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Abstract

We investigate the reengineeering of interbank networks with a specific focus on capital increase. We
consider a scenario where all other components of the network’s infrastructure remain stable (a practical
assumption for short-term situations). Our objective is to assess the impact of raising capital on the net-
work’s robustness and to address the following key aspects. First, given a predefined target for network
robustness, our aim is to achieve this goal optimally, minimizing the required capital increase. Second,
in cases where a total capital increase has been determined, the central challenge lies in distributing this
increase among the banks in a manner that maximizes the stability of the network. To tackle these chal-
lenges, we begin by developing a comprehensive theoretical framework. Subsequently, we formulate an
optimization model for the network’s redesign. Finally, we apply this framework to practical examples,
highlighting its applicability in real-world scenarios.
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1. Introduction

Interbank markets play a crucial role in the functioning of modern economic systems by facili-
tating the flow of funds, enabling financial transactions and ensuring liquidity. Especially, during
periods of financial stress or crises, the stability and functioning of bank institutions become cru-
cial to maintaining overall financial stability. As a result, the problem of default contagion in an
interbank market has emerged as one of the most important topics in economic studies.

Many academics and researchers have utilized network theory in order to study interbank
systems and the emergence of systemic risk through the interconnections of the institutions.
In such network structure, every node represents a bank and the capital flows (loans) between
banks are represented by the edges of the network. The flourishing literature of the recent years
has addressed several issues of default contagion. Many topics have been considered and studied
extensively, for instance:

1. therole of the structure and the topology of the network (see Acemoglu et al., 2015; Allen &
Gale, 2000; Anand et al., 2015; Bardoscia et al., 2017; Cohen-Cole et al., 2015; Elliott et al.,
2014; Gai & Kapadia, 2010; Iori et al., 2006; Mistrulli, 2011);

2. therole of interconnectedness among banks (see Acemoglu et al., 2015; Allen & Gale, 2000;
Amini et al., 2016; Ladley, 2013);

3. therole of heterogeneity in degree distributions, balance sheet size, and degree correlations
between banks (see Caccioli et al., 2012);
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4. the importance of the large institutions and of institutions which may be smaller, but they
have a lot of connections in the interbank market (see Battiston et al., 2012; Caccioli et al.,
2012; Chinazzi et al., 2015);

5. how we can relate the propagation of a crisis to measurable features of the network (see
Amini et al., 2016; Caccioli et al., 2014; Cifuentes et al., 2005; Cont et al., 2010);

6. to introduce accurate indicators which objectively assess the network and the stability of
each bank (see Leventides et al., 2022);

to study the channels of contagion (see Upper, 2011);

to assess the systemic risk (see Barucca et al., 2016; De Souza et al., 2016; Cimini et al.,
2015).

Although not explicitly stated, it can be inferred that the ultimate objective underlying all the
previously mentioned studies and research endeavors is the reengineering of interbank networks.
This concept refers to the process of making improvements to the structure, functioning, and
overall design of the interbank network. This procedure aims to enhance the network’s efficiency,
resilience, and stability and to mitigate the systemic risk. Networks reengineering is a main topic
in mechanics; however, to the best of our knowledge, it has not found important applications in
the field of interbank networks (see, however, Wishnick, 2021).

Despite our knowledge on the interbank networks and the mechanism of default contagion,
the development of efficient policies for the reengineering of a network and the elimination of
systemic risk remains a challenge. The propagation of a crisis through the network depends on a
plethora of factors (interconnectedness, capital levels, exposures, etc) which are difficult to take
into account simultaneously and whose evolution and role in a crisis are difficult to predict.

In this article, our precise focus is directed toward reengineering of interbank networks. To
be more specific, we embrace the following scenario. We assume that all the other features of the
network’s infrastructure (interconnectedness, exposures, balance sheet size, deposits, etc.) remain
constant, and we only allow changes to the capital levels of the institutions. This approach has
two advantages. First, it corresponds to realistic situations, especially in short-time scenarios, for
instance, in the case of increase in share capital or intervention of the central bank. Second, it
enables us to develop a theoretical framework for studying the effect of capital increase in the
robustness of the network. (More complicated scenarios involving alteration in several aspects of
the networks seem that can be handled only with computer simulations.)

The problems and questions we examine can be categorized in three directions. First, we are
interested in analyzing how sensitive is the robustness of the network to the capital raise of any
single bank. Second, we assume that some specific target for the stability of the network has been
determined in terms of some index which should be increased to a desirable level. We then study
how this goal can be achieved with the minimum cost in capitals. Finally, suppose that some
increase in capital levels has been determined for the total set of banks. The problem then is to
decide how the new capitals should be distributed among banks so that to achieve the greatest
possible result for the stability of the interbank network.

The rest of the paper is organized as follows. In Section 2, we describe some preliminaries that
are used in the paper. The most important parts are the contagion graph of an interbank network
and the indicators for the robustness of the network. In Section 3, we introduce the liabilities
ordering, which determines the groups of institutions that are “poisonous” for a given a bank
i (in the sense that their failure would lead the bank i to collapse). In Section 4, we study the
sensitivity of the network to the capital raise of each bank. Sections 5 and 6 are devoted to the
study of the changes in the indicators and the contagion graph that follow the capital raise. In
Section 7, we consider in a systematic way the problem of capital raise in an interbank market,
and in Section 8, we illustrate the ideas and techniques of the paper with an example. Finally, in
Section 9, we utilize the concepts presented in the previous sections to formulate a Mixed Integer
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Non-Linear Programming (MINLP) to determine the optimal allocation of new capital between
the banks of the network to ensure its stability.

2. Preliminaries

In this section, we gather and briefly present some fundamental results that we shall use in the
main part of the article. We start with the interbank networks and the mechanism of default con-
tagion. Then, we describe the contagion graph which demonstrates the propagation of the crisis
through the interbank market for all possible initial shocks. Finally, we revise various indicators
measuring the robustness of the network that can be obtained by the contagion graph.

