Characters for summary functions associated with cartesian products

Peter D. Finch and Elizabeth Heathcote

Abstract

In deriving macroscopic descriptions of microscopic phenomena one often uses a vector valued sumanary function which is defined on a cartesian product in terms of component summary functions. We show that any character of such a summary function is the product of characters of its component summary functions.

1. Introduction

We adopt without further comment the notation and terminology of Finch [1]. In many practical situations one is considering two non-empty sets X^{\prime} and $X^{\prime \prime}$ together with a universal M^{\prime}-valued summary function $\xi^{\prime}: X_{*}^{\prime} \rightarrow M^{\prime}$ and a universal $M^{\prime \prime}$-valued summary function $\xi^{\prime \prime}: X_{*}^{\prime \prime} \rightarrow M^{\prime \prime}$. One's immediate interest is in the cartesian product $X=X^{\prime} \times X^{\prime \prime}$ and the universal $M^{\prime} \times M^{\prime \prime}$-valued summary function $\xi: X_{\star} \rightarrow M^{\prime} \times M^{\prime \prime}$ defined by
(1.1) $\forall n \geq 1: \xi_{n}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right)\left(x_{2}^{\prime}, x_{2}^{\prime \prime}\right) \ldots\left(x_{n}^{\prime}, x_{n}^{\prime \prime}\right)$

$$
=\left(\xi_{n}^{\prime} x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}, \xi_{n}^{\prime \prime} x_{1}^{\prime \prime} x_{2}^{\prime \prime} \ldots x_{n}^{\prime \prime}\right) .
$$

If X^{\prime} is a character for ξ^{\prime} and $X^{\prime \prime}$ is a character for $\xi^{\prime \prime}$ then $X: M^{\prime} \times M^{\prime \prime} \rightarrow C$ with

$$
\operatorname{dom} \chi=\operatorname{dom} \chi^{\prime} \times \operatorname{dom} \chi^{\prime \prime}
$$

and

$$
\begin{equation*}
\chi\left(m^{\prime}, m^{\prime \prime}\right)=\chi^{\prime}\left(m^{\prime}\right) \chi^{\prime \prime}\left(m^{\prime \prime}\right) \tag{1.2}
\end{equation*}
$$

for all m^{\prime} in dom χ^{\prime} and all $m^{\prime \prime}$ in dom $\chi^{\prime \prime}$, is a character of ξ.

However it is not immediately obvious that a general character of ξ must be of the form (1.2) where X^{\prime} and $X^{\prime \prime}$ are characters of ξ^{\prime} and $\xi^{\prime \prime}$ respectively, and it is our purpose in this paper to show that this is so. However we require a preliminary result about identity elements for summary functions and this is established in the next section.

2. Adjunction of an identity element

Let X be a non-empty set and let $\xi: X_{*} \rightarrow M$ be a univerisal M-valued summary function. We say that ξ has an identity element e when there is an element e in X such that, for any positive integer $n>1$ and any elements $x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}$ in X,

$$
\xi_{n} x_{1} \cdots x_{k-1} e x_{k+1} \cdots x_{n}=\xi_{n-1} x_{1} \cdots x_{k-1} x_{k+1} \cdots x_{n} .
$$

In particular

$$
\xi_{n} e e \ldots e=\xi_{1} e
$$

When ξ does have an identity e one has $\chi\left(\xi_{l} e\right)=1$ for any non-trivial character X of ξ.

If ξ does not have an identity element we can adjoin one to X in the following way. Let e be any symbol not representing an element of X_{*} and write $y=X \cup e$. Similarly let g be any symbol not representing an element of M and write $L=M \cup g$. Define $\eta: V_{*} \rightarrow L$ by
(i) $\eta \mid X_{*}=\xi$,
(ii) $\eta_{n} e e \ldots e=\eta_{1} e=g, n \geq 1$,
(iii) for $n>1$ and any $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in y_{*} with exactly $k<n$ occurrences of e,

$$
\eta_{n} y_{1} y_{2} \cdots y_{n}=\xi_{n-k} x_{1} x_{2} \cdots x_{n-k}
$$

where $\left(x_{1}, x_{2}, \ldots, x_{n-k}\right)$ is the sequence obtained from $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ by deleting the k occurrences of e.

