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Abstract

In this paper we introduce a simple risk model with delayed claims, an extension of the
classical Poisson model. The claims are assumed to arrive according to a Poisson process
and claims follow a light-tailed distribution, and each loss payment of the claims will
be settled with a random period of delay. We obtain asymptotic expressions for the ruin
probability by exploiting a connection to Poisson models that are not time homogeneous.
A finer asymptotic formula is obtained for the special case of exponentially delayed claims
and an exact formula is obtained when the claims are also exponentially distributed.
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1. Introduction

In a variety of real situations, claims could have already occurred but not been settled or
reported immediately. Many factors may lead to the delay of the actual loss payment of the
claims. For instance, acronyms, such as IBNR (incurred but not reported) and RBNS (reported
but not settled), are typically used to classify the different reasons for delayed claims.

In the literature, the issues around ruin problems involving delayed claim settlements have
been studied. Waters and Papatriandafylou (1985) and Trufin et al. (2011) considered a discrete-
time model for a risk process allowing delayed claims. Boogaert and Haezendonck (1989)
discussed a liability process with settling delay in the framework of an economic environment.
Yuen et al. (2005) introduced a continuous-time model in which one claim is settled immediately
and another claim (called a ‘by-claim’) is settled with delay each time a claim occurs. Delaying
claims have also been modelled by a Poisson shot noise process (see Klüppelberg and Mikosch
(1995) and Brémaud (2000)), and by a shot noise Cox process (see Macci and Torrisi (2004)
and Albrecher and Asmussen (2006)).

In this paper we introduce a simple delayed-claim model. We assume that claims arrive
according to a Poisson process, that claims follow a light-tailed distribution, i.e. the distribution
of claims has a moment generating function, and that each of the claims will be settled in a
randomly delayed period of time. The loss of each claim payment occurs only at the settlement
time, rather than at the arrival time. In particular, we consider the special case of exponential
delay, where the ultimate ruin probability and asymptotics can be exactly obtained by a power
series; this case is a simplified version of the model considered in Yuen et al. (2005) without
the immediate settled claims.
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A risk model with delayed claims 687

The paper is organised as follows. In Section 2 we introduce our model setting for the
delayed-claim risk process and the underlying processes of the claim arrival, delay, and
settlement. In Section 3 we derive an asymptotic formula for the ruin probability in the general
case of delay, and, in particular, exploit a well-known connection to the nonhomogeneous
Poisson model. For the special case of exponential delay, the Laplace transform of the nonruin
probability and a finer asymptotic expansion for the ruin probability are obtained in Section 4.
In Section 5 we derive an exact formula for the ruin probability by assuming that the claims
are exponentially delayed and the sizes are exponentially distributed.

2. Risk process

Consider a surplus process {Xt }t≥0 in continuous time on a probability space (�,F ,P), i.e.

Xt = x + ct −
Nt∑
i=1

Zi, t ≥ 0,

where

• x = X0 ≥ 0 is the initial reserve at time t = 0;

• c > 0 is the constant rate of premium payment per time unit;

• Nt is the number of cumulative settled claims within the time interval [0, t] (assume that
N0 = 0);

• {Zi}i=1,2,... is a sequence of independent and identically distributed positive random
variables (claim sizes), independent of Nt , following a light-tailed distribution with
cumulative distribution function Z(z), z > 0, i.e.

ẑ(w) =
∫ ∞

0
e−wz dZ(z) < ∞ for some w < 0;

the mean and tail of Z are respectively denoted by

µ1Z =
∫ ∞

0
z dZ(z), Z̄(x) =

∫ ∞

x

dZ(s).

Assume that the arrival of claims follows a Poisson process of rate ρ, and that each of the claims
will be settled with a random delay. Loss occurs only when claims are being settled. Denote
by Mt the number of cumulative unsettled claims within the time interval [0, t] and assume
that the initial numberM0 = 0. Let {Tk}k=1,2,..., {Lk}k=1,2,..., and {Tk +Lk}k=1,2,... denote the
(random) times of the claim arrival, delay, and settlement, respectively, and, hence,

Mt =
∑
k

(1{Tk ≤ t} − 1{Tk + Lk ≤ t}), Nt =
∑
k

1{Tk + Lk ≤ t};

{Lk}k=1,2,... are independent and identically distributed nonnegative random variables with
cumulative distribution functionL. A sample path of the joint point processes of the cumulative
settled and unsettled claims (Nt ,Mt) is given by Figure 1.

The ruin (stopping) time after time t ≥ 0 is defined by

τ ∗
t :=

{
inf{s : s > t, Xs ≤ 0}
inf{∅} = ∞ if Xs > 0 for all s;
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Figure 1: A sample path of the joint point processes of cumulative settled and unsettled claims (Nt ,Mt ).

in particular, τ ∗
t = ∞ means that ruin does not occur. We are interested in the ultimate ruin

probability at time t , i.e.

ψ(x, t) =: P{τ ∗
t < ∞ | Xt = x}, (1)

or, the ultimate nonruin probability at time t , i.e.

φ(x, t) =: 1 − ψ(x, t). (2)

Note that ψ(x, t) defined in (1) is the ultimate ruin probability at the general time t ≥ 0,
rather than the conventionally defined ruin probability of the finite-horizon time t .