2.1 Interbank networks and default contagion

An interbank market can be depicted as a directed weighted graph. This approach is standard, and
it has been utilized by several researchers (for instance, Acemoglu et al., 2015; Amini et al., 2016;
Cont et al., 2010). More specifically, an interbank market consisting of n banks is described by a
triplet (X, E, C), where X ={1,2, ..., n} is the vertex set of the graph whose elements represent
the financial institutions. Furthermore, C= (¢, c3, . . ., ¢,) is the vector of capitals, that is, ¢; is
the capital of the institution i indicating the ability of i to absorb any losses. Finally, E = (E,-j)lffj:1
is the n x n matrix of bilateral exposures. More specifically, E;; is the value of all liabilities of the
institution j to 7 (in other words, the exposure of i to j) at the date of computation. Therefore, E is
the adjacency matrix of the direct graph, which demonstrates the set of edges as well as the weight
Ejj of the edge from i to j. If E;; = 0, then there is no (direct) edge from i to j. It follows that the
diagonal elements of the E are equal to 0, since banks cannot lend to themselves.

Additionally, if we sum up the ith column of the matrix E, then we obtain the total interbank
liabilities of the bank i. Therefore, the interbank liabilities vector can be defined as L= (L))}, =
(Z};l Eji)i.1 v Similarly, if we sum up the ith raw of the matrix, then we obtain the total interbank

i=
n
assets of the bank i. Therefore, a = (a;)]_, = (Z]'Ll E,]> : is the interbank assets vector.

We now describe the fundamental mechanism of default contagion adopted in this study. We
assume that a subset of banks denoted as A defaults due to their inability to meet legal obligations,
such as servicing loans. While real-world cases involve only a few banks in set A, our abstract
model allows for any subset of X to be A. We are primarily concerned with studying the propaga-
tion of default contagion through the interbank market, rather than the specific causes leading to
A’s default.

The initial shock sets off a chain reaction of defaults: banks in subset A cannot meet their
obligations to creditors in X \ A; hence, any creditor j € X \ A faces losses equal to its exposures
> _ica Eji. At this point, we make some further assumptions, which are realistic, especially in short
run, and they have been used in other studies to investigate the worst-case scenarios. First, we
assume that there is no recovery rate and, therefore, the creditor loses all its interbank assets held
against the defaulted institutions A (see Chinazzi et al., 2015; Gai & Kapadia, 2010). Second, we
assume that the loss of the creditor j is imputed directly to the capital of this bank (see Cont
etal., 2010). Consequently, the capital level of the bank j (and thus its ability to absorb any losses)
becomes ¢j — D ;4 Eji. In the case where the new capital is non positive, that s, if the losses exceed
the initial capital ¢;, then the bank j becomes insolvent. Our third assumption is that insolvent
banks are also considered as defaulted (see Leventides et al., 2019). This is not always the case,
since the bank j may be able to find some liquidity and fulfill its legal obligations. However, this is
extremely difficult as the creditworthiness of the bank has been irreparably affected and j cannot
be funded through short-term debt. Therefore, to analyze the worst-case scenarios, we consider
the insolvent institutions as defaulted.
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Figure 1. The contagion graph for a network consisting of three banks. The left is the graph in the case of zero contagion,
whereas the right one depicts the case of total contagion.

In summary, an initial shock causing the failure of banks can lead to a cascade of defaults as
the shock spreads through the interbank network. In scenarios with limited time, bolstering bank
capital emerges as a reliable strategy for fortifying the interbank market against contagion.

2.2 Contagion map and contagion graph

The phenomenon of default contagion through an interbank network can be modeled with the
so-called contagion map T 2X 50X (see Leventides et al., 2022), where 2% is the powerset of
X (the collection of all subsets of X). Given A C X, the map T returns the set T(A) C X which
contains A and also all the creditors that bankrupt due to the failure of the banks of the set A. By
the description of the mechanism of default contagion, the map T is formally defined as T(A) =
jeXl|jeAor ) .4 Ei>c)

It should be noted that T(A) contains the banks of the set A as well as the banks that fail at
the first stage after the initial shock. The set T(A) may contain new defaulted institutions which,
in turn, create losses to their creditors and a new round of failures occurs. Hence, at the second
stage, the set of defaulted institutions is T(T'(A)) and the propagation may continue in the same
manner. The transmission of the initial shock ends when we reach an equilibrium set of T, that is,
a set V with the property that T(V) = V.

The contagion map T produces a dynamical system on the powerset 2X. The trajectories
{A, T(A), T>(A), ..., T"™(A)} (where m has the property that T (A) = T™(A)) of this dynami-
cal system describe the propagation of default through the interbank market for all possible initial
shocks A. Furthermore, the powerset 2% acquires the structure of a directed graph which has
(directed) edges from A to T(A) for all A € 2X. This is called the contagion graph, and it is different
from the initial triplet (X, C, E) (which is also modeled as a directed weighted graph).

For the contagion map T (and consequently for the contagion graph), there are two extreme
cases denoted by Ty and T). The first one is defined by To(A) = A, forall A € 2% that is, in this
case there is no contagion at all. The corresponding contagion graph has 2" edges of the form
(A, A), for all A €2X. The other extreme case is the total contagion defined by T(A) =X for
all non-empty sets A. Hence, any initial shock promptly results in the complete collapse of the
entire market. The contagion graph consists of the 2" — 1 directed edges (A, X) for all non-empty
sets A. Figure 1 illustrates the contagion graph in these two extreme cases for a network consisting
of three banks.

In general, the contagion graph contains several connected components. Each component has
a single maximal element and various minimal elements. The maximal element is an equilibrium
point of the map T and, therefore, it describes a situation where the contagion ends.
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Because handling subsets is not convenient for calculations, an equivalent formulation of the
contagion map would be desirable. This can be obtained by identifying as usual a subset A of X
with the indicator vector 14 whose entries are zero except those corresponding to the elements
of A which are equal to 1. In terms of the interbank market, 1 means that the corresponding
bank defaults, while 0 implies non-default. Hence, the powerset 2X can be identified with the set
75 = {0, 1}" of all vectors with entries 0 or 1. As a consequence, the contagion map can be seen as
a map from Z5 to Z which associates every vector 14 with the vector 17(4). In this setting, it can
be proved that the contagion map is given by T(14) = g(C — Ej - 14), where Ej is the n x n matrix
which follows from E by replacing the zero diagonal with the vector C of capitals and g: R" — Z}
is the function:

1, x(i) <0;
gx)(i) =
0, x(i)>0.

for any vector x € R” (x(i) denotes the ith coordinate of x).