It is easily verified that η is a universal L-valued summary function with identity e. Moreover if $\alpha: L \rightarrow C$ is a non-trivial
character of η then $\alpha(g)=1$ and $X=\alpha \mid$ codom ξ is a character of ξ. Conversely if X is a character of ξ and we define $\alpha:$ codomn $\rightarrow C$ by extension from $\alpha \mid \operatorname{codom} \xi=X$ and $\alpha(g)=1$ then α is a character of η. It follows that there is no loss of generality in supposing that a summary function does have an identity element. It should be noted, however, that an identity element for a summary function ξ is not necessarily unique; if e and f are identities then we have $\xi_{1} e=\xi_{1} f$.

3. The theorem

We return now to the situation of Section 1 involving two summary functions ξ^{\prime} and $\xi^{\prime \prime}$ and the derived summary function ξ defined by equation (1.1). We will, however, suppose now that ξ^{\prime} has an identity e^{\prime} and that $\xi^{\prime \prime}$ has an identity $e^{\prime \prime}$. We start with the

LEMMA. Let $x: \operatorname{codom} \xi \rightarrow C$ be a character of ξ and define $X^{\prime}:$ codom $\xi^{\prime} \rightarrow C$ by

$$
\forall m^{\prime} \in \operatorname{codom} \xi^{\prime}: \chi^{\prime}\left(m^{\prime}\right)=\chi\left(m^{\prime}, \xi_{I}^{\prime \prime} e^{\prime \prime}\right)
$$

Then X^{\prime} is a character of ξ^{\prime}. In like manner $X^{\prime \prime}:$ codom $\xi \rightarrow C$ defined by

$$
\forall m^{\prime \prime} \in \operatorname{codom} \xi^{\prime \prime}: \chi^{\prime \prime}\left(m^{\prime \prime}\right)=\chi\left(\xi_{1}^{\prime} e^{\prime}, m^{\prime \prime}\right)
$$

is a character of $\xi^{\prime \prime}$.
Proof. For any $n \geq 1$ and any $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ in X^{\prime} one has $\chi^{\prime}\left(\xi_{n}^{\prime} x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}\right)=\chi\left(\xi_{n}^{\prime} x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}, \xi_{1}^{\prime \prime} e^{\prime \prime}\right)$
$=x\left(\xi_{n}^{\prime} x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}, \xi_{n}^{\prime \prime} e^{\prime \prime} e^{\prime \prime} \ldots e^{\prime \prime}\right)$
$=x\left(\xi_{n}\left(x_{1}^{\prime}, e^{\prime \prime}\right)\left(x_{2}^{\prime}, e^{\prime \prime}\right) \ldots\left(x_{n}^{\prime}, e^{\prime \prime}\right)\right)$
$=\chi\left(\xi_{1}\left(x_{1}^{\prime}, e^{\prime \prime}\right)\right) \times\left(\xi_{1}\left(x_{2}^{\prime}, e^{\prime \prime}\right)\right) \ldots \times\left(\xi_{1}\left(x_{n}^{\prime}, e^{\prime \prime}\right)\right)$
$=\chi\left(\xi_{1}^{\prime} x_{1}^{\prime}, \xi_{1}^{\prime \prime} e^{\prime \prime}\right) \times\left(\xi_{1}^{\prime} x_{2}^{\prime}, \xi_{1}^{\prime \prime} e^{\prime \prime}\right) \cdots \times\left(\xi_{1}^{\prime} x_{n}^{\prime}, \xi_{1}^{\prime \prime} e^{\prime \prime}\right)$
$=\chi^{\prime}\left(\xi_{1}^{\prime} x_{1}^{\prime}\right) \chi^{\prime}\left(\xi_{1}^{\prime} x_{2}^{\prime}\right) \ldots \chi^{\prime}\left(\xi_{1}^{\prime} x_{n}^{\prime}\right)$.
This establishes that X^{\prime} is a character of ξ^{\prime} and the result for $X^{\prime \prime}$ is proved in the same way.

We are now in a position to prove our main result, namely the
THEOREM. Let X be a character of ξ. Then for any $\left(m^{\prime}, m^{\prime \prime}\right)$ in the codomain of ξ,

$$
\begin{equation*}
\chi\left(m^{\prime}, m^{\prime \prime}\right)=\chi^{\prime}\left(m^{\prime}\right) \chi^{\prime \prime}\left(m^{\prime \prime}\right), \tag{3.1}
\end{equation*}
$$

where $x^{\prime}, x^{\prime \prime}$ are the characters of $\xi^{\prime}, \xi^{\prime \prime}$ respectively which are defined in the lemma.