3. Ruin with randomly delayed claims

3.1. Preliminaries

The net profit condition remains the same as in the classical Poisson model, i.e. c > ρµ1Z ,
since, obviously, limt→∞

∫ t
0 L̄(s) ds/t = 0, and

lim
t→∞

E[Xt ]
t

= lim
t→∞

x + ct − µ1ZE[Nt ]
t

= lim
t→∞

x + ct − µ1Zρ(t −
∫ t

0 L̄(s) ds)

t

= c − ρµ1Z

> 0.
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Lemma 1. Assume that c > ρµ1Z and L ∼ Exp(δ). Then we have a series of modified
Lundberg fundamental equations:

cw − ρ[1 − ẑ(w)] − δj = 0, j = 0, 1, . . . . (3)

• For j = 0, (3) has solution 0 and a unique negative solution (denoted by W+
0 = 0 and

W−
0 < 0).

• For j = 1, 2, . . ., (3) has unique positive and negative solutions (denoted by W+
j > 0

and W−
j < 0).

Proof. Rewrite (3) as

ẑ(w) = lj (w), (4)

where lj (w) =: −cw/ρ+(1+δj/ρ), j = 0, 1, . . .. Note thatZ(z) is a light-tailed distribution,
and

dẑ(w)

dw

∣∣∣∣
w=0

= −µ1Z ,
dlj (w)

dw

∣∣∣∣
w=0

= − c

ρ
;

by the net profit condition c > ρµ1Z , we have

dẑ(w)

dw

∣∣∣∣
w=0

>
dlj (w)

∂w

∣∣∣∣
w=0

.

In particular, for j = 0, we have l0(0) = ẑ(0) = 1. Then, further by the convexity of ẑ(w)
and the linearity of lj (w), the uniqueness of the positive and negative solutions to (3) follows
immediately. As an illustration, a plot of (4) is given in Figure 2.

Denote the (modified) adjustment coefficients by Rj =: −W−
j , j = 0, 1, . . .; note that

0 < R0 < R1 < R2 < · · · < R∞, where R∞ =: inf{R | ẑ(−R) = ∞}.

1

l ( )w0

w
W0

+
W1

+
W2

+
W3

+
W3

−
W0

−

l ( )w1

l ( )w2

l ( )w3

ẑ( )w

O

Figure 2: Lundberg’s fundamental equations.
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Example 1. IfZ ∼ Exp(γ ) then we have a series of modified Lundberg fundamental equations
cw2 + (cγ − ρ − δj)w − γ δj = 0, j = 0, 1, . . ., with explicit solutions

W±
j = ρ + δj − cγ ± √

(ρ + δj − cγ )2 + 4cγ δj

2c
, j = 0, 1, . . . ,

and R∞ = limj→∞ Rj = γ .

3.2. Asymptotics of the ruin probability

From Mirasol (1963) we know that a delayed (or displaced) Poisson process is still a
(nonhomogeneous) Poisson process, which is also a special case of the discretised dynamic
contagion process introduced in Dassios and Zhao (2012); see also Newell (1966), Lawrance
and Lewis (1975), and Dassios and Zhao (2011). According to the model setting in Section 2,
the settlement process Nt is a nonhomogeneous Poisson process with rate ρL(t), and we can
obtain the asymptotics of the ruin probability as follows.

Theorem 1. Assume that c > ρµ1Z , and that the first and second moments of L exist. Then
the asymptotics of ruin probability are given by

ψ(x, t) ∼ exp

(
−cR0

∫ ∞

t

L̄(s) ds

)
c − ρµ1Z

ρ
∫ ∞

0 zeR0z dZ(z)− c
e−R0x + o(e−R0x) as x → ∞,

where L̄(t) =: 1 − L(t).

Proof. The ruin probability ψ(x, t) defined in (1) is the probability of ultimate ruin when
the current reserve is x at current time t . In a sufficiently small time period 	t after time t ,
[t, t +	t], we observe the following.

(i) No claim occurs with probability 1−ρL(t)	t , ruin does not occur, andXt+	t = x+c	t .
(ii) One claim Z occurs with probability ρL(t)	t . Then Xt+	t = x + c	t − Z and we

have two possibilities:

(ii.1) ruin has not occurred if Z ≤ x + c	t ;

(ii.2) ruin has occurred if Z > x + c	t .

Using the Markov property, we have

ψ(x, t) = (1 − ρL(t)	t)ψ(x + c	t, t +	t)

+ ρL(t)	t

(∫ x+c	t

0
ψ(x + c	t − z, t +	t) dZ(z)+ [1 − Z(x + c	t)]

)
+ o(	t).