2.3 The bankruptcy sets

The bankruptcy set of the bank i € X (see Leventides et al., 2020), denoted by Uj, is defined as the
collection of all A C X\ {i} with the following property: if the banks belonging to A default, then
i becomes insolvent. By the description of the mechanism of contagion it follows that:

AeUisieT(A) & Y Ei>c
jeA
Observe that, if A € U; and B is any set with A C B, then B also belongs to the bankruptcy set U;.
Hence, U; has the structure of an upper set with respect to the order of inclusion.

2.4 Quantitative analysis of the network

If the bank i is prone to financial contagion, then it is expected to be seen in the set T(A) \ A for
many A € 2% not containing i. This justifies the definition of the contagion vector as:

V= Z (It —1a) € 7"
Ae2X

Consequently, the smaller coordinates of the above vector correspond to the more robust banks

of the network, while the bigger coordinates indicate weaker institutions. For instance, in the

extreme case Ty of zero contagion, the corresponding vector Vy is zero. On the other hand, in the

case of total contagion Tj, the coordinates of the contagion vector have the maximum possible

value, that is, Vi = (27! — 1) - 1 (where 1 is the vector with all coordinates equal to 1).
Furthermore, from the contagion vector the indicator I; can be defined as:

(V,1)  (V,1)
(Vi, 1) n-@r1—1)

L(T) =

where V1 = (2"7! — 1)1 is the vector in the case of total contagion. The above quantity takes
values between 0 and 1 (in the cases of zero and total contagion, respectively). Roughly speaking,
it measures the stability of the network as a proportion of the corresponding network in total
contagion. The smaller the indicator I;, the more stable the network and vice versa.

Additionally, two other indicators can be defined. The indicator I is related to the capitals that
are destroyed and the indicator I5 to the loans that are not paid back (again as a proportion of the
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network in total contagion). More specifically,

(V,C) (V,C) (V,L) (V,L)

= . L(D)= = :
<V1r C> (2n - 1) (]-X’ C) (Vl’ L) (2n - 1) <1Xr L)

The quantities take also values between 0 and 1, and smaller values indicate more stable networks.

Finally, the indicator m = zf—n can be defined, where f denotes the number of equilibrium
sets (or fixed points) of the contagion map T. These are the sets A C X with the property that
T(A) = A. Their importance stems from the fact that they are the points where the propagation
of an economic crisis eventually stops. There are at least two fixed points (the sets ¥ and X).
Consequently, the indicator m takes values between 2,,%1 and 1. The higher the index, the more

stable the network, since there are a lot of fixed points.

L(T) =

3. The liabilities ordering on the set 2X\!/}

When any bank i of the network increases its capital, it is expected that i will become more robust
and the whole network more resistant. However, the capital of i must exceed a certain threshold
to produce tangible results. More generally, not all capital increases have the same effect. There
must be various thresholds, and each time the capital exceeds one of them better results should be
observed. The present section captures this intuition in a more rigorous context by introducing a
suitable ordering.

Henceforth, let i € X be a bank of the network. The sets A € X \ {i} which are “poisonous” for i
(in the sense that the failure of the banks of A would make the bank i be insolvent) are those with
the property: Zje 4 Eij > ci. The quantity Zje A Eij (representing the total liabilities of the banks
of A toward i) plays a major role in the analysis of default contagion, and it will be denoted by r4.
Since E;; > 0 for any (i, j), it follows that r4 < rg whenever A C BC X\ {i}.

We now introduce a binary relation on the set 2\ (the collection of all subsets of X \ {i}) as
follows: for any A, B € 2X\li},

A<y B&=rq <rp.
As usual, for any A, B € 25\ we also define
A<iB<—=A=BorA<yB<= A=Borry <rsg.
Theorem 3.1. The relation < is a partial order on the powerset 2X\11},

Proof. By its definition, it follows that the binary relation <y, is reflexive, antisymmetric, and
transitive. Hence, it is a partial order.

The order <; is called the liabilities ordering on 2X\1}, Clearly, this set has also a natural partial
order induced by inclusion. Since r4 < rp, for A C B, the next proposition follows immediately.

Proposition 3.2. Forany A,B € 2X\i} if A C B, then A <y B. The converse is not necessary true.

Remark 3.3. The liabilities ordering <7 is not a linear order on the set 25\, Indeed, we may have
A # Band yet ry = rp, in which case the sets A, B are <;-noncomparable. However, for any value
r there are only finitely many sets A € 2X\(!} such that 4 = r. Consequently, it is possible to turn
< into a linear order by considering (for any value r) a linear ordering of the finitely many sets A
such that r4 = r. There is no unique way to do this. Nevertheless, the exact definition of the linear

order is not essential for our purposes. For this reason, we refer to <y, as a linear order on the set
2X\(i}

The liabilities ordering classifies the elements of 2X\(} in a linear order. Recall that the cardinal-

ity of 2X\17 is equal to 2" 1. Therefore, the sets belonging to 2X\{ can be enumerated as {4 }jz;l ,
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such that Ay =0, Ayn1 =X\ {i} and
A1 <1 A2=<1...ZLAj <1 Ajt1 =0 .. LA,

that is,

n
OerlfrAz§~~~§7’Aj§rAj+1f---SrAzn,l: E E,]
j=Lj#

The intervals {(rAj, TA; +1]}f:ll_1 (except those which may be empty) and (rAzn_l,oo) define a

partition of the set (0, 00) of positive real numbers. The next proposition shows that the num-

bers (rAj)jzil1 quantify the initial intuition as discussed at the beginning of this section. Hence,
they demonstrate the levels that the capital ¢; of the bank i needs to go through for network
improvements to occur.

Theorem 3.4. If the capital c; assumes values only within the interval (ra, ra,, |, then the indicators
I, I3, m remain constant.

Proof. The indicators I, m depend actually on the contagion map T, while I3 depends on T and
the liabilities vector L. Since, L does not change, it suffices to prove that T remains constant when
ci assumes values within the interval (r4,, 74,,,]. The map T, in turn, depends on the exposures
matrix and the capital vector and, more precisely, it is determined by the relation of Zje A E¢j with
ce for all 1 <¢ <nand A C X. Because the matrix E and the capitals of the other banks remain
constant and ¢; does not cross the thresholds r4, and r4,  ,, it follows that T remains the same. |

In particular, when the capital levels cross some threshold, then any further increase does not
contribute to the stability of the interbank network.

