{-p-q}\right) u\left(t^{r}+t^{-r}\right) u$ and so, from (8), $w \circ\left(a^{*} b\right)=\left(w \circ a^{*}\right) \theta(b)=4 \alpha_{j} e_{1}$. Since $\alpha_{j} \neq 0$, it follows that $w \circ \mathbb{C}\left[M_{X}\right]=W$. Thus W is irreducible.

The main result now follows.

THEOREM 6. Let M_{X} denote the free monoid on a set X with at least two elements and let $*$ denote the involution on $\mathbb{C}\left[M_{X}\right]$ induced by word-reversal. Then $\mathbb{C}\left[M_{X}\right]$ is *-primitive.

Proof. By Lemmas 4 and $5, W$ is a faithful irreducible module for $\mathbb{C}\left[M_{X}\right]$. Now, by Lemma 1 , there exists an inner product $\langle\mid\rangle$ on V such that, for all $u, v \in V$ and
all $b \in \mathbb{C}\left[G_{X}\right],\langle u b \mid v\rangle=\left\langle u \mid v b^{+}\right\rangle$. Consider the restriction of this inner product to W. Then, for all $w_{1}, w_{2} \in W$ and all $a \in \mathbb{C}\left[M_{X}\right]$,

$$
\begin{aligned}
\left\langle w_{1} \circ a \mid w_{2}\right\rangle & =\left\langle w_{1} \theta(a) \mid w_{2}\right\rangle=\left\langle w_{1} \mid w_{2}(\theta(a))^{\star}\right\rangle \\
& =\left\langle w_{1} \mid w_{2} \theta\left(a^{*}\right)\right\rangle, \quad \text { by Lemma } 3 \text { (iii), } \\
& =\left\langle w_{1} \mid w_{2} \circ a^{*}\right\rangle .
\end{aligned}
$$

Hence W is a *-module and so W is *-primitive.
REMARK. The construction in [7] also shows that the Banach algebra $l^{1}\left(M_{X}\right)$ is primitive for the case $|X| \geq 2$. The question of whether $l^{1}\left(M_{X}\right)$ is $*$-primitive in this case remains open.

References

[1] M. A. Chaudry, M. J. Crabb and C. M. McGregor, 'The primitivity of semigroup algebras of free products', Semigroup Forum 54 (1997), 221-229.
[2] M. J. Crabb and C. M. McGregor. 'Faithful irreducible *-representations for group algebras of free products', Proc. Edinburgh Math. Soc. (2) 42 (1999), 559-574.
[3] M. J. Crabb, C. M. McGregor. W. D. Munn and S. Wassermann, 'On the algebra of a free monoid', Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 939-945.
[4] E. Formanek, 'Group rings of free products are primitive', J. Algebra 26 (1973), 508-511.
[5] R. Irving. 'Irreducible $*$-representations of some group rings and associated Banach $*$-algebras', J. Funct. Anal. 39 (1980), 149-161.
[6] C. M. McGregor, 'On the primitivity of the group ring of a free group', Bull. London. Math. Soc. $\mathbf{8}$ (1976), 294-298.
[7] ——. 'A representation for $l^{\prime}(S)^{\prime}$ ', Bull. London Math. Soc. 8 (1976), 156-160.
[8] D. S. Passman, The algebraic theory of group rings (Wiley-Interscience, New York, 1977).

Department of Mathematics
University of Glasgow
Glasgow G12 8QW
Scotland
UK
e-mail: mjc@maths.gla.ac.uk cmm@maths.gla.ac.uk wdm@maths.gla.ac.uk

