
BULL. AUSTRAL. MATH. SOC. 54C40, 46E25

VOL. 46 (1992) [449-458]

LOCAL INVERTIBILITY IN SUBRINGS OF C*{X)

H. LINDA BYUN, LOTHAR REDLIN AND SALEEM WATSON

It is known that the maximal ideals in the rings C(X) and C*(X) of continuous
and bounded continuous functions on X, respectively, are in one-to-one corre-
spondence with j3X. We have shown previously that the same is true for any ring
A(X) between C(X) and C*(X). Here we consider the problem for rings A(X)
contained in C'{X) which are complete rings of functions (that is, they contain
the constants, separate points and closed sets, and are uniformly closed). For ev-
ery noninvertible / £ A(X), we define a z-filter Z>.A(/) on X which, in a sense,
provides a measure of where / is 'locally invertible'. We show that the map ZA
generates a correspondence between ideals of A(X) and z-filters on X. Using this
correspondence, we construct a unique compactification of X for every complete
ring of functions. Each such compactification is explicitly identified as a quotient
of fiX. In fact, every compactification of X arises from some complete ring of
functions A(X) via this construction. We also describe the intersections of the
free ideals and of the free maximal ideals in complete rings of functions.

0. INTRODUCTION

If X is a completely regular space then the collection C(X) of continuous real-
valued functions on X is a ring under pointwise operations. The ring C(X) and
its subring C*(X), consisting of the bounded elements of C{X), have been studied
extensively (see [4] and [1]). The resulting theory of 'rings of continuous functions' is
beautifully presented in the now classic text of Gillman and Jerison by that title. One of
the main achievements in this theory is the characterisation of the maximal ideals in the
rings C(X) and C*(X). Although the problems of characterising the maximal ideals
in C(X) and C*(X) are quite different, they have the same solution—namely, the set
of maximal ideals in each is in one-to-one correspondence with /3X, the Stone-Cech
compactification of X. In [6], a method was developed to characterise the maximal
ideals in any ring A(X) of continuous functions on X with A(X) D C*(X), and in
[2] the method was used to study deeper properties of these rings. The technique of
'local invertibility' used in these papers has the desirable effect of putting the problems
of characterising the maximal ideals in C{X) and C*(X) into a common setting. This

Received 22 November 1991

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 SA2.00+0.00.

449

https://doi.org/10.1017/S0004972700012119 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012119


450 H.L. Byun, L. Redlin and S. Watson [2]

is achieved by defining a map ZA from the noninvertible elements of A(X) to the z-
filters on X, which lifts to one that maps ideals in A(X) to z-filters. In this paper we
consider how the concept of local invertibility can be apphed to rings A(X) contained
in C*(X). It turns out that the rings for which an analogous map ZA is useful are
complete rings of functions—those which contain the constants, separates points and
closed sets, and are uniformly closed. The rings A(X) 3 C*(X) studied in [6] and [2]
in fact satisfy these conditions; however, the proofs there make essential use of the fact
that A(X) D C*(X) so they do not in general carry over to the case we consider here.

In Section 1 we define the map ZA and show that it maps ideals to z-filters. We
prove that Z*j[ , the inverse of ZA , maps z-ultrafilters to maximal ideals, although not
necessarily in a one-to-one fashion (as opposed to the case in which C*(X) C A(X)).
In Section 2 we use Z^ to construct a correspondence between compactifications of
X and complete rings of functions on X. (Compare [3, p.301].) Our correspondence
is explicit in the sense that a procedure is given for determining those points of /3X
(that is, z-ultrafilters on X) which are identified to yield the compactification that
corresponds to any specified A(X). Finally, in Section 3 we study the intersections of
the free ideals and the free maximal ideals in A(X). Any terminology or notation not
specifically defined in this paper is to be understood as in [4].

1. THE CORRESPONDENCE BETWEEN IDEALS AND FILTERS

Let X be a completely regular space. A subalgebra A(X) of C*(X) is called a
complete ring of functions if it contains the constants, separates points and closed sets,
and is uniformly closed (see Engelking [3, p.301]). Throughout this paper A(X) will
always denote a complete ring of functions.

