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Abstract
In this paper, we completely resolve the well-known problem of Erdős and Sauer from 1975 which asks for the
maximum number of edges an n-vertex graph can have without containing a k-regular subgraph, for some fixed
integer 𝑘 ≥ 3. We prove that any n-vertex graph with average degree at least 𝐶𝑘 log log 𝑛 contains a k-regular
subgraph. This matches the lower bound of Pyber, Rödl and Szemerédi and substantially improves an old result of
Pyber, who showed that average degree at least 𝐶𝑘 log 𝑛 is enough.

Our method can also be used to settle asymptotically a problem raised by Erdős and Simonovits in 1970 on
almost regular subgraphs of sparse graphs and to make progress on the well-known question of Thomassen from
1983 on finding subgraphs with large girth and large average degree.
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1. Introduction

The problem of finding regular subgraphs in graphs has a very long history. Note that finding a 1-regular
subgraph is the same as finding a matching. One of the oldest results of graph theory is Petersen’s
theorem from 1891 [24], which states that every cubic, bridgeless graph contains a perfect matching.
The celebrated Hall’s theorem [17] gives a necessary and sufficient condition for a bipartite graph
to have a perfect matching, while Tutte’s theorem [29] gives such a condition for an arbitrary graph.
Later, Tutte [30] found a necessary and sufficient condition for a graph to contain a k-regular spanning
subgraph and, more generally, for it to contain an f -factor – that is, a spanning subgraph in which each
vertex v has degree 𝑓 (𝑣).

The problem of finding general, not necessarily spanning, regular subgraphs was also extensively
studied. In 1975, Erdős and Sauer [14] asked the following natural extremal question. Given a positive
integer k, what is the maximum number of edges that an n-vertex graph can have if it does not contain

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fmp.2023.19 Published online by Cambridge University Press

doi:10.1017/fmp.2023.19
https://orcid.org/0000-0002-7274-0396
https://orcid.org/0000-0003-3307-9475
mailto:oj224@cam.ac.uk
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fmp.2023.19&domain=pdf
https://doi.org/10.1017/fmp.2023.19


2 O. Janzer and B. Sudakov

a k-regular subgraph? The problem also appeared in Bollobás’s book on extremal graph theory [7]
and in the book of Bondy and Murty [9]. Later, Erdős [16] mentioned this as one of his favourite
unsolved problems. Let us write 𝑓𝑘 (𝑛) for the smallest number of edges which guarantees a k-regular
subgraph. Trivially 𝑓2 (𝑛) = 𝑛, but already for 𝑘 = 3, the answer is unclear. Erdős and Sauer observed
that 𝑓3(𝑛) = 𝑂 (𝑛8/5) follows from the known upper bound for the Turán number of the cube [15] and
suggested that 𝑓𝑘 (𝑛) ≤ 𝑛1+𝜀 for any fixed 𝜀 > 0 and sufficiently large n.

A very influential algebraic technique to find regular subgraphs was developed in the early 1980s by
Alon, Friedland and Kalai. In [4], motivated by a conjecture of Berge and Sauer, they showed that any
4-regular multigraph plus an edge contains a 3-regular subgraph. Alon, Friedland and Kalai [5] also
proved several results which state, roughly speaking, that nearly regular graphs have regular subgraphs
with not too small degree. One of these results, together with an ingenious argument, was used by Pyber
[25] in 1985 to show that indeed 𝑓𝑘 (𝑛) ≤ 𝑛1+𝜀 . More precisely, Pyber proved that any n-vertex graph
with average degree at least 𝐶𝑘 log 𝑛 contains a k-regular subgraph (here and in the rest of the paper
logarithms are to the base two).

At this point, the best lower bound was due to Chvátal [14], who had shown that 𝑓3(2𝑛 + 3) > 6𝑛.
This was greatly improved by Pyber, Rödl and Szemerédi [26], who found a remarkable construction of
graphs with a superlinear number of edges that do not contain k-regular subgraphs.

Theorem 1.1 (Pyber–Rödl–Szemerédi [26]). There is some absolute constant 𝑐 > 0 such that for every
n there exists an n-vertex graph with at least 𝑐𝑛 log log 𝑛 edges which does not contain a k-regular
subgraph for any 𝑘 ≥ 3.

Furthermore, Pyber, Rödl and Szemerédi generalized Pyber’s result to show that for any positive
integer k, there is a constant 𝐶 = 𝐶 (𝑘) such that any graph with maximum degree Δ and average degree
at least 𝐶 logΔ contains a k-regular subgraph.

Despite substantial interest from many researchers, the above bounds have not been improved in the
last 30 years. At the same time, several variants of the original problem have been considered. Bollobás,
Kim and Verstraëte [8] studied the threshold for a random graph to have a k-regular subgraph. Rödl
and Wysocka [27] investigated the largest r for which every n-vertex graph with at least 𝛾𝑛2 edges
has an r-regular subgraph. Many papers have been written on the existence of regular subgraphs in
hypergraphs; see, for example, [23, 11, 20, 19, 18].

In this paper, we prove the following result, which completely resolves the problem of Erdős and
Sauer.

Theorem 1.2. For any positive integer k, there is a constant 𝐶 = 𝐶 (𝑘) such that any graph with
maximum degree Δ ≥ 3 and average degree at least 𝐶 log logΔ contains a k-regular subgraph. In
particular, any n-vertex graph with average degree at least 𝐶 log log 𝑛 contains such a subgraph.

Our results also make progress on two other old and well-known problems. The first one, due to Erdős
and Simonovits from 1970 [15], concerns the question of how dense an almost-regular subgraph there
must exist in a graph with n vertices and 𝑛 log 𝑛 edges. An almost-regular graph here is one in which the
maximum degree and the minimum degree differ by at most a constant factor. Our results resolve this
question asymptotically, showing that one can find an almost-regular subgraph with 𝑚 = 𝜔(1) vertices
and at least 𝑚(log𝑚)1/2−𝑜 (1) edges, which is tight by a result of Alon [1]. Since the full discussion of
this topic takes considerable space, we postpone it to the concluding remarks (Section 6).

Finally, let us discuss the other application of our main result. In 1983, Thomassen [28] conjectured
that, for every 𝑡, 𝑔 ∈ N, there exists some d such that any graph with average degree at least d contains a
subgraph with average degree at least t and girth at least g. Kühn and Osthus [21] proved this for 𝑔 ≤ 6
(see also [22] for an improved bound on d), but the general case is wide open. It is easy to see that for
every 𝑡, 𝑔 ∈ N, if d is sufficiently large, then any d-regular graph has a subgraph with average degree
at least t and girth at least g. Hence, our Theorem 1.2 implies that any graph G with average degree at
least 𝐶 (𝑡, 𝑔) log logΔ (𝐺) contains a subgraph with average degree at least t and girth at least g. This
improves the best bound towards Thomassen’s conjecture, due to Dellamonica and Rödl [12], which
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states that any graph G with average degree at least 𝛼(𝑡, 𝑔) (log logΔ (𝐺))𝛽 (𝑡 ,𝑔) contains a subgraph
with average degree at least t and girth at least g.