Since

ψ(x + c	t, t +	t) = ψ(x, t)+ c	t
∂ψ(x, t)

∂x
+ ∂ψ(x, t)

∂t
	t + o(	t),

the integrodifferential equation of ψ(x, t) is then given by

∂ψ(x, t)

∂t
+ c

∂ψ(x, t)

∂x
+ ρL(t)

(∫ x

0
ψ(x − z, t) dZ(z)+ Z̄(x)− ψ(x, t)

)
= 0.
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By the Laplace transform ψ̂(w, t) =: Lw{ψ(x, t)} = ∫ ∞
0 e−wxψ(x, t) dx, we have

∂ψ̂(w, t)

∂t
− cψ(0, t)+ (cw − ρL(t)[1 − ẑ(w)])ψ̂(w, t)+ ρL(t)

1 − ẑ(w)

w
= 0. (5)

Define

ψ̂(w, t) =: ρ(µ1Z − (1 − ẑ(w))/w)

cw − ρ[1 − ẑ(w)] exp

(
ρ

∫ ∞

t

[1 − ẑ(w)]L̄(s) ds

)
+ k̂(w, t), (6)

where k̂(w, t) is the Laplace transform of a function k(x, t) and satisfies

lim
t→∞ k̂(w, t) = 0. (7)

Substituting (6) into (5) yields the ordinary differential equation of k̂(w, t):

∂k̂(w, t)

∂t
+ (cw − ρ[1 − ẑ(w)] + ρL̄(t)[1 − ẑ(w)])k̂(w, t)

= c

(
ψ(0, t)− ρµ1Z

c

)
+ ρ

(
1 − ẑ(w)

w
− µ1Z

)(
exp

(
ρ

∫ ∞

t

[1 − ẑ(w)]L̄(s) ds

)
− 1

)

+ ρL̄(t)
1 − ẑ(w)

w
.

By multiplying e(cw−ρ[1−ẑ(w)])t exp(−ρ ∫ ∞
t
L̄(s)[1 − ẑ(w)] ds), we have

∂

∂t

(
k̂(w, t)e(cw−ρ[1−ẑ(w)])t exp

(
−ρ

∫ ∞

t

L̄(s)[1 − ẑ(w)] ds

))

=
[
c

(
ψ(0, t)− ρµ1Z

c

)
+ ρ

(
1 − ẑ(w)

w
− µ1Z

)(
exp

(
ρ

∫ ∞

t

[1 − ẑ(w)]L̄(s) ds

)
− 1

)

+ ρL̄(t)
1 − ẑ(w)

w

]
e(cw−ρ[1−ẑ(w)])t exp

(
−ρ

∫ ∞

t

L̄(s)[1 − ẑ(w)] ds

)
,

with boundary condition (7). The solution is then

k̂(w, t) = e−(cw−ρ[1−ẑ(w))t exp

(
ρ

∫ ∞

t

L̄(s)[1 − ẑ(w)] ds

)

×
∫ ∞

t

e(cw−ρ[1−ẑ(w)])s exp

(
−ρ

∫ ∞

s

L̄(u)[1 − ẑ(w)] du

)

×
[
−c

(
ψ(0, s)− ρµ1Z

c

)

− ρ

(
1 − ẑ(w)

w
− µ1Z

)(
exp

(
ρ

∫ ∞

s

[1 − ẑ(w)]L̄(u) du

)
− 1

)

− ρL̄(s)
1 − ẑ(w)

w

]
ds. (8)

Obviously, from Figure 2, for −R0 < w < 0, we have l0(w) > ẑ(w), i.e. cw−ρ[1−ẑ(w)] < 0,
−R0 < w < 0. We now respectively discuss the three terms of k̂(w, t) given in (8).

(i) It is well known that (see Gerber (1979) and Grandel (1991)) in the classical model when
the claim settlement follows a Poisson process with a constant rate λ, the ruin probability
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with initial reserve x = 0 is simply µ1Zλ/c, whereas ψ(0, t) here in the first term of (8)
is based on the realisation of the rate {ρL(s)}t≤s≤∞. Also, the cumulative function L(s)
is an increasing function of s, so the ruin probability ψ(0, t) should be greater than the
λ = ρL(t) case and smaller than the λ = ρL(∞) = ρ case of the classical model, i.e.
µ1ZρL(t)/c < ψ(0, t) < µ1Zρ/c, or 0 < ρµ1Z/c−ψ(0, t) < ρµ1Z L̄(t)/c. If the first
moment of L exists then we have∫ ∞

t

∣∣∣∣ψ(0, s)− ρµ1Z

c

∣∣∣∣ ds <
ρµ1Z

c

∫ ∞

t

L̄(s) ds <
ρµ1Z

c

∫ ∞

0
L̄(s) ds < ∞.

(ii) For the second term of (8), if the second moment of L exists then∫ ∞

t

exp

(
−ρ

∫ ∞

s

[1 − ẑ(w)]L̄(u) du

)(
exp

(
ρ

∫ ∞

s

[1 − ẑ(w)]L̄(u) du− 1

)
ds

)

=
∫ ∞

t

(
1 − exp

(
−ρ

∫ ∞

s

[1 − ẑ(w)]L̄(u) du

))
ds

<

∫ ∞

t

ρ

∫ ∞

s

[1 − ẑ(w)]L̄(u) du ds

< ρ[1 − ẑ(w)]
∫ ∞

0

∫ ∞

s

L̄(u) du ds

< ∞.