We first remark that if / G A(X), then |/ | € A(X). Thus A{X) is a lattice, since
fVg = (f+g + \f-g\)/2 and / A g = (f +g - \f - g\)/2. (See Willard [8, p.291].)

LEMMA 1 . 1 . If f € A(X) and 0 < c ^ f(x) for all x € X, then f is invertible
in A(X).

PROOF: Choose a > 0 such that 0 < ac < af(x) < 1 for all x £ X. Then
0 < 1 - o/(a:) ^ 1 - ac < 1, so

- O r IJC ) J $• x ( J- — CLC < OO.

n = 0 n = 0

Since A{X) is uniformly closed, [af] 1 £ A{X), and hence / l £ A(X). D

For / G C(X), we write Z(f) for the zero set of / ; that is, Z{f) = {x e X: f(x) =
0}. We denote the collection of all zero sets in X by •Z[X]. A cozero set is the
complement of a zero set. For a cozero set E we say that / G A(X) is E-regular if
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there exists g G A(X) such that fg\E = 1; thus, in a sense, / is 'locally invertible' on
E.

LEMMA 1 . 2 . Let f,g £ A(X) and let E, F be cozero sets in X.

(a) If f is E-regular and F C E, then f is F-regular.
(b) If f is E-regular and F-iegulai, then f is El) F-regular.
(c) If f(x) ^c>Oforallx€E, then f is E-regular.
(d) If 0 < / (x) ^ g(x) for all x G E and if f is E-regular, then g is

E-regular.

(e) If f is E-regular and g is F-regular, then fg is EC\ F-regular and f2 +g2

is E U F-regular.

(f) / is E-regular if and only if \f\ is E-regular.

PROOF: The proofs of (a), (b), (d) and (e) are identical to the corresponding parts
of [6, Lemma 1], so we prove (c) and (f).

(c) Let h = cV f. Then h G A(X),andso h'1 G A(X) by Lemma 1.1. The result
follows since h~1f\B = 1-

(f) If / is .E-regular then there exists g G A(X) such that fg\E = 1- But then
| / | | j | \E = 1, so since | / | , \g\ G A(X), \f\ is .E-regular. Conversely, if | / | is E-regular,
there exists g G A(X) such that g\f\ \E = 1. Let E^ - {x G E: f(x) > 0} and let
E2 = {x € E: f(x) < 0}. Then fg\Bl = 1 and f(-g)\Ei = 1, and so by (b), / is
Ei U .^-regular (that is, .E-regular). D

As in [6], for / G A(X) we define ZA{f) = {E G Z[X}: f is £c-regular}; for J
an ideal of A(X) we write Z^fJ] = |J ZA(/)', and for T a ^-filter on X we write

feJ
ZA[F] = if £ A(x)- %A(f) C F). With these definitions, the following theorem can
be proved as in [6, Theorems 1, 2 and 3].

THEOREM 1 .3 .

(a) The function f G A{X) is noninvertible in A(X) if and only if Z A ( / ) is
a z-Slter on X.

(b) If I is an ideal in A(X), then ZA[I] is a z-Slter on X.
(c) If T is a z-Slter on X, then Z^[^F] is an ideal in A(X).

The next theorem gives a more explicit description of the ideal Z^"[^].

THEOREM 1.4. If T is any z-Slter on X, then ZX[.F] = {/ G A(X):

PROOF: Let / G Z7[^]. This means ZA(f) C T. We claim that lim / = 0.
Z(f)

To prove this we shall show that To, the z-filter of zero-set neighbourhoods of 0 in
R, is contained in B = {f{E): E G Z ( / ) } . Let V G To and let E =
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Then E £ Z{\f\) by Lemma 1.2(c), and hence E G Z(/) by Lemma 1.2(f). Thus
V = f(E) G To, so that f , c 8 . This proves the claim. It follows that lim/ = 0.