The rest of the paper is organized as follows. In the next section, we give a sketch of the proof of
Theorem 1.2. In Section 3, we prove some simple preliminary lemmas. The key lemma is proved in
Section 4. The proof of Theorem 1.2 is then completed in Section 5. We give some concluding remarks
about large almost-regular subgraphs in Section 6.

Notation. We write 𝑒(𝐺) for the number of edges in a graph G. For a set 𝑆 ⊂ 𝑉 (𝐺), 𝐺 [𝑆] stands for
the induced subgraph of G on vertex set S. For a vertex 𝑢 ∈ 𝑉 (𝐺), 𝑁𝐺 (𝑢) denotes the neighbourhood of
u in G and we write 𝑑𝐺 (𝑢) for the degree of u. Given vertices u and 𝑢′, 𝑑𝐺 (𝑢, 𝑢′) stands for the number
of common neighbours of u and 𝑢′ in G. We write Δ (𝐺) for the maximum degree of G.

2. An overview of the proof

Although our proof is short, we think that it may be useful to give a sketch of the main ideas. We start by
briefly discussing the lower bound construction of Pyber, Rödl and Szemerédi since it partly motivates
our argument. Their (random) graph can be described roughly as follows. The vertex set is 𝐴∪𝐵, where
|𝐵 | = 𝑛, A is the disjoint union of sets 𝐴( 𝑗) for 1

4 log log 𝑛 ≤ 𝑗 ≤ 1
2 log log 𝑛 with |𝐴( 𝑗) | = 𝑛/22 𝑗 , and

for each j and 𝑣 ∈ 𝐵, v has a unique neighbour in 𝐴( 𝑗), chosen uniformly at random. Note that a typical
vertex in 𝐴( 𝑗) has degree about 22 𝑗

.
In a general bipartite graph, we obtain a similar partitioning of part A according to the degrees

and show, very roughly speaking, that if there is some j such that each 𝑣 ∈ 𝐵 has at least a large
constant number of neighbours in 𝐴( 𝑗) (unlike in the above construction where each 𝑣 ∈ 𝐵 has only
one neighbour there), then G has a k-regular subgraph.

More precisely, let r be a large constant (that can depend on k), and let G be a bipartite graph with
parts A and B such that for some positive integers 𝑠, 𝑡 ≥ 𝑟 , every 𝑣 ∈ 𝐵 has degree r, the average degree
of a vertex in A is at least 2𝑠 , the maximum degree of a vertex in A is at most 2𝑡 and 𝑡 ≤ (1 + 1

𝑟−1 )𝑠. We
remark that it is possible (and not too hard) to find such a subgraph in any graph with maximum degree
Δ and average degree at least 100𝑟2 log logΔ . For the sake of simplicity, let us also suppose that G is
𝐶4-free, although this assumption can be significantly relaxed – it suffices to assume that the codegrees
in G are not extremely large. We shall now argue that G has a k-regular subgraph.

Our key lemma (stated and proved in Section 4) provides a subgraph which, although is not neces-
sarily regular, has much better regularity properties than G. More precisely, it asserts the existence of
subsets 𝐴′′ ⊂ 𝐴, 𝐵′′ ⊂ 𝐵 and positive integers 𝑠′, 𝑡 ′ ≥ 𝑟 such that in the graph 𝐺 [𝐴′′ ∪ 𝐵′′] all the
previous conditions are satisfied (with 𝐴′′, 𝐵′′, 𝑠′, 𝑡 ′ in place of 𝐴, 𝐵, 𝑠, 𝑡), and, additionally, 𝑡 ′ − 𝑠′ ≤
log(40(𝑡 − 𝑠)𝑟2). Hence, as long as 𝑡 − 𝑠 > 3 log 𝑟 , 𝑡 ′ − 𝑠′ is smaller than 𝑡 − 𝑠. Iteratively applying this
lemma, eventually we obtain subsets 𝐴∗ ⊂ 𝐴, 𝐵∗ ⊂ 𝐵 and positive integers 𝑠∗, 𝑡∗ ≥ 𝑟 such that in the
graph 𝐺 [𝐴∗ ∪ 𝐵∗], every 𝑣 ∈ 𝐵∗ has degree r, the average degree of a vertex in 𝐴∗ is at least 2𝑠∗ , the
maximum degree of a vertex in 𝐴∗ is at most 2𝑡∗ and 𝑡∗ − 𝑠∗ ≤ 3 log 𝑟 . The last property means that
the maximum degree is at most 23 log 𝑟 times the average degree in 𝐴∗. Taking a random subset �̂� ⊂ 𝐵∗
of size |𝐴∗ | and deleting the vertices in 𝐺 [𝐴∗ ∪ �̂�] whose degree is much larger than expected, we ob-
tain a subgraph with average degree about r and maximum degree at most about 𝑟23 log 𝑟 = 𝑟4. We can
then use a result of Pyber, Rödl and Szemerédi (see Theorem 3.8) to find a k-regular subgraph in this
graph.

We shall now sketch the proof of our key lemma. Let 𝐴𝑠+1 = {𝑢 ∈ 𝐴 : 𝑑𝐺 (𝑢) ≤ 2𝑠+1}, and for each
𝑠 + 2 ≤ 𝑖 ≤ 𝑡, let 𝐴𝑖 = {𝑢 ∈ 𝐴 : 2𝑖−1 < 𝑑𝐺 (𝑢) ≤ 2𝑖}. Observe that the sets 𝐴𝑠+1, . . . , 𝐴𝑡 partition A.
For each 𝑢 ∈ 𝐴, let 𝛼(𝑢) be the unique i with 𝑢 ∈ 𝐴𝑖 . For 𝑣 ∈ 𝐵, let 𝛽(𝑣) =

∑
𝑢∈𝑁𝐺 (𝑣) 𝛼(𝑢). Note that

for every 𝑣 ∈ 𝐵, we have (𝑠 + 1)𝑟 ≤ 𝛽(𝑣) ≤ 𝑡𝑟 , so there are at most (𝑡 − 𝑠)𝑟 possible values for 𝛽(𝑣).
Hence, by the pigeon hole principle, there are some 𝛾 ≥ (𝑠 + 1)𝑟 and a subset �̃� ⊂ 𝐵 of size at least

|𝐵 |
(𝑡−𝑠)𝑟 such that 𝛽(𝑣) = 𝛾 for all 𝑣 ∈ �̃�.