Corollary 3.5. In the case where ¢; > 14, | = Z.# Ejj, then any further increase to the capital of

7
the bank i does not contribute to the value of the indicators.

on—1

Remark 3.6. The indicator I, is particularly sensitive to variations in the capital vector C.
Consequently, even a slight augmentation in the capital of the bank i can induce alterations in
the I value. However, if the capital ¢; falls within the range of (ra,, 74, +1]’ the contagion map T
and the contagion graph remain unaltered. This signifies that, despite capital increments, the bank
i remains subject to identical risk exposures. Thus, it is reasonable to assert that while the I, value
may fluctuate, it doesn’t lead to an enhancement in network stability.

Finally, the liabilities ordering determines the bankruptcy set U; as the next proposition
demonstrates.

Proposition 3.7. Assume that the capital c; falls within the interval (ra, A, |. The bankruptcy set

U; of the bank i coincides with the final segment of the linearly ordered space (2*°\U}, <1 ) consisting
of the sets Agy1, . . ., Ayn-1, that is,

Ui={Aks1>---» Apnr } .

Proof. The bankruptcy set U; consists of the sets A € 2%\ guch that ZJ-G A Eij>ci thatis, r4 > ¢;.
These sets are exactly the sets Agiq, ..., Ampm-1. U

4. Analysis of the sensitivity of the network in the capital raise of a bank

It is reasonable to anticipate that capital increases in different banks will have varying impacts on
the network’s stability. The capital increase of bank i might exert a more significant influence on
the network compared to bank j. In essence, the interbank market might exhibit varying degrees of
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sensitivity to different banks. This section introduces an index designed to quantify this sensitivity
concerning the capital increase of each individual bank.

Let i be any bank of the network and let A; <p Ay <p...<p Az»_; be the liabilities ordering
of the corresponding set 2X\i Assume also that the capital ¢; falls within the interval (r4,, 74, ].
The value r4,, signifies the minimum capital level that needs to be exceeded (at least by one unit)
for an improvement in network stability to become evident.

If I is any of the indicators Iy, I, I3, the next quotient can be considered:

Al L—L

AM_ ok (4.1)
Ac  rp,+1—q

where I, is the initial value of the indicator and I; is its value when the capital ¢; of the bank
i increases to ¢ =ra,, + 1. In the case of the indicator m, however, the increase in the capital

of i implies that the stability of the network improves; thus, the value of the indicator is bigger.
Am __ __mc—m
Ac — rAk:l +lici :

The quotient of Equation (4.1) quantifies the extent to which network stability improves in
relation to the bank’s minimum capital increase. Consequently, it provides a measure for the sen-
sitivity of the network to the capital increase of the bank i: the bigger it is the more sensitive if the
network. For this reason, it is called the sensitivity index to the bank’s capital increase in terms of the
indicator 1. Furthermore, these numbers can also serve as an index for assessing the importance
of each bank i to the entire network.

Consequently, the corresponding quotient should be

5. Indicators of the stability of the network as functions on the vector of capitals

Let I be any of the indicators for the stability of the network described in Section 2. Since we
have assumed that all the other features of the interbank market remain constant and we are
allowed to modify the capital levels, the indicator I becomes actually a function of the vector
C=(c1,¢2,...,cy) of capitals:

Ri—)R

(], 6. )= I(c, 65, ... ).

Since the computation of the indicators is based on the contagion graph, either directly or
through the contagion vector, the above function is actually decomposed as a composition of two
functions. The first one is a function with domain R”, it takes values in the set of all contagion
graphs and it assigns to each capital vector C = (c}, ¢}, . . . ¢i) the contagion graph which corre-
sponds to the network (X, C, E). The second one is the function that assigns to each contagion
graph the corresponding value of the indicator I.

C = (c,¢5,...c;) — contagion graph

\ l *

I(ci,c5,...c)

We next argue that the above function takes only finitely many values. Indeed, let i be any bank
of the network andlet A; <y A, <p ... <p Ayn_; be the liabilities linear ordering of 22X\ Assume
also that TAg ) <CiSTA- By Section 3, we know that TAg> TAg 1> - - - TApn_, are the thresholds
that the capital of the i bank should cross so that to observe some improvement in the stability
and robustness of the network. It has also been justified that if ¢} takes any value in the interval
(rAj, TAj1 ], then the contagion graph remains the same and thus the stability of the network does
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not change. In other words,

I, s oo ) =10, G e 5 G e s G,

for any ¢}, ¢ € (rAj, A ]. Consequently, if we change only the ith coordinate of the vector of
capitals, then the indicator I(c}, c3, . . . ¢j;) can assume at most 2" — k; different values.

The above remain valid for any bank i€ X ={1, 2, ..., n}. It follows that there are in total
[TiL; (2" — k;) possible combinations of bank capital raise which may affect the value of the
indicator I. Consequently, the indicator I takes finitely many values (at most [, (2" — k;)).
Each value corresponds to some of the H?:l (2" — k;) different scenarios for bank capital raise.
Therefore, we have proved the following Proposition.

Proposition 5.1. There are [[iL, (2" —k;) different scenarios for the raise of the capital levels
of the banks belonging to network. Therefore, each indicator can take only finitely many values
(TTL, 2" — ki) at most).

As aresult, although ¢;, i =1, . .., n are continuous variables, we are only interested in finitely
many discrete changes of them.

6. The lattice structure on the set of contagion graphs

Suppose that all characteristic features of the interbank network remain constant and only capital
levels are increased. By the previous section, it is clear that there is a finite number of scenarios that
can occur. These scenarios can be parametrized by finitely many points of R”, namely the points
belonging to the lattice £ = ]_[;':1 Si, where S; is a finite subset of N, namely §; = {0, 1,2, ...,2" —
ki}. For instance, the point (1,0, ..., 0) corresponds to the scenario where all banks keep their
capital levels constant except the first one which increases its capital so that to cross the threshold
74y, - Similarly, (2,0, ..., 0) means that the first bank increases its capital so that to surpass the
second threshold, etc. Of course, in the case of the scenario (0,0, ..., 0) no change is applied to
the capitals of the banks.