(iii) For the third term of (8), if the first moment of L exists then∫ ∞

t

ρL̄(s)
1 − ẑ(w)

w
ds = ρ

1 − ẑ(w)

w

∫ ∞

t

L̄(s) ds < ρ
1 − ẑ(w)

w

∫ ∞

0
L̄(s) ds < ∞.

Therefore, for −R0 < w < 0, we have k̂(w, t) < ∞ and

k̂(−R0, t) = lim
w↓−R0

k̂(w, t) =
∫ ∞

0
eR0xk(x, t) dx < ∞;

hence, k(x, t) = o(e−R0x). By the final value theorem and ψ̂(w, t) given in (6), we have

lim
x→∞ eR0xψ(x, t)

= lim
w→0

wLw{eR0xψ(x, t)}
= lim
w→0

wψ̂(w − R0, t)

= exp

(
ρ

∫ ∞

t

[1 − ẑ(−R0)]L̄(s) ds

)
lim
w→0

w
ρ(µ1Z − (1 − ẑ(w − R0))/(w − R0))

c(w − R0)− ρ[1 − ẑ(w − R0)]
+ lim
w→0

wk̂(w − R0, t)

= exp

(
−cR0

∫ ∞

t

L̄(s) ds

)
c − ρµ1Z

ρ
∫ ∞

0 zeR0z dZ(z)− c
.

Note that, by definition, −R0 is the solution to cw−ρ[1−ẑ(w)] = 0, and we have 1−ẑ(−R0) =
−cR0/ρ.
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4. Ruin with exponentially delayed claims

By specifying the distribution of the period of delay, L, we could improve the result in
Theorem 1 with higher-order asymptotics. Here, for instance, we consider the special case
when the claims are exponentially delayed, say L ∼ Exp(δ), in order to derive o(e−R0x) in
more detail.

4.1. Laplace transform of the nonruin probability

We derive the Laplace transform of the nonruin probability in two different expressions,
given in Theorem 2 and Theorem 3, respectively, which we then use to derive the asymptotics
of the ruin probability.

Theorem 2. Assume that c > ρµ1Z and L ∼ Exp(δ). Then the Laplace transform of the
nonruin probability is given by

φ̂(w, t) = eϑe−δt [1−ẑ(w)]
(

c − ρµ1Z

cw − ρ[1 − ẑ(w)] + c

∞∑
j=1

e−jδt
∑j
�=0 r�[ϑẑ(w)]j−�/(j − �)!
cw − ρ[1 − ẑ(w)] − δj

)
,

(9)
where ϑ = ρ/δ,

r0 = 1 − ρ

c
µ1Z , r� = −

�−1∑
i=0

[ϑẑ(W+
� )]�−i

(�− i)! ri, � = 1, 2, . . . . (10)

Proof. If L ∼ Exp(δ) then L(t) = 1 − e−δt , Nt is a nonhomogeneous Poisson process with
rateρ−ϑδe−δt , and the nonruin probabilityφ(x, t) defined in (2) satisfies the integrodifferential
equation

∂φ(x, t)

∂t
+ c

∂φ(x, t)

∂x
+ (ρ − ϑδe−δt )

(∫ x

0
φ(x − z, t) dZ(z)− φ(x, t)

)
= 0.

By the Laplace transform

φ̂(w, t) =: Lw{φ(x, t)} =
∫ ∞

0
e−wxφ(x, t) dx,

we have

∂φ̂(w, t)

∂t
+ c(wφ̂(w, t)− φ(0, t))− (ρ − ϑδe−δt )[1 − ẑ(w)]φ̂(w, t) = 0. (11)

Define

ĥ(w, t) =: φ̂(w, t) exp

(∫ t

0
δϑe−δs[1 − ẑ(w)] ds

)
,

where ĥ(w, t) is the Laplace transform of a function h(x, t). Then

φ̂(w, t) = ĥ(w, t)e−ϑ(1−e−δt )[1−ẑ(w)]. (12)

Substituting (12) into (11) yields

∂ĥ(w, t)

∂t
+ c(wĥ(w, t)− φ(0, t)eϑ(1−e−δt )[1−ẑ(w)])− ρ[1 − ẑ(w)]ĥ(w, t) = 0. (13)
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Note that by (12) we have

φ̂(w, t) = ĥ(w, t)e−ϑ(1−e−δt )eϑ(1−e−δt )ẑ(w)

= e−ϑ(1−e−δt )
(
ĥ(w, t)+

∞∑
k=1

(ϑ(1 − e−δt ))k

k! ĥ(w, t)ẑk(w)

)
,

which is the Laplace transform of

φ(x, t) = e−ϑ(1−e−δt )
(
h(x, t)+

∞∑
k=1

(ϑ(1 − e−δt ))k

k!
∫ x

0
h(x − z, t) dZ(k)(z)

)
,

where Z(k) is the k-fold convolution of the distribution Z, i.e. Z(k)
d= ∑k

i=1 Zi . Then we have

φ(0, t) = h(0, t)e−ϑ(1−e−δt ). (14)

Substituting (14) into (13) yields

∂ĥ(w, t)

∂t
+ (cw − ρ[1 − ẑ(w)])ĥ(w, t)− ce−ϑẑ(w)h(0, t)eϑe−δt ẑ(w) = 0.

This equation of ĥ(w, t) has a power series solution ĥ(w, t) = ∑∞
j=0 e−jδt ĥj (w), the Laplace

transform of h(x, t) = ∑∞
j=0 e−jδthj (x). Since

∂ĥ(w, t)

∂t
= −δ

∞∑
j=0

je−jδt ĥj (w),

h(0, t)eϑe−δt ẑ(w) =
∞∑
j=0

e−jδthj (0)
∞∑
k=0

e−kδt [ϑẑ(w)]k
k!