Let 𝐴′ be a random subset of A where each 𝑢 ∈ 𝐴 is kept independently with probability 2𝛼(𝑢)−𝑡 . Let
𝐵′ = {𝑣 ∈ �̃� : 𝑁𝐺 (𝑣) ⊂ 𝐴′}. Let us see why we expect 𝐺 [𝐴′ ∪ 𝐵′] to be nearly biregular. Firstly, every
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𝑣 ∈ 𝐵′ has degree precisely r in 𝐺 [𝐴′ ∪ 𝐵′]. Now, let 𝑢 ∈ 𝐴. We claim that, conditional on 𝑢 ∈ 𝐴′,
|𝑁𝐺 (𝑢) ∩ 𝐵′| is distributed as a binomial random variable Bin

(
|𝑁𝐺 (𝑢) ∩ �̃� |, 2𝛾−𝛼(𝑢)−(𝑟−1)𝑡 ) . Indeed,

conditional on 𝑢 ∈ 𝐴′, each 𝑣 ∈ 𝑁𝐺 (𝑢) ∩ �̃� belongs to 𝐵′ with probability
∏

𝑤 ∈𝑁𝐺 (𝑣)\{𝑢 } 2𝛼(𝑤)−𝑡 =
2𝛽 (𝑣)−𝛼(𝑢)−(𝑟−1)𝑡 = 2𝛾−𝛼(𝑢)−(𝑟−1)𝑡 and these events are independent for all v since 𝑁𝐺 (𝑣) \ {𝑢} are
pairwise disjoint as G is 𝐶4-free. Thus, if 𝑢 ∈ 𝐴′, then the degree of u in 𝐺 [𝐴′ ∪ 𝐵′] is concentrated
around |𝑁𝐺 (𝑢) ∩ �̃� |2𝛾−𝛼(𝑢)−(𝑟−1)𝑡 . Since |𝑁𝐺 (𝑢) ∩ �̃� | ≤ 𝑑𝐺 (𝑢) ≤ 2𝛼(𝑢) , we see that it is very unlikely
that the degree of u in𝐺 [𝐴′ ∪ 𝐵′] is much larger than 2𝛾−(𝑟−1)𝑡 . On the other hand, �̃� has size similar to
B, so on average |𝑁𝐺 (𝑢) ∩ �̃� | is not much smaller than 𝑑𝐺 (𝑢), which is in turn at least 2𝛼(𝑢)−1 (unless
𝛼(𝑢) = 𝑠 + 1). Hence, it is not hard to see that the average degree in 𝐺 [𝐴′ ∪ 𝐵′] of a vertex in 𝐴′ is
expected to be not much smaller than 2𝛾−(𝑟−1)𝑡 . A small loss arises from the fact that �̃� is potentially
smaller than B by a factor of (𝑡 − 𝑠)𝑟; this partly explains why 𝑡 ′ − 𝑠′ can be as large as log(40(𝑡 − 𝑠)𝑟2).
We remark that the condition 𝑡 ≤ (1 + 1

𝑟−1 )𝑠 ensures that 𝛾 − (𝑟 − 1)𝑡 ≥ 𝑠𝑟 − (𝑟 − 1)𝑡 + 𝑟 ≥ 𝑟 , so the
expected average degree of the vertices in 𝐴′ is not too small.

Now, we take 𝐴′′ to be the set of those vertices in 𝐴′ whose degree in 𝐺 [𝐴′ ∪ 𝐵′] is not much larger
than expected (i.e., not much larger than 2𝛾−(𝑟−1)𝑡 ) and set 𝐵′′ = {𝑣 ∈ 𝐵′ : 𝑁𝐺 (𝑣) ⊂ 𝐴′′}. By the strong
concentration of the degrees, 𝐺 [𝐴′′ ∪ 𝐵′′] has almost as many edges as 𝐺 [𝐴′ ∪ 𝐵′], so the average
degree of a vertex in 𝐴′′ is not much smaller than it was in 𝐴′. Hence, the desired conditions about 𝐴′′

and 𝐵′′ are satisfied (for suitable 𝑠′ ≈ 𝛾 − (𝑟 − 1)𝑡 and 𝑡 ′ ≈ 𝛾 − (𝑟 − 1)𝑡).

3. Preliminaries

As we have mentioned in the outline of the proof, one of the conditions in our key lemma is that no two
vertices in the graph have very large codegree. We prove that with the loss of a constant factor in the
number of edges, we can pass to a subgraph satisfying this property. For this, we can assume that our
graphs are 𝐾𝑘,𝑘 -free (or else, they contain a k-regular subgraph).

Lemma 3.1. Let k be a positive integer, and let H be a 𝐾𝑘,𝑘 -free bipartite graph with parts S and T.
Assume that 𝑑𝐻 (𝑢) ≥ 𝑘 |𝑇 |1−1/𝑘 holds for every 𝑢 ∈ 𝑆. Then 𝑒(𝐻) ≤ 𝑘 |𝑇 |.

Proof. Suppose that 𝑒(𝐻) > 𝑘 |𝑇 |. Then, by Jensen’s inequality,

∑
𝑣 ∈𝑇

(
𝑑𝐻 (𝑣)
𝑘

)
≥ |𝑇 |

(
𝑒(𝐻)/|𝑇 |

𝑘

)
≥ |𝑇 |

(
𝑒(𝐻)
𝑘 |𝑇 |

) 𝑘
.

By the degree condition we have 𝑒(𝐻) ≥ 𝑘 |𝑆 | |𝑇 |1−1/𝑘 . Then 𝑒 (𝐻 )
𝑘 |𝑇 | ≥ |𝑆 | |𝑇 |−1/𝑘 and therefore,∑

𝑣 ∈𝑇
(𝑑𝐻 (𝑣)

𝑘

)
≥ |𝑆 |𝑘 ≥ 𝑘

( |𝑆 |
𝑘

)
. This implies that there is some 𝑅 ⊂ 𝑆 of size k whose common

neighbourhood in T has size at least k. Then H contains 𝐾𝑘,𝑘 , which is a contradiction. �

The proof of the next lemma is somewhat similar to that of Lemma 2.3 from [22].

Lemma 3.2. Let k be a positive integer. Let G be a 𝐾𝑘,𝑘 -free bipartite graph with parts A and B,
and assume that 𝑑𝐺 (𝑢) ≤ 𝑚 holds for all 𝑢 ∈ 𝐴. Then G has a spanning subgraph 𝐺 ′ such that
𝑒(𝐺 ′) ≥ 𝑒(𝐺)/(𝑘 + 1) and 𝑑𝐺′ (𝑢, 𝑢′) ≤ 𝑘𝑚1−1/𝑘 for any two distinct 𝑢, 𝑢′ ∈ 𝐴.