Each scenario d =(dy,da, . . ., d,) € L generates a triple (X, Cy, E), where C; stands for the
capital vector of the banks in the scenario d. This triple, in turn, creates a contagion graph, which
we denote by G;. (Note that G(g, o) coincides with the initial contagion graph.) Therefore, we
have a set whose elements are the contagion graphs for all possible scenarios:

& ={Gy|de L}

and our purpose is to study the structure of this set.
To this end, we define on & the relation <g as follows:

Gy <& Gd/ < Fix(Gy) C FiX(Gd/),
where Fix(G,) stands for the set of fixed points of the graph.
Proposition 6.1. The map

L—>&

d— Gd
is order-preserving.

Proof. Let d < d’ be elements of L. We denote by (X, Cy, E), where Cy = (¢}, ¢5, ..., c}), and Ty
the interbank network and the contagion map corresponding to the case of scenario d. Similarly,
(X, Cy, E), with Cy = (ci/5cd!s...,¢,) and T are the network and the contagion map for the
scenario d'.
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Since the order in £ is defined pointwise, d <d’ implies that d; <d; for any i=1,2,...,n.

Therefore, ¢ <¢; for any i=1,2,..., n. The proof now is intuitively obvious, since in the case
of scenario d’ the banks possess more capitals and, hence, they are more resilient to default
contagion.

More formally, let A be a fixed point of the contagion map T,. This implies that T;(A) = A.
Consequently, for any j ¢ A, one has ) ,_, Eji < ¢;'. It follows that Y ica Eji < ¢/ and, hence, j ¢
Ty (A). Therefore, T p (A) C A. Since, the other inclusion holds true, we have that T p (A) = A, that
is, A remains a fixed point for the contagion graph G ;. U

Corollary 6.2. The set & of all possible contagion graphs with the relation <g, which is defined in
terms of the set of fixed points, becomes a lattice. In particular, this set inherits the lattice structure

of L.

7. Asystematic approach to networks reengineering

In this section, we present a systematic way for reengineering interbank networks. The ulti-
mate purpose is to increase the robustness of the network and to strengthen its resilience against
systemic risk. As we have commented earlier, the balance sheet size of the banks belonging to net-
work contain several factors that could be changed (e.g. capitals, liabilities, assets, deposits, etc.).
However, in short-time scenarios, the increase of capital levels appears to be the most reliable
and effective method. Therefore, we adopt the assumption that the other factors remain constant
and we examine in which ways the capitals should be altered so that to achieve lower levels of
vulnerability.

To assess the robustness of an interbank network, we may utilize several indicators (see
Section 2). These indicators take values between 0 and 1. The closer to 1 they are, the more robust
the network is and vice versa.

We now consider two kinds of problems related to networks reengineering. The first one is fig-
uring out the optimal way for achieving a specific goal of robustness (we use some of the indicators
as a measure of robustness) and at the same time to keep the capital increase as low as possible.
The second problem, which could be thought of as the dual to the first one, is to consider a fixed
total capital raise and find how this should be allocated among banks so that the optimal increase
of some indicator would be achieved. Our approach to each problem comprises of three steps that
are briefly described below.

7.1 Problem I: Increase the robustness with the minimum cost

In this approach, we seek to reach some predefined improvement of the network given that the
capital raise should be the less possible. Therefore, we have the following three steps.
Step 1: Measurements and network evaluation. The first step involves the evaluation of the inter-
bank network at a particular stage. The supervisors of the network examine the balance sheet size
of each bank. Capital levels, liabilities, and assets are measured. The contagion graph can also be
constructed showing the development of a crisis through the interbank market for all possible
scenarios of initial default. Finally, the indicators are calculated and the network is evaluated for
its robustness and resilience to systemic risk.
Step 2: Setting the goal. The supervisors and policymakers may observe that the indicators are
not satisfactory and some criteria are not met. This implies that the network is weak or it has some
weak points. Consequently, they may decide that specific proactive actions should be taken. In this
work, we only examine the capital raise of each bank.

At this stage, a specific goal should be set. For instance, the supervisors should agree on a
specific value a € (0, 1) for the indicator I that has to be met.
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Step 3: Capital raise. After the goal has been set, the best method for achieving it has to be found.

This translates into the following problem that has to be solved. Find the capitals (], c3, .. ., c};)
such that
I(c], &5 ..., c) <a (orm(c],c5,...,c;) > afor the indicator m) (7.1
(¢}, 655 .5¢) > (c1,€2,...,¢y) in the pointwise sense (7.2)
n
minimize Z . (7.3)
j=1

7.2 Problem II: Increase the robustness with respect to a specific capital raise

In this approach, we seek to find the optimal improvement of the network given that a total capital
raise has been decided for the set of banks. We have again three steps.

Step 1: Measurements and network evaluation. The network should be evaluated as in the
previous problem.

Step 2: Setting the goal. A total capital raise should be agreed for the set of banks. This means that
we will have new vector of capitals C = (¢}, ¢3, ..., c}), such that ¢; < ¢ forevery i=1,2,...,n
and )| ¢f = A, where A is a constant representing the new total capital of the interbank market.
Step 3: Capital raise. Finally, the following optimization problem has to be solved. Find the

capitals (c, ¢3, . . ., ¢;;) such that
ci<cf foreveryi=1,2,...,n, (7.4)
n
> =4 (7.5)
i=1
minimize the indicator I (or maximize the indicator m). (7.6)
7.3 Algorithm

At this stage, we present an algorithm for addressing the above problems. The algorithm contains
the next steps.

Step 1: The first step is to measure the characteristic features of the interbank market at a partic-
ular stage and to depict the contagion graph showing the progression of a crisis for all possible
initial defaults. Additionally, the indicators should be calculated which provide a measure of the
network robustness.