=
∞∑
j=0

∞∑
k=0

e−(j+k)δthj (0)
[ϑẑ(w)]k

k! (j + k = i)

=
∞∑
i=0

e−iδt
i∑

j=0

hj (0)
[ϑẑ(w)]i−j
(i − j)! ,

we have
∞∑
j=0

e−jδt
[
(−δj + cw − ρ[1 − ẑ(w)])ĥj (w)− ce−ϑẑ(w)

j∑
�=0

h�(0)
[ϑẑ(w)]j−�
(j − �)!

]
= 0.

Then, for any j = 0, 1, . . .,

(−δj + cw − ρ[1 − ẑ(w)])ĥj (w)− ce−ϑẑ(w)
j∑
�=0

h�(0)
[ϑẑ(w)]j−�
(j − �)! = 0,

and, hence,

ĥj (w) = ce−ϑẑ(w)

cw − ρ[1 − ẑ(w)] − δj

j∑
�=0

h�(0)
[ϑẑ(w)]j−�
(j − �)! , j = 0, 1, . . . . (15)

Note that the denominator in (15) is the modified Lundberg fundamental equation given in
Lemma 1.
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By (12) we have

φ̂(w, t) = e−ϑ(1−e−δt )[1−ẑ(w)]
(
ĥ0(w)+

∞∑
j=1

e−jδt ĥj (w)
)
. (16)

Note that if t → ∞, we recover the classical Poisson model. By (16) we have

φ̂(w,∞) = e−ϑ[1−ẑ(w)]ĥ0(w), (17)

φ̂(w, 0) =
∞∑
j=0

ĥj (w).

The series of constants {h�(0)}�=0,1,... in (15) can be obtained as follows.
For j = 0, by (15) we have

ĥ0(w) = ce−ϑẑ(w)

cw − ρ[1 − ẑ(w)]h0(0).

By (14) and (17), we have

φ(0,∞) = h(0,∞)e−ϑ = h0(0)e
−ϑ ,

φ̂(w,∞) = ĥ0(w)e
−ϑ[1−ẑ(w)] = ce−ϑh0(0)

cw − ρ[1 − ẑ(w)] = cφ(0,∞)

cw − ρ[1 − ẑ(w)] .

Since
lim
x→∞φ(x,∞) = lim

w→0
wφ̂(w,∞) = 1,

i.e.

lim
w→0

w
cφ(0,∞)

cw − ρ[1 − ẑ(w)] = cφ(0,∞)

limw→0 w−1(cw − ρ[1 − ẑ(w)]) = cφ(0,∞)

c − ρµ1Z
= 1,

we have φ(0, t) = (c − ρµ1Z )/c,

h0(0) = eϑ(c − ρµ1Z )

c
, (18)

and
φ̂(w, t) = c − ρµ1Z

cw − ρ[1 − ẑ(w)] ,
which is precisely the Laplace transform of the ultimate nonruin probability of the classical
Poisson model. Hence, we have

ĥ0(w) = eϑ[1−ẑ(w)] c − ρµ1Z

cw − ρ[1 − ẑ(w)] .

For j = 1, 2, . . ., since ĥj (w) of (15) exists at w = W+
j , we have

lim
w→W+

j

(
ce−ϑẑ(w)

j∑
�=0

h�(0)
[ϑẑ(w)]j−�
(j − �)!

)
= 0, j = 1, 2, . . . ,

or
j∑
�=0

[ϑẑ(W+
j )]j−�

(j − �)! h�(0) = 0, j = 1, 2, . . . .
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Given the initial value h0(0) in (18), obviously the series of constants {h�(0)}�=1,2,... can be
solved uniquely and explicitly by recursion. Define the solution by rj =: e−ϑhj (0), with the
initial value r0 = 1 − ρµ1Z/c.We have

ĥj (w) = ceϑ[1−ẑ(w)]

cw − ρ[1 − ẑ(w)] − δj

j∑
�=0

r�
[ϑẑ(w)]j−�
(j − �)! , j = 1, 2, . . . ,

where

r� = −
�−1∑
i=0

[ϑẑ(W+
� )]�−i

(�− i)! ri, � = 1, 2, . . . .

Therefore, by (16) we have the Laplace transform of the nonruin probability

φ̂(w, t) = e−ϑ(1−e−δt )[1−ẑ(w)]

×
(

eϑ[1−ẑ(w)](c − ρµ1Z )

cw − ρ[1 − ẑ(w)] +
∞∑
j=1

e−jδt ceϑ[1−ẑ(w)] ∑j
�=0 r�[ϑẑ(w)]j−�/(j − �)!

cw − ρ[1 − ẑ(w)] − δj

)
.

Remark 1. For t = 0, we have

φ̂(w, 0) = eϑ[1−ẑ(w)]
(

c − ρµ1Z

cw − ρ[1 − ẑ(w)] + c

∞∑
j=1

∑j
�=0 r�[ϑẑ(w)]j−�/(j − �)!
cw − ρ[1 − ẑ(w)] − δj

)

and, for t = ∞,

φ̂(w,∞) = c − ρµ1Z

cw − ρ[1 − ẑ(w)] ,
which recovers the result of the classical Poisson model.