Conversely, suppose / G A(X) with lim/ = 0. Then clearly lim//i = 0 for all

h G A(X) (since every h G A(X) is bounded). We claim that for every E G Z(/) there
exists f £ j such that i^ C E. For it not, we have that F C\ £ c ^ 0 for every f e f .
Choosing /i G -*4.(-̂ Q such that fh\iac = 1 would then show that 1 is a cluster point of
{fh(F) : F € f } , a contradiction. Thus T D Z(/), and so / G Z^ [F]. D

We now show that Z*^ maps z-ultrafilters to maximal ideals. We need a prelimi-
nary lemma.

LEMMA 1 .5 . Let U be a z-ultraSlter onX. Then ZA[U] = A{X) n Z£. [U].

PROOF: We claim that for every / G A(X), ZA{f) = Zc*(f)- For clearly ZA{f) C
Zc{f)- So let i? G Zc(f), and choose 5 G C*(X) such that / ^ E = 1. Since g is
bounded, there exists c > 0 such that |/(x)| ^ c for all x G 2?. Thus by Lemma 1.2(c)
and (f), / is £c-regular in A(X); that is, E £ Z A ( / ) . This proves the claim.

Now let / G Z^[W]. Then ZA(f) C W, so by the claim, Zc«(/) C U. Thus / G
Z*c. [U], and hence Z^[U] C A(X) n Zp.[W]. Conversely, suppose / G A(X) n Z^i [W].
Then Zc*(/) C W, and so ZA(f) C W, whence / G Z^[W]. D

It follows from the first part of the proof of the preceding lemma that Z(f) =

nzx(/).
THEOREM 1.6 . If U is a z-ultrafilter on X, then Z^[U] is a maximal ideal in

A(X).

PROOF: Let M = Z"£» [U] and let N — Z^[U}. By Lemma 1.5 there is a natural
embedding i: A(X)/N -> C*(X)/M, and by [2, Theorem 3.2(b)], M is a maximal
ideal of C*(X), so there exists an isomorphism J : C*(X)/M —> R. The map fc: R —»
A(X)/N defined byr i - t r + N is clearly one-to-one. Now consider the map <f> — joiok,
<f>: R —» R. Since ^ is an embedding, it must be the identity map on R, and so
A{X)/N ~ R. Thus N is a maximal ideal in A(X). D

THEOREM 1.7 . There is a surjeclion from the set of z-ultrafilters on X onto
the set of maximal ideals of A(X) given by

U i-> ZA[U}.

PROOF: Theorem 1.6 guarantees the existence of this map. To show it is onto, let
M be a maximal ideal in A(X), and let U be a z-ultra filter containing the z-filter
ZA[M]. Then M C Z^[U], and so M = Z^[U]. D

EXAMPLE 1.8: We show that the map defined in the preceding theorem need not
be one-to-one. Let X = (0, 1), and let A(X) = {/ £ C*(X): Urn Hx) = lim fix)}.

x—0+ z-»l-
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Clearly A(X) is a complete ring of functions. Let Ho and Hi denote the z-ultrafilters
on X that converge (in (iX) to 0 and 1 respectively. Clearly Ho and Hi are distinct.
However, by Theorem 1.4 we have

ZI[Wo] = {/ 6 A(X): l i m / = 0} = {/ G A(X): l i m / = 0} = Z^[Hi].

2. T H E CORRESPONDENCE BETWEEN COMPACTIFICATIONS AND SUBRINGS

In this section we show that there is a natural correspondence between complete
subrings of C*(X) and compactifications of X. It is well known that every compactifi-
cation of X is a topological quotient of /3X. Our map Z^ gives an explicit construction
of the equivalence relation on /3X leading to each such quotient.

Recall that in the Stone construction of /3X, the points of (3X are the 2-ultrafilters
on X. The points of (3X will be denoted by the letters p, q, ... . When we need
to emphasise that these points are z-ultrafilters, we shall write Hp,Hq, . . . . In this
notation the space X is canonically embedded in (3X via the map p i—> Hp, where Up

is the z-ultranlter of all zero sets in X containing p G X.
DEFINITION: Let A(X) be a complete ring of functions. We define an equivalence

relation ~ on (3X as follows:

p ~ q if and only if Z^[HP] = Z^[Hq].