Step 2: For each bank i, we place in ascending order the potential losses that may be created from
other banks. This contains the loan levels r4 = Zje A Eij forall Ae 2X\# A chain of losses is
created as follows:

ra,

TA,

rAzn—l

Then the capital level ¢; is placed within this chain of losses in order to evaluate the minimum
raise in capital levels that has to be made for the network to be resilient in case of a systematic
shock:

https://doi.org/10.1017/nws.2023.21 Published online by Cambridge University Press


https://doi.org/10.1017/nws.2023.21

52 ]. Leventides et al.

rA,

TA,

rAznfl

The condition that suffices higher network robustness is that each time the capital levels ¢; of each
bank should surpass by 1 the elements of the chain. To decide upon the optimal strategy, that will
provide such a robustness, the minimum capital raise each time for ¢; should be as least as the
value of the next chain element in order and a bit more. In other words, if ra; < Ci=Taj, then the
new capital level ¢f =r4,,, + € for € relatively small.

Step 3: The next step is the new Boolean graph of the network to be created and the new values of
the indicators that measure network’s resilience or robustness to be computed.

Step 4: The previous steps create actually a map which assigns to every possible combination of
(discrete) capital raise the contagion graph of the network and the values of the indicators after the
capital raise has been realized. Therefore, a pivot table can be created with all possible scenarios
and indicators, in which the supervisors could allocate the optimal solution according to their
needs.

8. Applications

To illustrate the ideas and techniques of the previous sections and depict the aforementioned
approach, the following example has been created. In this example, the indicator that measures
network’s robustness is the number of fixed points in the contagion graph.

Let an interbank network with n = 3 banks where the capital vector and the exposures matrix
are given as follows:

0 7 4
C=(10,8,4) E=|9 0 0

3 20

The interbank network is depicted in Figure 2.
Step 1: The initial Boolean graph of the previous network is formulated and the number of fixed
points is determined. The contagion graph is shown in Figure 3 and the total number of fixed
points is 4.

The contagion vector is computed easily and it is V = (1, 2, 1). Hence, the values of the indica-
tors can be derived. Let us use the indicator I, which is related to the capitals that are destroyed.
One has
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1[10]

AN

218] Sk

Figure 2. The interbank network of the example consisting of three banks. The numbers in brackets correspond to the
capitals of the banks. The weights on the edges of the graph correspond to bilateral exposures.

O O WD
(0,1,0) (0,0,1)
[0’;0'0) (1,1,0) 0

(0,1.1) EREY

(10,0
Figure 3. The contagion graph corresponding to the interbank network of the example.
(V,C)

L= ~ 0, 45.
T2 (atata)

Step 2: The chain of losses for each bank is created and the corresponding capital levels are

compared.
Bank 1 Bank 2 Bank 3
4 8 — 2
7 9 3
10 — 5
11 5 —

Step 3: The new contagion graphs are created taking into account each time the necessary capital
raise for each bank. Several scenarios have to be addressed. In this particular example, there are
2 -2 -2 =8 different scenarios.
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Step 4: The pivot table of this example is the following:

A/N | Initial Capital | Fixed |Indicator| Sensitivity = |Sensitivity of I,
scenario |capital Scenario raise |points| I Raig:p?fﬁ’;:ifff L C a}')ﬁafl_rif‘s‘e‘ I

0 22 No capital raise - 4 0.45 - -

1 22 =9 1 6 0.19 2/2=1 0.13
2 22 =11 1 5 0.28 1/2=0.5 0.085
3 22 =5 1 5 0.38 1/2=0.5 0.035
4 | 22 G=11,¢=9 2 | 7 | 005 3/3=1 0.133
5 22 =11, =5 2 6 0.21 2/3~0.67 0.08
6 22 =9,¢5=5 2 7 0.13 3/3=1 0.107
7 2 |¢=11,=9c¢=5 3 8 0 4/4=1 0.112

As we can see, the initial value of the indicator I is 0.45 which is rather large. If we wish to achieve
I, <30% with the minimum capital raise, then there are two choices represented by scenarios:
1 and 2. However, the table shows that scenario 1, that is, the capital raise of the second bank,
gives the best results. Similarly, in order to achieve I, <20%, then we should again follow the first
scenario. However, for I < 15%, the possible scenarios are 4 and 6, with the fourth scenario giving
the best result.

On the other hand, if total capital raise equal to 1 has been decided, the optimal scenario is the
first one, while for capital raise equal to 2 the best choice is the fourth scenario.

Finally, the table (as well as the above discussion) reveals that the network is very sensitive to
the capital raise of the second bank. This can be seen by the last column as well as by the fact that
the bank 2 participates in the two best scenarios (which are the first and fourth ones).

8.1 The Lattice structure on the set of contagion graphs

For the interbank network of the example, there are totally 2° = 8 contagion graphs corresponding
to all possible combinations of capital raise of the banks. We denote this graphs by Gs where
8 = (81,82, 83) € {0, 1}>. Thus, §; = 1 means that the capital of the bank i increases. According to
the results of Section 6, if § < § (in the pointwise sense) then the set Fix(Gs) of fixed points of G
is contained in the set Fix(Gjs’).

The set & of all contagion graphs inherits the partial order:

Gs <@ G(S/ & Fix(Gs) € FiX(G(S/).

This set becomes a lattice isomorphic to the lattice £ = {0, 1}°. This lattice is depicted in Figure 4.

9. An optimization model for reengineering interbank networks

The problem of reengineering interbank networks, as described in Section 7, is a problem that con-
cerns how to conduct and coordinate the operations (i.e. distribution of new capitals) within an
organization (i.e. an interbank market). Additionally, it is a case where conflicts of interest among
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Figure 4. The lattice of contagion graphs.

the components of the interbank network may arise. However, policymakers and regulators of
the interbank network are interested in a best possible course of action, which is the ideal for the
market as a whole.

Consequently, the problem of reengineering interbank networks can be clearly considered as a
decision-making problem. In fact, the problem of analyzing interbank payments has already been
studied in the context of Operational Research since 1998 (see Guntzer et al., 1998). Subsequent
approaches include the studies Elsinger et al. (2006), Shafransky & Doudkin (2006), Cohen-Cole
et al. (2015), Chen et al. (2016), and Torri et al. (2018). Most of these studies model interbank
payments by means of networks and employ heuristics to determine the best possible course of
action, which is ideal for the market as a whole.

The purpose of the present section is to formulate the problem as a decision-making problem
in terms of operations research and, then, to apply methods of (nonlinear) programming to obtain
the optimal allocation of new capital in the system. As a result, more realistic applications (than
the one described in Section 8) can also be addressed.