Proof. Let 𝐴 = {𝑢1, 𝑢2, . . . , 𝑢𝑛}, and let 𝐺0 = 𝐺. Let us define spanning subgraphs 𝐺1, . . . , 𝐺𝑛 of
G recursively as follows. Having defined 𝐺𝑖−1 for some 1 ≤ 𝑖 ≤ 𝑛, let 𝑇 = 𝑁𝐺𝑖−1 (𝑢𝑖), let 𝑆 = {𝑢 𝑗 :
𝑗 > 𝑖 and 𝑑𝐺𝑖−1 (𝑢𝑖 , 𝑢 𝑗 ) > 𝑘𝑚1−1/𝑘 } and let 𝐻 = 𝐺𝑖−1 [𝑆 ∪ 𝑇]. Since H is a subgraph of G, it is
𝐾𝑘,𝑘 -free. Moreover, for any 𝑢 𝑗 ∈ 𝑆, 𝑑𝐻 (𝑢 𝑗 ) = 𝑑𝐺𝑖−1 (𝑢𝑖 , 𝑢 𝑗 ) > 𝑘𝑚1−1/𝑘 ≥ 𝑘 |𝑇 |1−1/𝑘 . Hence, by
Lemma 3.1, 𝑒(𝐻) ≤ 𝑘 |𝑇 |. Let 𝐺𝑖 be the subgraph of 𝐺𝑖−1 obtained by deleting the edges in H. Then
𝑒(𝐺𝑖−1) − 𝑒(𝐺𝑖) = 𝑒(𝐻) ≤ 𝑘𝑑𝐺𝑖−1 (𝑢𝑖).
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Observe that for any 𝑖 < 𝑗 , we have 𝑑𝐺𝑛 (𝑢𝑖 , 𝑢 𝑗 ) ≤ 𝑘𝑚1−1/𝑘 . Moreover, note that for any 1 ≤ 𝑖 ≤ 𝑛,
𝑑𝐺𝑛 (𝑢𝑖) = 𝑑𝐺𝑖−1 (𝑢𝑖), so

𝑒(𝐺𝑛) =
𝑛∑
𝑖=1
𝑑𝐺𝑛 (𝑢𝑖) =

𝑛∑
𝑖=1
𝑑𝐺𝑖−1 (𝑢𝑖) ≥

𝑛∑
𝑖=1

(𝑒(𝐺𝑖−1) − 𝑒(𝐺𝑖))/𝑘 = (𝑒(𝐺0) − 𝑒(𝐺𝑛))/𝑘.

Thus, 𝑒(𝐺𝑛) ≥ 𝑒(𝐺0)/(𝑘 + 1) = 𝑒(𝐺)/(𝑘 + 1), which means that 𝐺 ′ = 𝐺𝑛 satisfies the conditions
described in the lemma. �

We now define two notions of ‘near-regularity’ that will be used in our proofs.
Definition 3.3. A graph G is called K-almost-regular if the maximum degree of G is at most K times
the minimum degree of G.
Definition 3.4. We say that a bipartite graph G is (𝐿, 𝑑)-almost-biregular if the following holds. G
has parts A and B, where 𝑑𝐺 (𝑣) = 𝑑 for every 𝑣 ∈ 𝐵, and, writing 𝐷 = 𝑒(𝐺)/|𝐴|, we have 𝐷 ≥ 𝑑
(equivalently |𝐴| ≤ |𝐵 |) and 𝑑𝐺 (𝑢) ≤ 𝐿𝐷 for every 𝑢 ∈ 𝐴.

Our key lemma will provide an (𝐿, 𝑑)-almost-biregular subgraph where L is fairly small. The next
lemma allows us to find a large almost-regular subgraph in it.
Lemma 3.5. Let G be an (𝐿, 𝛿)-almost-biregular graph for some 𝐿 ≥ 𝛿 ≥ 2. Then G has a 64-almost-
regular subgraph with average degree at least 𝛿

16 log 𝐿 .
The proof of this lemma uses the following result, which is a slight variant of Lemma 2.7 from [26].

It states that as long as L is subexponential in the average degree, we can pass to a subgraph with large
average degree and constant L.
Lemma 3.6. Let G be an (𝐿, 𝛿)-almost-biregular graph. Suppose that 𝐿𝛿 ≤ 2 �𝛿/(𝑑−1) � and 𝑑 ≤ 𝛿. Then
G has a (4, 𝑑)-almost-biregular subgraph.

Since the proof of this result is almost identical to that of Lemma 2.7 from [26], it is omitted here.
The next simple lemma shows that in an almost-biregular graph we can find an almost-regular

subgraph with similar average degree.
Lemma 3.7. Let 𝐿, 𝑑 ≥ 1, and let G be an (𝐿, 𝑑)-almost-biregular graph. Then G has a nonempty
subgraph 𝐺 ′ with average degree at least 𝑑/2 and maximum degree at most 4𝐿𝑑.
Proof. Choose A, B and D according to Definition 3.4. Define 𝐵′ to be a random subset of B where
each 𝑣 ∈ 𝐵 is kept independently with probability 𝑑

𝐷 . Let 𝐺 ′ be the subgraph of 𝐺 [𝐴∪ 𝐵′] obtained by
deleting all edges 𝑢𝑣 with |𝑁𝐺 (𝑢) ∩ 𝐵′ | ≥ 4𝐿𝑑. Clearly, Δ (𝐺 ′) ≤ max(4𝐿𝑑, 𝑑) = 4𝐿𝑑.

Let 𝑋 = 𝑒(𝐺 [𝐴∪𝐵′]), and let Y be the number of edges 𝑢𝑣 ∈ 𝐸 (𝐺 [𝐴∪𝐵′]) with |𝑁𝐺 (𝑢)∩𝐵′ | ≥ 4𝐿𝑑.
Now,

E[𝑋] =
∑

𝑢𝑣 ∈𝐸 (𝐺)
P(𝑣 ∈ 𝐵′) = 𝑒(𝐺) 𝑑

𝐷

and

E[𝑌 ] =
∑

𝑢𝑣 ∈𝐸 (𝐺)
P(𝑣 ∈ 𝐵′ and |𝑁𝐺 (𝑢) ∩ 𝐵′ | ≥ 4𝐿𝑑)

=
∑

𝑢𝑣 ∈𝐸 (𝐺)
P(𝑣 ∈ 𝐵′)P (|𝑁𝐺 (𝑢) ∩ 𝐵′ | ≥ 4𝐿𝑑 | 𝑣 ∈ 𝐵′) .