This relation does not identify points of X, since if p ^ q 6 X there exists

/ G A(X) such that f(x) = 0, f{y) ^ 0, and so Z^[HP] ^ Z^[Hq}. Thus QX/ ~ is a

compactification of X. We denote it by
In the sequel, we write Mp for the maximal ideal Z "̂[WP]; thus p ~ q if and only if

A

Mp = Mq. For / e C*(X) we denote its extension to /3X by ffi, and so fP(p) = lim/
Up

for all p £ 0X. We also write A(f3X) for the subalgebra of C*((3X) consisting of the
extensions to /3X of the functions in A{X); thus A{/3X) = {/?:/£ A(X)}.

LEMMA 2 . 1 . Mp = Mq if and only ii /"(p) = fP(q) for all f £ A{X).

PROOF: It follows immediately from Theorem 1.4 and the preceding discussion
that Mp = {f G A(X): f^(p) = 0 } . So if p ~ q then /"(p) = 0 if and only if

A
= Q for all feA(X).

Now suppose Mp - Mq, and let / G A(X), with /^(p) = r G R. Then

( / - r )^(p) = 0, and hence (f-r)0(q) = 0, which means that fP(q) = r. Thus
/0(p) = /^(9) for all / G A(X). The converse is obvious. D

The next theorem makes dear that the situation described in Example 1.8 is in
fact the typical case.
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THEOREM 2 . 2 . Z^ is one-to-one on 0X if and only if A(X) = C*(X).

PROOF: The subring A(/3X) of C*{PX) is clearly uniformly closed, contains the
constants, and is naturally isomorphic to A(X). Now suppose ZJ" is one-to-one, and
let p ^ q £ PX. Then by Lemma 2.1, there exists / G A{X) such that fP(p) ± f0(q).

Thus A(j3X) separates the points of PX, and so by the Stone-Weierstrass Theorem,
A(/3X) = C*(PX) ~ C*(X). Hence A(X) = C*{X). The converse is known [6, 2]. D

THEOREM 2 . 3 . Let f e C*(X). Then f has an extension fA to 0AX if and

only if f G A(X).

PROOF: Let CA(X) = {/ G C*{X): f has an extension fA to PAX), and let
rjA '• PX —* PAX denote the canonical projection. We must show that CA(X) = A(X).
So let / G A(X), and suppose p, q G (3X with p ~ q. Then Mp = Mq, and so by

Lemma 2.1, /^(p) = f^(q); that is, / ^ is constant on the equivalence classes modulo
~ . Thus there exists a unique map fA: PAX ~* R such that f^ = fA°i}A, and clearly
A

fA is an extension of / . This means that / G CA(X), and so A(X) C CA(X).

Clearly the map tp: CA(X) —> C*(PAX) defined by / t-> /•* is an embedding,
natural in the sense that f\x — f{f)\x • The subalgebra <p(A(X)) of C*(PAX )
contains the constants and is uniformly closed (since A(X) is). Moreover, it sep-
arates the points of PAX , since if p, q G PX he in different equivalence classes
[p]> [9] G /SA-X" , then by Lemma 2.1 there exists / G A(X) such that /^(p) ^ / 0 ( g ) , and
so fA(\p\) ^ fA([<l})- T l l u s fey t h e Stone-Weierstrass Theorem, <p(A(X)) = C*{PAX),

and so A(X) = CA(X). D

Theorem 2.3 is a generalisation of the universal property of the Stone-Cech com-
pactification. For if A(X) is taken to be all of C*(X), Theorem 2.3 says: a continuous
real-valued function on X can be extended to PX if and only if / is bounded.

For every complete ring of functions we have constructed a compactmcation of X.

We now show that every compactification arises in this fashion, and that the resulting
correspondence between rings and compactiiications is one-to-one.