Remark 2. Equation (10) offers a numerically tractable formula for calculating the {rj }j=0,1,...
coefficients; e.g. if Z ∼ Exp(γ ) with parameter setting (c, δ, ρ, γ ) = (1.5, 2.0, 0.5, 1.0), then
we have r0 = 0.6667, r1 = −0.0657, r2 = 0.0028, and r3 = −7.2560 × 10−5,….

Alternatively, the Laplace transform of the nonruin probability can be expressed by the
following power series.

Theorem 3. Assume that c > ρµ1Z and L ∼ Exp(δ). Then the Laplace transform of the
nonruin probability is given by φ̂(w, t) = ∑∞

j=0 e−jδt φ̂j (w), where the {φ̂j (w)}j=0,1,... follow
the recurrence

φ̂j (w) = ρ
[1 − ẑ(W+

j )]φ̂j−1(W
+
j )− [1 − ẑ(w)]φ̂j−1(w)

cw − ρ[1 − ẑ(w)] − δj
, j = 1, 2, . . . , (19)

φ̂0(w) = c(1 − ρµ1Z/c)

cw − ρ[1 − ẑ(w)] . (20)

Proof. Rewrite (11) as

∂φ̂(w, t)

∂t
+ c(wφ̂(w, t)− φ(0, t))− ρ[1 − ẑ(w)]φ̂(w, t)+ ρ[1 − ẑ(w)]e−δt φ̂(w, t) = 0.

This equation has a power series solution φ̂(w, t) = ∑∞
j=0 e−jδt φ̂j (w), the Laplace transform

of the nonruin probability φ(x, t) = ∑∞
j=0 e−jδtφj (x). Note that by setting φ̂−1(w) = 0
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we have
∂φ̂(w, t)

∂t
= −δ

∞∑
j=0

je−jδt φ̂j (w),

e−δt φ̂(w, t) =
∞∑
j=0

e−(j+1)δt φ̂j (w) =
∞∑
j=1

e−jδt φ̂j−1(w) =
∞∑
j=0

e−jδt φ̂j−1(w).

Then

− δ

∞∑
j=0

je−jδt φ̂j (w)+ c

(
w

∞∑
j=0

e−jδt φ̂j (w)−
∞∑
j=0

e−jδtφj (0)
)

− ρ[1 − ẑ(w)]
∞∑
j=0

e−jδt φ̂j (w)+ ρ[1 − ẑ(w)]
∞∑
j=0

e−jδt φ̂j−1(w)

= 0,

or
∞∑
j=0

e−jδt [−δj φ̂j (w)+ c(wφ̂j (w)−φj (0))−ρ[1− ẑ(w)]φ̂j (w)+ρ[1− ẑ(w)]φ̂j−1(w)] = 0.

So, for any j = 0, 1, . . .,

−δj φ̂j (w)+ c(wφ̂j (w)− φj (0))− ρ[1 − ẑ(w)]φ̂j (w)+ ρ[1 − ẑ(w)]φ̂j−1(w) = 0.

Hence, we have

φ̂j (w) = cφj (0)− ρ[1 − ẑ(w)]φ̂j−1(w)

cw − ρ[1 − ẑ(w)] − δj
, j = 0, 1, . . . .

For the initial case j = 0, note that φ̂−1(w) = 0, we have

φ̂0(w) = cφ0(0)

cw − ρ[1 − ẑ(w)] .
By the boundary condition

lim
w→0

wφ̂0(w) = lim
x→∞φ0(x) = 1,

we have

lim
w→0

wφ̂0(w) = lim
w→0

cφ0(0)

c − ρ(1 − ẑ(w))/w
= cφ0(0)

c − ρµ1Z
= 1.

Then φ0(0) = 1 − ρµ1Z/c, and φ̂0(w) is as given by (20). Since φ̂j (w) exists at w = W+
j for

any j = 1, 2, . . ., we have

lim
w→W+

j

(cφj (0)− ρ[1 − ẑ(w)]φ̂j−1(w)) = 0,

and φj (0) = ρc−1[1 − ẑ(W+
j )]φ̂j−1(W

+
j ), j = 1, 2, . . .. Hence, we have the recurrence

relation between φ̂j (w) and φ̂j−1(w) as given in (19).

Remark 3. Theorem 2 will be used to derive a general asymptotic formula (given in Theorem 4
below), whereas Theorem 3 is more useful for obtaining an exact expression in the case of
exponentially distributed claim sizes (given in Theorem 5 below).
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4.2. Asymptotics of the ruin probability

Theorem 4. Assume that c > ρµ1Z and L ∼ Exp(δ). Then the asymptotics of the ruin
probability are given by

ψ(x, t) ∼
∞∑
j=0

κj (t)e
−Rjx as x → ∞, (21)

where

κ0(t) := e−cR0ϑe−δt /ρ c − ρµ1Z

ρ
∫ ∞

0 zeR0z dZ(z)− c
,

κj (t) := e−jδt ceϑe−δt [1−ẑ(−Rj )]

ρ
∫ ∞

0 zeRj z dZ(z)− c

j∑
�=0

r�
[ϑẑ(−Rj )]j−�
(j − �)! , j = 1, 2, . . . .