Proof. We start by establishing that

$$
\text { (3.2) } \forall x^{\prime} \in X^{\prime} \& \forall x^{\prime \prime} \in X^{\prime \prime}: \chi\left(\xi_{1}\left(x^{\prime}, x^{\prime \prime}\right)\right)=\chi^{\prime}\left(\xi_{1}^{\prime} x^{\prime}\right) \chi^{\prime \prime}\left(\xi_{1}^{\prime \prime} x^{\prime \prime}\right) \text {. }
$$

To prove (3.2) we observe that

$$
\begin{aligned}
\chi\left(\xi_{1}\left(x^{\prime}, x^{\prime \prime}\right)\right) & =\chi\left(\xi_{1}^{\prime} x^{\prime}, \xi_{1}^{\prime \prime} x^{\prime \prime}\right) \\
& =\chi\left(\xi_{2}^{\prime} x^{\prime} e^{\prime}, \xi_{2}^{\prime \prime} e^{\prime \prime} x^{\prime \prime}\right) \\
& =\chi\left(\xi_{2}\left(x^{\prime}, e^{\prime \prime}\right)\left(e^{\prime}, x^{\prime \prime}\right)\right) \\
& =\chi\left(\xi_{1}\left(x^{\prime}, e^{\prime \prime}\right)\right) \chi\left(\xi_{1}\left(e^{\prime}, x^{\prime \prime}\right)\right) \\
& =\chi\left(\xi_{1}^{\prime} x^{\prime}, \xi_{1}^{\prime \prime} e^{\prime \prime}\right) \chi\left(\xi_{1}^{\prime} e^{\prime}, \xi_{1}^{\prime \prime} x^{\prime \prime}\right) \\
& =\chi^{\prime}\left(\xi_{1}^{\prime} x^{\prime}\right) \chi^{\prime \prime}\left(\xi_{1}^{\prime \prime} x^{\prime \prime}\right) .
\end{aligned}
$$

Suppose now that $\left(m^{\prime}, m^{\prime \prime}\right)$ is in the codomain of ξ; then there is $n \geq 1$ and there are elements $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$ in X^{\prime} and elements $x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}$ in $X^{\prime \prime}$ such that

$$
m^{\prime}=\xi_{n}^{\prime} x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime} \& m^{\prime \prime}=\xi_{n}^{\prime \prime} x_{1}^{\prime \prime} x_{2}^{\prime \prime} \ldots x_{n}^{\prime \prime}
$$

To establish (3.1) we make use of (3.2) in observing that

$$
\begin{aligned}
\chi\left(m^{\prime}, m^{\prime \prime}\right) & =\chi\left(\xi_{n}^{\prime} x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}, \xi_{n}^{\prime \prime} x_{1}^{\prime \prime} x_{2}^{\prime \prime} \ldots x_{n}^{\prime \prime}\right) \\
& =\chi\left(\xi_{n}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right)\left(x_{2}^{\prime}, x_{2}^{\prime \prime}\right) \ldots\left(x_{n}^{\prime}, x_{n}^{\prime \prime}\right)\right) \\
& =\prod_{k=1}^{n} \chi\left(\xi_{1}\left(x_{k}^{\prime}, x_{k}^{\prime \prime}\right)\right) \\
& =\left[\prod_{j=1}^{n} \chi^{\prime}\left(\xi_{1}^{\prime} x_{j}^{\prime}\right)\right]\left[\prod_{k=1}^{n} \chi^{\prime \prime}\left(\xi_{1}^{\prime \prime} x_{k}^{\prime \prime}\right)\right] \\
& =\chi^{\prime}\left(\xi_{n}^{\prime} x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}\right) \chi^{\prime \prime}\left(\xi_{n}^{\prime \prime} x_{1}^{\prime \prime} x_{2}^{\prime \prime} \ldots x_{n}^{\prime \prime}\right) \\
& =\chi^{\prime}\left(m^{\prime}\right) \chi^{\prime \prime}\left(m^{\prime \prime}\right) .
\end{aligned}
$$

This is the desired result.
Note that the result just established can be easily extended to the case of an arbitrary but finite number of component summary functions.

Reference

[1] Peter D. Finch, "Macroscopic descriptions of microscopic phenomena", Bull. Austral. Math. Soc. 9 (1973), 391-410.

Department of Mathematics,
Monash University,
Clayton,
Victoria.