DEFINITION: Let X be a complete regular space and let aX be a compactification
of X. We denote by Aa(X) the subring of C*(X) consisting of those functions that
extend to aX. We write fa for the extension of / to aX; thus:

Aa(X) = {/ G C\X): f has an extension f a } .

PROPOSITION 2 . 4 . Aa(X) is a complete ring of functions.

P R O O F : Clearly Aa(X) is a subring of C*(X) that contains the constants and is
uniformly closed. We show that it separates points and closed sets. Let B be a closed
subset of X and let x G X, x £ B. Denoting the closure operator in aX by cl a , we
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have x g c\aB, so there exists / € C*(aX) such that f(x) £ d a ( / ( d a B)). Hence
f\x separates x and B. U

Recall that two compactifications of X are equivalent if there is a homeomorphism

between them that leaves X pointwise fixed.

THEOREM 2 . 5 . There is a one-to-one correspondence between the complete sub-

rings of C*(X) and the compactifications of X.

PROOF: We claim that the compactification aX is equivalent to the compacti-
fication 0AaX. To prove this, we first note that Aa(X) is isomorphic to C*(aX),
since Aa(X) consists precisely of those functions in C*(X) that extend (necessarily
uniquely) to aX. This induces a homeomorphism between the compact spaces PAaX
and ($c'(aX)aX that leaves X fixed. But Pc*(aX)aX — P(aX) = aX, since aX is
compact. This proves the claim.

It follows from Theorem 2.3 that if A(X) is a complete ring of functions then
ApA(X) — A(X). Thus we have constructed two correspondences, one taking complete
rings of functions on X to compactifications of X,

and one taking compactifications to complete rings,

aX i-» Aa(X).

We have also shown that these correspondences are inverse to each other, and so they
are one-to-one and onto. D

3. INTERSECTIONS OF FREE IDEALS

An ideal I in A(X) is free if P| ZA(I) — 0; otherwise it is fixed. In view of the
/€/

remark following Lemma 1.5, an ideal / is free or fixed according to whether f) Z(f)

is empty or not. The problem of describing the intersection of the free maximal ideals
in C(X) has been studied extensively (see, for example, [4, p.123], [5], and [7]). The
analogous problem for subrings of C(X) containing C*(X) was considered in [6] and
[2]. In this section we describe the intersections of the free maximal ideals and of all
free ideals in subrings A(X) of C*(X).

LEMMA 3 . 1 . T i e ideal M in A(X) is maximal if and only if M = A(X) n N,
where N is a maximai ideal in C*{X).

PROOF: If N is maximal in C*(X), then there is a z-ultrafilter U on X such that

N = Zp.[W], by Theorem 1.7. But then M = A(X) ClN = A{X) n Z£.[U] = Z^[U],
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which is maximal (Lemma 1.5 and Theorem 1.6). Conversely, if M is maximal in
A(X), then M = Z^[U] for some z-ultranlter on X. Thus we have M = A(X) (IN,
where N = Z£. [U] is maximal in C*(X). D

In particular, M is a free maximal ideal in A(X) if and only if M = A(X) D N
for some free maximal ideal N in C*(X). Following [4], we write Coo(X) for the
subalgebra of C*(X) consisting of the functions that vanish at infinity, where a function
/ £ C*(X) is said to vanish at infinity if for every n £ N there is a compact subset K
of X such that | /(z) | < 1/n for all x £ X \ K.

THEOREM 3 . 2 . The intersection of the free maximal ideals in A(X) is Coo{X) D
A(X).

PROOF: This follows immediately from Lemma 3.1 and [4, p.109]. D

If X is locally compact, then it turns out that the intersection of the free maximal
ideals in any A(X) is simply Coo(X), since Coo(X) C A(X) in this case, as we now
show. We will require some preliminary results. In the sequel, CK(X) denotes the ring
of continuous real-valued functions of compact support on X.

LEMMA 3 . 3 . The completely regular space X is locally compact if and only if
CK{X) separates points and closed sets in X.