For any 𝑢𝑣 ∈ 𝐸 (𝐺), we have

E[|𝑁𝐺 (𝑢) ∩ 𝐵′| | 𝑣 ∈ 𝐵′] = 1 + (𝑑𝐺 (𝑢) − 1) 𝑑
𝐷

≤ 1 + 𝐿𝐷 𝑑
𝐷

= 1 + 𝐿𝑑 ≤ 2𝐿𝑑,
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so it follows by Markov’s inequality that

P ( |𝑁𝐺 (𝑢) ∩ 𝐵′ | ≥ 4𝐿𝑑 | 𝑣 ∈ 𝐵′) ≤ 1/2.

Hence,

E[𝑌 ] ≤
∑

𝑢𝑣 ∈𝐸 (𝐺)
P(𝑣 ∈ 𝐵′)/2 = 𝑒(𝐺) 𝑑

2𝐷
.

Thus, using |𝐴|𝐷 = |𝐵 |𝑑 = 𝑒(𝐺),

E[𝑋 − 𝑌 − (|𝐴| + |𝐵′ |)𝑑/4] ≥ 𝑒(𝐺) 𝑑
𝐷

− 𝑒(𝐺) 𝑑
2𝐷

− |𝐴|𝑑/4 − |𝐵 | 𝑑
𝐷
𝑑/4

= 𝑒(𝐺) 𝑑
𝐷

− 𝑒(𝐺) 𝑑
2𝐷

− 𝑒(𝐺) 𝑑
4𝐷

− 𝑒(𝐺) 𝑑
4𝐷

= 0.

In particular, there is an outcome for which 𝑋 −𝑌 ≥ (|𝐴| + |𝐵′ |)𝑑/4. Since 𝑒(𝐺 ′) = 𝑋 −𝑌 , this means
that 𝐺 ′ has average degree at least 𝑑/2. �

Lemma 3.5 can now be proven using the last two lemmas.

Proof of Lemma 3.5. Let 𝑑 =  𝛿
4 log 𝐿 �. Now, 𝛿/(𝑑 − 1) ≥ 4 log 𝐿, so �𝛿/(𝑑 − 1)� ≥ 2 log 𝐿. Hence,

2 �𝛿/(𝑑−1) � ≥ 𝐿2 ≥ 𝐿𝛿. By Lemma 3.6, G has a (4, 𝑑)-almost-biregular subgraph 𝐺 ′. By Lemma 3.7,
𝐺 ′ has a subgraph with average degree at least 𝑑/2 and maximum degree at most 16𝑑. Repeatedly
discarding vertices of degree less than 𝑑/4, we end up with a nonempty subgraph 𝐺 ′′ with minimum
degree at least 𝑑/4 and maximum degree at most 16𝑑. Clearly, 𝐺 ′′ is 64-almost-regular. Moreover, the
average degree of 𝐺 ′′ is at least 𝑑/4 ≥ 𝛿

16 log 𝐿 . �

In order to find a k-regular subgraph in an almost-regular graph with sufficiently large average degree,
one can use the result of Pyber, Rödl and Szemerédi.

Theorem 3.8 (Pyber–Rödl–Szemerédi [26]). For any positive integer k, there is a constant 𝐶 = 𝐶 (𝑘)
such that any graph with maximum degree Δ and average degree at least 𝐶 logΔ contains a k-regular
subgraph.

4. The key lemma

In this section, we prove the following lemma, which is the main ingredient in our proof. Given a
bipartite graph with parts A and B in which B is regular, the maximum degree in A is at most about
1 + 𝜀 power of the average degree in A and the codegrees are not extremely large, the lemma provides
an induced subgraph with much better regularity properties. In the statement of the lemma, we hide the
condition bounding the maximum degree in terms of the average degree of A in the upper bound on the
codegrees: For the codegree condition to hold, we must have 𝑡 ≤ (1 + 1

𝑟−1 )𝑠.

Lemma 4.1. Let 𝑟, 𝑠, 𝑡 be positive integers such that 𝑠 < 𝑡. Let G be a bipartite graph with parts A and
B such that 𝑑𝐺 (𝑣) = 𝑟 for every 𝑣 ∈ 𝐵, 𝑑𝐺 (𝑢) ≤ 2𝑡 for every 𝑢 ∈ 𝐴, 𝑑𝐺 (𝑢, 𝑢′) ≤ 2𝑟𝑠−(𝑟−1)𝑡 for any two
distinct 𝑢, 𝑢′ ∈ 𝐴 and 𝑒(𝐺) ≥ 2𝑠 |𝐴|.

Then there are subsets 𝐴′′ ⊂ 𝐴 and 𝐵′′ ⊂ 𝐵 such that 𝑁𝐺 (𝑣) ⊂ 𝐴′′ for every 𝑣 ∈ 𝐵′′ and, writing
𝐺 ′ = 𝐺 [𝐴′′ ∪ 𝐵′′] and 𝑑 ′ = 𝑒(𝐺 ′)/|𝐴′′ |, we have 𝑑 ′ ≥ 2𝑟𝑠−(𝑟−1)𝑡

10(𝑡−𝑠)𝑟 and 𝑑𝐺′ (𝑢) ≤ 40(𝑡 − 𝑠)𝑟2𝑑 ′ for all
𝑢 ∈ 𝐴′′.

Proof. Let 𝐴𝑠+1 = {𝑢 ∈ 𝐴 : 𝑑𝐺 (𝑢) ≤ 2𝑠+1} and for each 𝑠 + 2 ≤ 𝑖 ≤ 𝑡, let 𝐴𝑖 = {𝑢 ∈ 𝐴 : 2𝑖−1 <
𝑑𝐺 (𝑢) ≤ 2𝑖}. Observe that the sets 𝐴𝑠+1, . . . , 𝐴𝑡 partition A. For each 𝑢 ∈ 𝐴, let 𝛼(𝑢) be the unique i
with 𝑢 ∈ 𝐴𝑖 . For 𝑣 ∈ 𝐵, let
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𝛽(𝑣) =
∑

𝑢∈𝑁𝐺 (𝑣)
𝛼(𝑢).

Note that for every 𝑣 ∈ 𝐵, we have (𝑠 + 1)𝑟 ≤ 𝛽(𝑣) ≤ 𝑡𝑟 , so there are at most (𝑡 − 𝑠)𝑟 possible values
for 𝛽(𝑣). Hence, by the pigeonhole principle, there are some 𝛾 ≥ (𝑠 + 1)𝑟 and a subset �̃� ⊂ 𝐵 of size at
least |𝐵 |

(𝑡−𝑠)𝑟 such that 𝛽(𝑣) = 𝛾 for all 𝑣 ∈ �̃�.
Let 𝐴′ be a random subset of A where each 𝑢 ∈ 𝐴 is kept independently with probability 2𝛼(𝑢)−𝑡 .