9.1 Formulation in terms of Operational Research

The mathematical model describing the interbank market has been extensively analyzed in previ-
ous sections. Hence, we can now proceed with the formulation in terms of Operational Research.
To be more specific, we consider the problem described in Section 7.2. Therefore, we assume that
a predefined capital raise has been agreed, and the objective is to find out how this new capital
should be delivered between the banks of the market. The problem has the parameters shown in
Table 1.

Furthermore, the variables of the problem are as follows:

IC; : new (increased) capitals at bank i
1, ifbanki defaults because of bank j at stage s of the process;
Tsij=
0, otherwise.

The objective of the proposed model is to determine optimal values for the new capitals IC;
such that the contagion effects are minimized. The model is formulated as follows:

https://doi.org/10.1017/nws.2023.21 Published online by Cambridge University Press


https://doi.org/10.1017/nws.2023.21

56 ]. Leventides et al.

Table 1. Parameters of the problem

N Number of banks in the mterbank network
Ej The l|ab|l|ty ij toward/
@ Capltal ofthe /th bank

R Avallable new capltals for supportlng the system

c Z [(Ci +ICi) - ZTNU
minimize Z= >

> (Ci+IC)
subject to:
Tsij=1 foralls, i,j with i=j (9.1)
(G +IC)
Tij> U— for all i, j with i # j (9.2)
Ej— (Ci+IC;
Ty <1+ B — (G +IG) for all 4, j with i # j (9.3)
> ki En
T i — (Ci +IC;
TS,JEZk (ks - B = (G l)—f—e foralls,i,jwiths> 1 andi#j (9.4)
2 ki Eu
Tis— C+1IC
Tsij<1+ 2 Ty B = (G 2 foralls,i,jwiths > 1andi#j (9.5)
> k) Exi
Y ICi<R (9.6)
i
IC;>0 for all i (9.7)
Tsij€{0,1} forall s, i, j (9.8)

The objective function expresses the index of lost capitals, initial and new ones, due to the failure
of banks and the possible contagion effects throughout the whole network.

Constraints (9.1) ensure that at each stage s of the default process, the elements along the main
diagonal of the matrix T, are equal to 1, reflecting the default of bank i. Constraints (9.2) stipulate
that at the initial stage of the default process, when the exposure of bank i to bank j exceeds the
capitals available at bank i, then the variable T ;; is equal to 1, indicating that bank i also defaults as
a result of the failure of bank j. Note that 0 < € < 1 is a small positive number. More specifically,
when Ej; > C; + IC;, then Ty ;; > 0, which forces T1,;; = 1. On the other hand, constraints (9.3)
ensure that when the total capitals of bank i are sufficient to cover its loans to j, namely when E;; <
Ci + IC;, then T ;; < f < 1, which forces T1,;; = 0. Similarly, constraints (9.4) and (9.5) determine
the values of variables Ty ;; for i # j at each stage s of the process, taking into account all banks that
may have defaulted at stage s — 1. Hence, constraints (9.2) to (9.5) describe the contagion effects
throughout the network due to possible defaults. Constraint (9.6) expresses the restriction in the
availability of new capitals to support the network. Finally, constraints (9.7) and (9.8) express the
nature of the variables.

The model is a MINLP model due to the objective function. It was implemented within the
AIMMS modeling platform which is essentially a programming environment for developing and
solving optimization problems under constraints. The model is solved using the standard Outer
Approximation Algorithm (OAA), introduced by Duran and Grossman (1986), which is available
within AIMMS (2023).
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9.2 Computational experiments

The model was tested on a series of randomly generated instances with 20 or 80 banks in the
system. The values of the loans E;; were generated such that the total loans issued by each bank
sum up to twice its initial capitals with a standard deviation of 10%. The number of loans issued
by each bank was also randomly selected such that the density of the whole table is around 10%.
Finally, the values of a randomly generated set of loans were artificially increased to ensure that
contagion effects are created in the system.

Concerning the available new capitals for supporting the system (parameter R), we experi-
mented with different values ranging from 10% down to 3% of the value D = SL-SC, where SL is
the sum of loans issued by all the banks in the system and SC the sum of their initial capitals.

We applied the OA Algorithm in its default settings, with a maximum of 10 iterations. At
this stage, we did not experiment with different settings of the OAA parameters such as different
multi-start strategies or penalty functions, since our objective was to investigate whether the pro-
posed approach can be used to model contagion effects in realistic bank networks. In all instances,
the OA Algorithm was able to converge to solutions that kept the contagion effects under control
given the restricted availability of new capitals.

Indicatively, in Table Bl of Appendix B we present the solutions given by the algorithm in
a randomly generated instance with 80 banks. Columns (2) and (3) of the table show the initial
capital and the total loans issued by each bank, respectively. Columns (4)-(6) show the allocation
of new capitals in the system to alleviate contagion under the three scenarios mentioned earlier.

These results indicate that the banks that should be supported by the increased capital are
primarily the ones having relatively small initial capitals and whose total loans are more than twice
the level of these initial capitals. On the other hand, banks with sufficiently large initial capitals do
not seem to be requiring assistance even when they have large total loans that are distributed over
many other banks. These results make sense from a practical point of view and further support
the validity of the model and its applicability in realistic situations.

10. Conclusions

In Leventides et al. (2020) and Leventides et al. (2022), a framework for the study of default con-
tagion in an interbank market has been established. In this framework, the interbank market is
represented by a directed weighted graph (X, C, E) and the contagion of a financial crisis is stud-
ied with tools from pure and applied mathematics, such as dynamical systems, Boolean networks,
and linear operators. Through this investigation, several indicators have been developed whose
purpose is to assess the robustness of the interbank network and its resilience to default conta-
gion and systemic risk. These indicators combine many characteristic features of the network, for
instance, capital levels, bilateral exposures, interconnectedness, leverages, fixed points, etc.

The purpose of the present work, which is a natural continuation of the previous research,
is to use the aforementioned framework in order to investigate methods for reengineering inter-
bank networks. The aim is to enhance the stability of the network and its ability to absorb losses or
shocks that may occur. In this paper, we assume that the capital levels of the banks are raised, while
the bilateral exposures of the banks and other features remain constant. Then, we first develop a
theoretical framework in order to (a) study how the capital raise affects the stability of the network
and its resilience to systemic shocks and (b) investigate how the reengineering of the network
should be designed to achieve the best possible results. Future works may also investigate reengi-
neering of the networks in terms of bilateral exposures while the capital levels remain constant, or
a combination of capitals and exposures may also be considered.

