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Characters for summary functions

associated with cartesian products

Peter D. Finch and Elizabeth Heathcote

In deriving macroscopic descriptions of microscopic phenomena

one often uses a vector valued summary function which is defined

on a cartesian product in terms of component summary functions.

We show that any character of such a summary function is the

product of characters of its component summary functions.

1. Introduction

We adopt without further comment the notation and terminology of Finch

[ J ] . In many pract ical si tuations one i s considering two non-empty sets

X' and X" together with a universal W'-valued summary function

£' : X'A ->• M' and a universal A/'-valued summary function £" : X* •* M" .

One's immediate in teres t i s in the cartesian product X = X1 x X" and the

universal M'XM"-valued summary function £ : X̂  ->• M' x M" defined by

(i.D v « > i : £n(*;, xi)[x<2, sg) ... (*;, x;)

- O'a-'r' r' f'V'r" r")

If x' i s a character for E,' and x" i s a character for C" then

X : M' x M" •* C with

domx = domx' x domx"

and

(1.2) X^', m") = X'^'JX"^") ,

for all m' in domx' and all m" in domx" > i s a character of £ .
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However i t is not immediately obvious that a general character of E, must

be of the form (1.2) where x' and x" a r e characters of £' and £"

respectively, and i t is ourpurpose in this paper to show that this is so.

However we require a preliminary result about identity elements for summary

functions and this is established in the next section.

2. Adjunction of an identity element

Let X be a non-empty set and le t E, : XA •*• M be a universal

M-valued summary function. We say that £, has an identi ty element e

when there i s an element e in X such tha t , for any positive integer

n > 1 and any elements a^, . . . , xk_±, *fe+1> •••> *M in X ,

In particular

Cnee . . . e = ^ e .

When £ does have an identity e one has x(C,e] = 1 for any non-trivial

character x °f £ •

If £ does not have an identity element we can adjoin one to X in

the following way. Let e be any symbol not representing an element of

XH and write V = X u e . Similarly let g be any symbol not represent-

ing an element of M and write L = M u g . Define n : V^ •* L by

(i) n|x, = ^ ,

( i i ) r\nee . . . e = r^e = g , n > 1 ,

( i i i ) for n > 1 and any \y , y2 yn) in V* with

exactly k < n occurrences of e ,

W 2 ••• yn= ^n-kXlX2 • " xn-k

where (x, , xo a; j,) is the sequence obtained from

[y , y , ..., y ) by deleting the k occurrences of e .

I t is easily verified that n is a universal L-valued summary

function with identity e . Moreover if a : L •* C is a non-trivial
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character of r\ then a(g) = 1 and x = ot|codom£ is a character of £ .

Conversely if X is a character of £ and we define a : codomn, •* C by

extension from a|codom£ = x an<^ a(?) = 1 then a is a character of

n . It follows that there is no loss of generality in supposing that a

summary function does have an identity element. It should be noted,

however, that an identity element for a summary function £ is not

necessarily unique; if e and / are identities then we have

he • V •

3. The theorem

We return now to the situation of Section 1 involving two summary

functions £' and £" and the derived summary function £ defined by

equation (l.l). We will, however, suppose now that £' has an identity

e' and that £" has an identity e" . We start with the

LEMMA. Let x : codom£ •* C be a character of £ and define

X1 : codom£' •+ C by

Vm' € codomr : x'(m') = x[m', £![e") .

Then x' ^e a character of £' . In like manner x" : codom£ -»• C defined

by

Vm" € codom£" : x"(m") = x(^e'» m")

is a character of £" .

Proof. For any n 2 1 and any x', x' x' in X' one has

") ... (*;, e"))

{x'2, e")) ... xi^

This establishes that x' is a character of £' and the result for x"

is proved in the same way.
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We are now in a posit ion to prove our main r e su l t , namely the

THEOREM. Let x be a character of E, . Then for any (m', m") in

the codomain of £ ,

where \', \" are the characters of £ ' , £" respectively which are

defined in the lemma.

Proof. We start by establishing that

(3-2) Vx' € X1 & Vx" € X" : x t ^ U ' , x")) = X ' ( q * ' ] x " (q*") •

To prove (3 .2 ) we observe t h a t

(*' , e")(e', x"))

Suppose now t h a t (m', m") i s i n the codomain of £ ; then there i s

n 2 1 and t h e r e a re elements x ' , x ' , . . . , x i n X and elements

x " x"2 x"n in X" such that

m' = E'x'x' x' h m" = E"x"x" x"
Si 1 2 ' ' ' n s n i 2 ' " w "

To e s t a b l i s h (3-1) we make use of (3-2) in observing t h a t

vim' m") - vif'x'r' r' F"T"T" r"l

r \x' x") fx' x") fx' x""ll
^ n ( 1 ' l J ^ 2 ' 2 J •"" "• n ' n>>

n 1 2
cr"x"x" x")
~*n 1 2 ' ' " rcJ
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This is the desired result.

Note that the result just established can be easily extended to the

case of an arbitrary but finite number of component summary functions.
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