Let 𝐵′ = {𝑣 ∈ �̃� : 𝑁𝐺 (𝑣) ⊂ 𝐴′}. Let 𝐴′′ be the subset of 𝐴′ consisting of those vertices u with
|𝑁𝐺 (𝑢) ∩ 𝐵′| ≤ 4𝑟2𝛾−(𝑟−1)𝑡 , and let 𝐵′′ = {𝑣 ∈ 𝐵′ : 𝑁𝐺 (𝑣) ⊂ 𝐴′′}. Let 𝐺 ′ = 𝐺 [𝐴′′ ∪ 𝐵′′]. Then
𝑑𝐺′ (𝑢) ≤ 4𝑟2𝛾−(𝑟−1)𝑡 for all 𝑢 ∈ 𝐴′′.

The following claim shows that we expect 𝐸 (𝐺 [𝐴′ ∪ 𝐵′]) \ 𝐸 (𝐺 ′) to be small.

Claim. For any 𝑢𝑣 ∈ 𝐸 (𝐺 [𝐴 ∪ �̃�]) with 𝑢 ∈ 𝐴 and 𝑣 ∈ �̃�,

P(𝑢 ∈ 𝐴′, 𝑣 ∈ 𝐵′ and |𝑁𝐺 (𝑢) ∩ 𝐵′| ≥ 4𝑟2𝛾−(𝑟−1)𝑡 ) ≤ P(𝑣 ∈ 𝐵′)/(2𝑟).

Proof of Claim. Note that

E[|𝑁𝐺 (𝑢) ∩ 𝐵′| | 𝑣 ∈ 𝐵′] =
∑

𝑤 ∈𝑁𝐺 (𝑢)∩�̃�

P(𝑤 ∈ 𝐵′ | 𝑣 ∈ 𝐵′)

=
∑

𝑤 ∈𝑁𝐺 (𝑢)∩�̃�:
𝑁𝐺 (𝑤)∩𝑁𝐺 (𝑣)={𝑢 }

P(𝑤 ∈ 𝐵′ | 𝑣 ∈ 𝐵′) +
∑

𝑤 ∈𝑁𝐺 (𝑢)∩�̃�:
𝑁𝐺 (𝑤)∩𝑁𝐺 (𝑣)≠{𝑢 }

P(𝑤 ∈ 𝐵′ | 𝑣 ∈ 𝐵′). (4.1)

We now bound the two sums separately. If some 𝑤 ∈ 𝑁𝐺 (𝑢) ∩ �̃� satisfies 𝑁𝐺 (𝑤) ∩ 𝑁𝐺 (𝑣) = {𝑢}, then

P(𝑤 ∈ 𝐵′ | 𝑣 ∈ 𝐵′) = P(𝑤 ∈ 𝐵′ | 𝑢 ∈ 𝐴′) =
∏

𝑧∈𝑁𝐺 (𝑤)\{𝑢 }
P(𝑧 ∈ 𝐴′) =

∏
𝑧∈𝑁𝐺 (𝑤)\{𝑢 }

2𝛼(𝑧)−𝑡

= 2
∑

𝑧∈𝑁𝐺 (𝑤 )\{𝑢} 𝛼(𝑧)−(𝑟−1)𝑡 = 2𝛽 (𝑤)−𝛼(𝑢)−(𝑟−1)𝑡 = 2𝛾−𝛼(𝑢)−(𝑟−1)𝑡 .

Since 𝑑𝐺 (𝑢) ≤ 2𝛼(𝑢) , we have that
∑

𝑤 ∈𝑁𝐺 (𝑢)∩�̃�:
𝑁𝐺 (𝑤)∩𝑁𝐺 (𝑣)={𝑢 }

P(𝑤 ∈ 𝐵′ | 𝑣 ∈ 𝐵′) ≤ 𝑑𝐺 (𝑢)2𝛾−𝛼(𝑢)−(𝑟−1)𝑡 ≤ 2𝛾−(𝑟−1)𝑡 .

As for the second sum, the number of 𝑤 ∈ 𝑁𝐺 (𝑢) ∩ �̃� with 𝑁𝐺 (𝑤) ∩ 𝑁𝐺 (𝑣) ≠ {𝑢} is at most
𝑟2𝑟𝑠−(𝑟−1)𝑡 . Indeed, v has r neighbours in G, so there are at most r ways to choose a vertex 𝑢′ ∈
𝑁𝐺 (𝑤) ∩𝑁𝐺 (𝑣) \ {𝑢}, and, by assumption, any such 𝑢′ has at most 2𝑟𝑠−(𝑟−1)𝑡 common neighbours with
u. Now, using 𝛾 ≥ (𝑠 + 1)𝑟 , we have 2𝛾−(𝑟−1)𝑡 ≥ 2𝑟2𝑟𝑠−(𝑟−1)𝑡 ≥ 𝑟2𝑟𝑠−(𝑟−1)𝑡 . This implies that

∑
𝑤 ∈𝑁𝐺 (𝑢)∩�̃�:

𝑁𝐺 (𝑤)∩𝑁𝐺 (𝑣)≠{𝑢 }

P(𝑤 ∈ 𝐵′ | 𝑣 ∈ 𝐵′) ≤ 𝑟2𝑟𝑠−(𝑟−1)𝑡 ≤ 2𝛾−(𝑟−1)𝑡 .

Thus, by (4.1),

E[|𝑁𝐺 (𝑢) ∩ 𝐵′| | 𝑣 ∈ 𝐵′] ≤ 2𝛾−(𝑟−1)𝑡+1.

This implies, by Markov’s inequality, that

P(|𝑁𝐺 (𝑢) ∩ 𝐵′ | ≥ 4𝑟2𝛾−(𝑟−1)𝑡 | 𝑣 ∈ 𝐵′) ≤ 1/(2𝑟).
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Thus,

P(𝑢 ∈ 𝐴′, 𝑣 ∈ 𝐵′ and |𝑁𝐺 (𝑢) ∩ 𝐵′| ≥ 4𝑟2𝛾−(𝑟−1)𝑡 )
= P(𝑣 ∈ 𝐵′ and |𝑁𝐺 (𝑢) ∩ 𝐵′| ≥ 4𝑟2𝛾−(𝑟−1)𝑡 )
= P(𝑣 ∈ 𝐵′)P(|𝑁𝐺 (𝑢) ∩ 𝐵′ | ≥ 4𝑟2𝛾−(𝑟−1)𝑡 | 𝑣 ∈ 𝐵′) ≤ P(𝑣 ∈ 𝐵′)/(2𝑟),

completing the proof of the claim. �

For any 𝑢𝑣 ∈ 𝐸 (𝐺 [𝐴 ∪ �̃�]),

P(𝑢 ∈ 𝐴′, 𝑣 ∈ 𝐵′) = P(𝑣 ∈ 𝐵′) =
∏

𝑤 ∈𝑁𝐺 (𝑣)
P(𝑤 ∈ 𝐴′) =

∏
𝑤 ∈𝑁𝐺 (𝑣)