Proof. Define φ(x, t) := ∑∞
j=0 φj (x, t). Then φ̂(w, t) = ∑∞

j=0 φ̂j (w, t), where every
φ̂j (w, t) term is specified by (9), i.e.

φ̂0(w, t) := eϑe−δt [1−ẑ(w)] c − ρµ1Z

cw − ρ[1 − ẑ(w)] , (22)

φ̂j (w, t) := ceϑe−δt [1−ẑ(w)]e−jδt
∑j
�=0 r�[ϑẑ(w)]j−�/(j − �)!
cw − ρ[1 − ẑ(w)] − δj

, j = 1, 2, . . . . (23)

Now we discuss the asymptotics of the terms φ0(x, t) and {φj (x, t)}j=1,2,..., respectively.
For φ0(x, t), we have the asymptotics 1 − φ0(x, t) ∼ κ0(t)e−R0x as x → ∞, since, by the

final value theorem,
κ0(t) = lim

x→∞ eR0x(1 − φ0(x, t))

= lim
w→0

wLw{eR0x(1 − φ0(x, t))}
= − lim

w→0
wφ̂0(w − R0, t)

= − lim
w→0

w
eϑe−δt [1−ẑ(w−R0)](c − ρµ1Z )

c(w − R0)− ρ[1 − ẑ(w − R0)]

= e−cR0ϑe−δt /ρ(c − ρµ1Z )

ρ
∫ ∞

0 zeR0z dZ(z)− c
.

For φj (x, t), j = 1, 2, . . ., we have the asymptotics −φj (x, t) ∼ κj (t)e−Rjx as x → ∞,
since, by the final value theorem,

κj (t) = lim
x→∞ eRjx(−φj (x, t))

= − lim
w→0

wφ̂j (w − Rj , t)

= − lim
w→0

(
w

ceϑe−δt [1−ẑ(w−Rj )]e−jδt

c(w − Rj )− ρ[1 − ẑ(w − Rj )] − δj

j∑
�=0

r�
[ϑẑ(w − Rj )]j−�

(j − �)!
)

= ceϑe−δt [1−ẑ(−Rj )]e−jδt

ρ
∫ ∞

0 zeRj z dZ(z)− c

j∑
�=0

r�
[ϑẑ(−Rj )]j−�
(j − �)! .
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Therefore, ψ(x, t) = 1 − φ(x, t) = 1 − φ0(x, t) + ∑∞
j=1 −φj (x, t), and (21) follows

immediately.

Remark 4. Set L(t) = 1 − ϑδe−δt /ρ and t = 0 in Theorem 1. Then
∫ ∞

0 L̄(s) ds = ϑ/ρ

and we recover κ0(t)e−R0x , the first-order asymptotics of the ruin probability obtained by
Theorem 4. The higher-order asymptotics depend on the distributional property of the general
distribution function L.

Remark 5. We can rewrite φ̂0(w, t) in (22) as

φ̂0(w, t) = eϑe−δt [1−ẑ(w)] 1

w

p0

1 − (1 − p0)(1 − ẑ(w))/µ1Zw

= eϑe−δt [1−ẑ(w)] 1

w

∞∑
i=0

p0(1 − p0)
i

(
1 − ẑ(w)

µ1Zw

)i
, p0 = 1 − ρµ1Z

c
.

The third term of φ̂0(w, t) above is the Laplace transform of a compound geometric distribution∑∞
i=0 p0(1 − p0)

id
(i)
0 (x), where d(i)0 (x) is the i-fold convolution of a proper density function

d0(x) =: Z̄(x)/µ1Z , since 0 < p0 < 1 and∫ ∞

0
d0(x) dx = Lw{d0(x)}

∣∣
w=0 = lim

w→0

1 − ẑ(w)

µ1Zw
= 1

µ1Z
µ1Z = 1.

For j = 1, 2, . . ., we can also rewrite φ̂j (w, t) in (23) as

φ̂j (w, t) = pj

(
1 − (1 − pj )

W+
j

1 − ẑ(W+
j )

ẑ(W+
j )− ẑ(w)

w −W+
j

)−1

× 1

pj

eϑe−δt [1−ẑ(w)]e−jδt

w −W+
j

j∑
�=0

r�
[ϑẑ(w)]j−�
(j − �)! ,

=
∞∑
i=0

pj (1 − pj )
i

(
W+
j

1 − ẑ(W+
j )

ẑ(W+
j )− ẑ(w)

w −W+
j

)i

× 1

pj

eϑe−δt [1−ẑ(w)]e−jδt

w −W+
j

j∑
�=0

r�
[ϑẑ(w)]j−�
(j − �)! ,

where pj = δj/cW+
j . The first term of φ̂j (w, t) above is the Laplace transform of a compound

geometric distribution
∑∞
i=0 pj (1 − pj )

id
(i)
j (x), where d(i)j (x) is the i-fold convolution of a

proper density function

dj (x) =: W+
j

1 − ẑ(W+
j )

eW
+
j x

∫ ∞

x

e−W+
j z dZ(z),

since

0 < pj = 1 − ρ

c

1 − ẑ(W+
j )

W+
j

= δj

cW+
j

= δj

ρ[1 − ẑ(W+
j )] + δj

< 1,

∫ ∞

0
dj (x) dx = Lw{dj (x)}

∣∣
w=0 = W+

j

1 − ẑ(W+
j )

ẑ(W+
j )− ẑ(w)

w −W+
j

∣∣∣∣
w=0

= 1.
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Note that, for a constant ν, we have Lw{eνx ∫ ∞
x

e−νz dZ(z)} = (ẑ(ν)− ẑ(w))/(w − ν), which
is a special case of the double Dickson–Hipp operator introduced in Dickson and Hipp (2001).