Based on this theoretical framework, we also develop a MINLP model whose objective is to
optimally determine the allocation of the new capitals such that the contagion effects are mini-
mized. We tested the model on several artificially generated instances involving up to 80 banks,
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which is a reasonable number in realistic applications. The results indicate that the overall frame-
work may indeed be utilized to analyze the stability of real interbank networks and assist the
relevant policymakers and regulators to determine optimal policies.

This work may be extended in several ways. First, the model may be viewed in a dynamic
setting, where bank defaults may occur in different time periods, and decisions to allocate new
capitals are also taken dynamically, according to the evolution of the default process. Second, it
may be worth investigating how the solution method of the MINLP model may be improved to
obtain optimal solution times in shorter computation times or in larger instances. Finally, the
optimization model may be extended in a multi-objective setting to include the simultaneous
analysis of more than one performance indicator that describe different aspects of the stability of
the network.
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Appendix A: Contagion graphs of the scenarios

In this appendix, we present the contagion graphs of the several scenarios examined in the
example of Section 8.

Scenario 1: ¢5 =9 (Figure Al).

> o/

(100 L0 ;100 °(0,1,1)

Figure Al. The contagion graph G(g 1 o) corresponding to the scenario ¢; = 9.
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Scenario 2: ¢ = 11 (Figure A2).

ol e R
(0,0,0) (0,0,1)

£(1,1,0) Q1.01)

0
(1,0,0)

Figure A2. The contagion graph G, o) corresponding to the scenario ¢} = 11.

Scenario 3: ¢ =5 (Figure A3).

Q Q ‘1'1 (1,
(0,0,0) (0,0,) :

(190,00  (1,03) ©(0,1,1)

Figure A3. The contagion graph Gg o,1) corresponding to the scenario ¢§ = 5.

Scenario 4: ¢f =11, ¢; = 9 (Figure A4).

Figure A4. The contagion graph G(; 1 ) corresponding to the scenario ¢; = 11,¢5 =9.
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Scenario 5: ¢f =11, ¢§ = 5 (Figure A5).

Q Q (1,1 11,1@
(0,0,0) (0.1,0)
(0,1,1)
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~

_—
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Figure A5. The contagion graph G(; o 1) corresponding to the scenario ¢} = 11, ¢} =5.

Scenario 6: ¢; =9, ¢; =5 (Figure A6).

O O >
(0,0,0) (0,0,1) }

() () e
(1,0,1) (1,1,0)

Figure A6. The contagion graph G(g 1 1) corresponding to the scenario ¢; =9, ¢§ =5.

Appendix B: Table of solutions in an interbank market with 80 banks

Table B1. Solutions for an interbank network with 80 banks

Scenario 1 Scenario 2 Scenario 1
Bank Initial capital Loans (10% of D) (5% of D) (3% of D)
(1) () @3) (4) (5) (6)

1 43 38 0.0200

2 12 70 8.4649 8.4649 8.4860

3 10 20 0.0200
4 25 20 0.0200
5 37 48 0.0200
6 12 20 0.0200
8 13 48 7.4649 7.4649

9 45 94 0.0200
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Table B1. Continued.

Scenario 1 Scenario 2 Scenario 1
Bank Initial capital Loans (10% of D) (5% of D) (3% of D)
(1) () 3) (4) (5) (6)

10 15 22 0.0200

11 35 198 15.4649 15.4649 15.4849
12 40 76 0.0200
13 48 120 0.0200
14 54 104 0.0200
15 20 22 0.0200
16 24 24 0.0200
17 65 128 0.0200
18 34 82 0.0200
19 73 122 0.0200
20 51 58 0.0200
21 25 58 0.0200
22 24 40 0.0200
23 30 54 0.0200
24 47 92 0.0200
25 13 12 0.0200
26 17 20 0.0200
27 10 6 0.0200
28 50 80 0.0200
29 12 98 8.4649 8.4649 8.4860
30 15 96 5.4649 5.4649 5.4856
31 62 164 0.0200
32 23 36 0.0200
33 29 101 6.4649 6.4649 6.4857
34 12 14 0.0200
35 42 52 0.0200
36 14 14 0.0200
37 25 44 0.0200
38 10 26 10.4649 10.4649

89 29 36 0.0200

40 40 82 0.0200
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Bank Initial capital

(1)

)

Loans

®3)

Scenario 1
(10% of D)
(4)

Scenario 2
(5% of D)
(5)

Scenario 1

(3% of D)
(6)

41
42
43

44

45

46
47

48

49

50
51
52

58

54

55
56
57

58

59

60
61
62

63

64

65
66
67
68
69
71

72

20
45
14
10
12

15

10

19
10
37
27
26
11
54

48

30

31

70
19
47
34
39
50
21

40

40

12
24
42

20

29

66

74

20

36
40

20

38

20
16

94

54

28

12
142

80

66

66

150
20 J
60
72
76
70
40

56

54

10

78

48

40

10.4649

0.4649

5.4649

8.4649

12.4649

10.4649

136

0.4649

12.4649

0.4849
0.0200

0.0200

5.4649

8.4649

0.0200
2.4649
0.0200
0.0200
0.0200
0.0200

0.0200
0.0200

0.0200

0.0200
0.0200
0.0200
0.0200
0.0200
0.0200
12.4865
0.0200
0.0200

0.0200
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Table B1. Continued.

Scenario 1 Scenario 2 Scenario 1
Bank Initial capital Loans (10% of D) (5% of D) (3% of D)
(1) () 3) (4) (5) (6)

73 15 62 5.4649 5.4649 5.4856
74 37 46 0.0200
75 46 40 0.0200
76 20 36 0.0200
7 63 16 0.0200
78 37 72 0.0200
79 36 48 0.0200

80 23 60 0.0200

Cite this article: Leventides J., Poulios C., Livada M. and Giannikos I. (2024). Reengineering of interbank networks. Network
Science 12, 41-64. https://doi.org/10.1017/nws.2023.21
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