2𝛼(𝑤)−𝑡 = 2𝛾−𝑟𝑡 . (4.2)

Let 𝑋 = 𝑒(𝐺 [𝐴′ ∪ 𝐵′]), and let Y be the number of edges 𝑢𝑣 ∈ 𝐸 (𝐺 [𝐴′ ∪ 𝐵′]) with |𝑁𝐺 (𝑢) ∩ 𝐵′ | ≥
4𝑟2𝛾−(𝑟−1)𝑡 . Note that 𝑒(𝐺 ′) ≥ 𝑋 − 𝑟𝑌 . Indeed, 𝐸 (𝐺 ′) is obtained from 𝐸 (𝐺 [𝐴′ ∪ 𝐵′]) by deleting all
edges incident to vertices 𝑣 ∈ 𝐵′ which have a neighbour u with |𝑁𝐺 (𝑢) ∩ 𝐵′| > 4𝑟2𝛾−(𝑟−1)𝑡 . Clearly,
there are at most Y such vertices 𝑣 ∈ 𝐵′, so at most 𝑟𝑌 edges are deleted. By equation (4.2) and the
claim, we have

E[𝑋 − 𝑟𝑌 ]

=
∑

𝑢𝑣 ∈𝐸 (𝐺 [𝐴∪�̃�])

(
P(𝑢 ∈ 𝐴′, 𝑣 ∈ 𝐵′) − 𝑟P(𝑢 ∈ 𝐴′, 𝑣 ∈ 𝐵′ and |𝑁𝐺 (𝑢) ∩ 𝐵′ | ≥ 4𝑟2𝛾−(𝑟−1)𝑡 )

)

≥
∑

𝑢𝑣 ∈𝐸 (𝐺 [𝐴∪�̃�])

(P(𝑣 ∈ 𝐵′) − P(𝑣 ∈ 𝐵′)/2) = 𝑒(𝐺 [𝐴 ∪ �̃�])2𝛾−𝑟𝑡−1

= |�̃� |𝑟2𝛾−𝑟𝑡−1 ≥ |𝐵 |
(𝑡 − 𝑠)𝑟 𝑟2

𝛾−𝑟𝑡−1 =
𝑒(𝐺)
(𝑡 − 𝑠)𝑟 2𝛾−𝑟𝑡−1.

Note that, for every 𝑢 ∈ 𝐴, we have 2𝛼(𝑢) ≤ 2𝑠+1 + 2𝑑𝐺 (𝑢). Indeed, this is trivial if 𝛼(𝑢) = 𝑠 + 1,
and else 𝑑𝐺 (𝑢) ≥ 2𝛼(𝑢)−1. Also recall that 𝑒(𝐺) ≥ 2𝑠 |𝐴|. Therefore,

E[|𝐴′ |] =
∑
𝑢∈𝐴
P(𝑢 ∈ 𝐴′) =

∑
𝑢∈𝐴

2𝛼(𝑢)−𝑡 ≤ 2−𝑡
∑
𝑢∈𝐴

(2𝑠+1 + 2𝑑𝐺 (𝑢))

= 2−𝑡 (|𝐴|2𝑠+1 + 2𝑒(𝐺)) ≤ 2−𝑡4𝑒(𝐺).

Hence,

E

[
𝑋 − 𝑟𝑌 − |𝐴′ | 2𝛾−(𝑟−1)𝑡

10(𝑡 − 𝑠)𝑟

]
> 0.

It follows that there exists an outcome for which 𝑋 − 𝑟𝑌 − |𝐴′ | 2𝛾−(𝑟−1)𝑡

10(𝑡−𝑠)𝑟 > 0. Then 𝑒(𝐺 ′) ≥ 𝑋 − 𝑟𝑌 ≥
|𝐴′ | 2𝛾−(𝑟−1)𝑡

10(𝑡−𝑠)𝑟 . Hence, 𝑑 ′ = 𝑒(𝐺 ′)/|𝐴′′ | satisfies 𝑑 ′ ≥ 𝑒(𝐺 ′)/|𝐴′ | ≥ 2𝛾−(𝑟−1)𝑡

10(𝑡−𝑠)𝑟 ≥ 2𝑟𝑠−(𝑟−1)𝑡

10(𝑡−𝑠)𝑟 and 𝑑𝐺′ (𝑢) ≤
4𝑟2𝛾−(𝑟−1)𝑡 ≤ 40(𝑡 − 𝑠)𝑟2𝑑 ′ for all 𝑢 ∈ 𝐴′′, completing the proof. �

The next lemma is obtained by iterative applications of Lemma 4.1.

Lemma 4.2. Let 𝑟, 𝑠, 𝑡 be positive integers such that r is sufficiently large and 𝑠 < 𝑡. Let G be a
bipartite graph with parts A and B such that 𝑑𝐺 (𝑣) = 𝑟 for every 𝑣 ∈ 𝐵, 𝑑𝐺 (𝑢) ≤ 2𝑡 for every 𝑢 ∈ 𝐴,
𝑑𝐺 (𝑢, 𝑢′) ≤ 22𝑟𝑠−(2𝑟−1)𝑡 for any two distinct 𝑢, 𝑢′ ∈ 𝐴 and 𝑒(𝐺) ≥ 2𝑠 |𝐴|.