5. Ruin with exponentially delayed claims and exponentially distributed sizes

The asymptotic formula in (21) becomes exact if the claim sizes follow an exponential
distribution.

Theorem 5. Assume that c > ρµ1Z , L ∼ Exp(δ), and that Z follows an exponential
distribution. Then the ruin probability is given by

ψ(x, t) =
∞∑
j=0

κj (t)e
−Rjx. (24)

Proof. By Theorem 3, if Z ∼ Exp(γ ) then, for j = 0, we have

φ̂0(w) = c − ρ/γ

cw − ρw/(γ + w)
=

(
1 − ρ

cγ

)
γ + w

(w + R0)w
. (25)

For j = 1, 2, . . ., we have

φ̂j (w) = ρ
W+
j φ̂j−1(W

+
j )/(γ +W+

j )− wφ̂j−1(w)/(γ + w)

cw − ρw/(γ + w)− δj

= ρ
(W+

j φ̂j−1(W
+
j )− wφ̂j−1(w))/(w −W+

j )+W+
j φ̂j−1(W

+
j )/(γ +W+

j )

c(w + Rj )
.

In particular, for j = 1, we observe that

φ̂1(w) = ρ
(W+

1 φ̂0(W
+
1 )− wφ̂0(w))/(w −W+

1 )+W+
1 φ̂0(W

+
1 )/(γ +W+

1 )

c(w + R1)

= ρ
(1 − ρ/cγ )(γ − R0)/(W

+
1 + R0)+W+

1 φ̂0(W
+
1 )(w + R0)/(γ +W+

1 )

c(w + R0)(w + R1)
,

which is the Laplace transform of a linear combination of e−R0x and e−R1x . In general, for
j = 1, 2, . . ., assume that

φ̂j (w) = Pj (w)

c
∏j
i=0(w + Ri)

, j = 1, 2, . . . ,

where {Pj (w)}j=1,2,... are functions of w. Then

Pj (w) = ρ

c

j−1∏
i=0

(w + Ri)

[
W+
j Pj−1(W

+
j )/

∏j−1
i=0 (W

+
j + Ri)− wPj−1(w)/

∏j−1
i=0 (w + Ri)

w −W+
j

+ W+
j

γ +W+
j

Pj−1(W
+
j )∏j−1

i=0 (W
+
j + Ri)

]
,
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and we have

Pj (w) = ρ

c

[
W+
j

w −W+
j

(
Pj−1(W

+
j )∏j−1

i=0 (W
+
j + Ri)

j−1∏
i=0

(w + Ri)− wPj−1(w)

)

+ W+
j

γ +W+
j

Pj−1(W
+
j )∏j−1

i=0 (W
+
j + Ri)

j−1∏
i=0

(w + Ri)

]
, j = 2, 3, . . . ,

P1(w) = ρ

[(
1 − ρ

cγ

)
γ − R0

W+
1 + R0

+ W+
1

γ +W+
1

φ̂0(W
+
1 )(w + R0)

]
.

Note that, for j = 2, 3, . . ., w = W+
j is one of the roots of the numerator of the first term, so

the denominator w −W+
j then cancels. The function P1(w) is a polynomial of degree 1, and,

obviously, by the method of induction, {Pj (w)}j=1,2,... are polynomial functions of w with
maximum degree j . Hence, for any j = 1, 2, . . ., we have the partial fraction decomposition

Pj (w)

c
∏j
i=0(w + Ri)

=
j∑
i=0

bji
1

w + Ri
,

where {bji}i=0,1,...,j are all constants. Since Lw{e−Rix} = 1/(w + Ri), i = 0, 1, . . . , j , we
have φj (x) = ∑j

i=0 bjie
−Rix, j = 1, 2, . . .. For j = 0, we have R0 = γ − ρ/c, and rewrite

(25) as

φ̂0(w) = 1

w
− ρ

cγ

1

w + R0
,

which is the Laplace transform of φ0(x) = 1 − ρ(cγ )−1e−R0x . Then the ruin probability
ψ(x, t) is a linear combination of {e−Rjx}j=0,1,..., since

ψ(x, t) = 1 − φ(x, t)

= 1 − φ0(x)−
∞∑
j=1

e−jδtφj (x)

= ρ

cγ
e−R0x −

∞∑
j=1

e−jδt
j∑
i=0

bjie
−Rix

=
∞∑
j=0

Bj (t)e
−Rjx,

where {Bj (t)}j=0,1,... are all deterministic functions of time t . Then (5) should hold, because the
asymptotic representation given by Theorem 4 is also a linear combination of {e−Rjx}j=0,1,....
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