PROOF: That CK(X) has this property if X is locally compact follows from [3,
Corollary 3.3.3]. So suppose that CK{X) separates points and closed sets. Let x £ X,
let V be any open neighbourhood of x, and let D = VC. Choose an / £ Cjf (X) that
separates x and D, with f[x) > 0, and let / = (a, b), where 0 < a < f(x) < b and
/("I f(D) — 0. Then f~1{I) is a compact neighbourhood of x since it is contained in
the support of / . D

PROPOSITION 3.4.

(a) If A(X) C B(X) are complete rings of functions, then there exists a
continuous projection n: 0BX —* PAX such that ir\x is the identity on
X.

(b) if aX and fX are two compactifications of X and if there exists a
continuous projection ir: aX —> jX such that n\x is the identity on
X, then A

PROOF: This follows from Lemma 2.1 and the definitions of the concepts in-
volved. D

THEOREM 3 . 5 . If X is locally compact, then every complete ring of functions
A(X) contains Coo(X).

PROOF: Let X be locally compact. We claim that Coo(X) is uniformly closed.
For suppose fk—*f uniformly, with /* £ Coo(X). Let n £ N and choose N such
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that |/A - f\ < l / (2n) for all Jfc ^ N. Choose a compact set K C X such that
fN(x) < l / (2n) for all x £ X \ K. Then | / (x ) | ^ | / (x) - fN(x)\ + \fN(x)\ ^ 1/n for
aU x&X\K.

Let L(X) be the subring of C*(X) generated by C^X) together with the con-
stant functions. By the preceding claim and Lemma 3.3, L(X) is a complete ring of
functions (since CK(X) C COO(X)). The compactification /3i,X is clearly the one-
point compactification of X, which is a quotient of every compactification. Thus by
Proposition 3.4, every complete ring of functions on X contains L(X). U

COROLLARY 3 . 6 . If X is locally compact, then the intersection of the free
maximal ideals in any complete ring of functions A(X) is Coo(X).

We now consider the intersection of all free ideals in A(X). For every p G f3X we
define QP

A = {/ G A(X): p G int ZpX(/&)}. This is clearly an ideal in A{X).

LEMMA 3 . 7 . QP
A is free for all p G PX\X.

PROOF: Let p £ PX\X. We claim that for every x G X there exists / 6 QA such
that f{x) ± 0. The lemma follows, since we then have f) ZA{f) = f] Z(f) = ®-

A A

To prove the claim, choose a closed /9JT-neighbourhood F of p such that x ^ F. Now
FC\X is a closed nonempty set in X, so there exists / G A(X) such that f(F (~l X) = 0
and f(x) = 1. Clearly fP(F) = 0, so / € Q\. D

It can be shown that an ideal in A(X) is free if and only if for every compact set
K C X there exists / G / such that Z(f) fl K = 0 (see [2, Lemma 5.2], whose proof
applies also in our situation here). In addition, we have the following characterisation
of CK(X):

CK{X) = {/ G C*(X): Z0X (/") is a neighbourhood of pX \ X}

(see [4, p.109]).

THEOREM 3 . 8 . Tie intersection of the free ideals in any complete ring of func-
tions A(X) is CK(X)nA(X).

PROOF: Let / G CK{X) D A(X) and let 7 be a free ideal in A(X). We write
E = (X \ Z(f)) for the support of / . By the remarks preceding this theorem there
exists g £ I such that Z(g)C\E = 0. Let c be the minimum value of \g\ on E. Clearly
c > 0, so by Lemma l-2(c) and (f), g is ^-regular. Thus there exists h £ A(X) such
that gh\E = 1 • Thus / = fghel.

Conversely, suppose / is in every free ideal. Then / G QA for every p £ f)X \ X
by Lemma 3.7, and so 0X \ X C int Z0X (fP) . Thus / £ CK{X). D

Comparing Theorems 3.5 and 3.8, we have the following corollary.
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COROLLARY 3 . 9 . IIX is locally compact then the intersection oithe tree ideals
in any complete ring ol iunctions A(X) is CK{X).
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