Then there exist positive integers 𝑠∗ ≥ 2𝑟𝑠 − (2𝑟 − 1)𝑡, 𝑡∗ > 𝑠∗ and sets 𝐴∗ ⊂ 𝐴, 𝐵∗ ⊂ 𝐵 such that
𝑁𝐺 (𝑣) ⊂ 𝐴∗ for every 𝑣 ∈ 𝐵∗, 𝑡∗ − 𝑠∗ ≤ 5 log 𝑟 and, writing 𝐺∗ = 𝐺 [𝐴∗ ∪ 𝐵∗] and 𝑑∗ = 𝑒(𝐺∗)/|𝐴∗ |,
we have 𝑑∗ ≥ 2𝑠∗ and 𝑑𝐺∗ (𝑢) ≤ 2𝑡∗ for all 𝑢 ∈ 𝐴∗.
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Proof. We prove the lemma by induction on 𝑡−𝑠 (with r fixed). If 𝑡−𝑠 ≤ 5 log 𝑟 , then we can take 𝑠∗ = 𝑠,
𝑡∗ = 𝑡, 𝐴∗ = 𝐴 and 𝐵∗ = 𝐵. Assume now that 𝑡 − 𝑠 > 5 log 𝑟 . Note that 2𝑟𝑠 − (2𝑟 − 1)𝑡 ≤ 𝑟𝑠 − (𝑟 − 1)𝑡,
so for any two distinct 𝑢, 𝑢′ ∈ 𝐴, we have 𝑑𝐺 (𝑢, 𝑢′) ≤ 2𝑟𝑠−(𝑟−1)𝑡 . By Lemma 4.1, there are subsets
𝐴′ ⊂ 𝐴 and 𝐵′ ⊂ 𝐵 such that 𝑁𝐺 (𝑣) ⊂ 𝐴′ for every 𝑣 ∈ 𝐵′ and, writing 𝐺 ′ = 𝐺 [𝐴′ ∪ 𝐵′] and
𝑑 ′ = 𝑒(𝐺 ′)/|𝐴′ |, we have 𝑑 ′ ≥ 2𝑟𝑠−(𝑟−1)𝑡

10(𝑡−𝑠)𝑟 and 𝑑𝐺′ (𝑢) ≤ 40(𝑡 − 𝑠)𝑟2𝑑 ′ for all 𝑢 ∈ 𝐴′. By the codegree
condition, 2𝑟𝑠 − (2𝑟 − 1)𝑡 ≥ 0, so 𝑟𝑠 − (𝑟 − 1)𝑡 ≥ (𝑡 − 𝑠)𝑟 and hence 𝑑 ′ ≥ 2. Let 𝑠′ = �log 𝑑 ′�, and let
𝑡 ′ = log(40(𝑡 − 𝑠)𝑟2𝑑 ′)�. Then 𝑠′ < 𝑡 ′, 𝑑𝐺′ (𝑣) = 𝑟 for every 𝑣 ∈ 𝐵′, 𝑑𝐺′ (𝑢) ≤ 2𝑡′ for every 𝑢 ∈ 𝐴′ and
𝑒(𝐺 ′) ≥ 2𝑠′ |𝐴′ |. Moreover, using 𝑑 ′ ≥ 2𝑟𝑠−(𝑟−1)𝑡

10(𝑡−𝑠)𝑟 , we have 𝑡 ′ ≥ 𝑟𝑠 − (𝑟 − 1)𝑡. Hence,

2𝑟𝑠′ − (2𝑟 − 1)𝑡 ′ = 𝑡 ′ − 2𝑟 (𝑡 ′ − 𝑠′) ≥ 𝑡 ′ − 2𝑟 (log(40(𝑡 − 𝑠)𝑟2) + 2)
≥ 𝑟𝑠 − (𝑟 − 1)𝑡 − 2𝑟 log(160(𝑡 − 𝑠)𝑟2)
= 2𝑟𝑠 − (2𝑟 − 1)𝑡 + 𝑟 (𝑡 − 𝑠) − 2𝑟 log(160(𝑡 − 𝑠)𝑟2)
≥ 2𝑟𝑠 − (2𝑟 − 1)𝑡,

where the last inequality uses that 𝑡 − 𝑠 ≥ 5 log 𝑟 and that r is sufficiently large. Hence, for any
distinct 𝑢, 𝑢′ ∈ 𝐴′, we have 𝑑𝐺′ (𝑢, 𝑢′) ≤ 𝑑𝐺 (𝑢, 𝑢′) ≤ 22𝑟𝑠−(2𝑟−1)𝑡 ≤ 22𝑟𝑠′−(2𝑟−1)𝑡′ . Finally, 𝑡 ′ − 𝑠′ ≤
log(40(𝑡 − 𝑠)𝑟2) + 2 < 𝑡 − 𝑠.

Thus, by the induction hypothesis, there exist positive integers 𝑠∗ ≥ 2𝑟𝑠′ − (2𝑟 − 1)𝑡 ′, 𝑡∗ > 𝑠∗

and sets 𝐴∗ ⊂ 𝐴′, 𝐵∗ ⊂ 𝐵′ such that 𝑁𝐺′ (𝑣) ⊂ 𝐴∗ for every 𝑣 ∈ 𝐵∗, 𝑡∗ − 𝑠∗ ≤ 5 log 𝑟 and, writing
𝐺∗ = 𝐺 ′ [𝐴∗ ∪ 𝐵∗] = 𝐺 [𝐴∗ ∪ 𝐵∗] and 𝑑∗ = 𝑒(𝐺∗)/|𝐴∗ |, we have 𝑑∗ ≥ 2𝑠∗ and 𝑑𝐺∗ (𝑢) ≤ 2𝑡∗ for
all 𝑢 ∈ 𝐴∗. Since 𝑁𝐺 (𝑣) = 𝑁𝐺′ (𝑣) for every 𝑣 ∈ 𝐵′, we have 𝑁𝐺 (𝑣) ⊂ 𝐴∗ for every 𝑣 ∈ 𝐵∗. As
2𝑟𝑠′ − (2𝑟 − 1)𝑡 ′ ≥ 2𝑟𝑠 − (2𝑟 − 1)𝑡, it follows that 𝑠∗ ≥ 2𝑟𝑠 − (2𝑟 − 1)𝑡, so 𝑠∗, 𝑡∗, 𝐴∗ and 𝐵∗ are suitable
for the conclusion of the lemma. �

5. Completing the proof

The next lemma is the upshot of what we have proved so far.

Lemma 5.1. Let 𝑟, 𝑠, 𝑡 be positive integers such that r is sufficiently large and 𝑠 < 𝑡. Let G be a
bipartite graph with parts A and B such that 𝑑𝐺 (𝑣) = 𝑟 for every 𝑣 ∈ 𝐵, 𝑑𝐺 (𝑢) ≤ 2𝑡 for every 𝑢 ∈ 𝐴,
𝑑𝐺 (𝑢, 𝑢′) ≤ 22𝑟𝑠−(2𝑟−1)𝑡−𝑟 for any two distinct 𝑢, 𝑢′ ∈ 𝐴 and 𝑒(𝐺) ≥ 2𝑠 |𝐴|.

Then G contains a 64-almost-regular subgraph with average degree at least 𝑟
80 log 𝑟 .

Proof. By the assumption on the codegrees, we have 2𝑟𝑠−(2𝑟−1)𝑡−𝑟 ≥ 0, so 2𝑟𝑠−(2𝑟−1)𝑡 ≥ 𝑟 . Hence,
by Lemma 4.2, G has a (25 log 𝑟 , 𝑟)-almost-biregular subgraph 𝐺∗ (the condition 2𝑟𝑠 − (2𝑟 − 1)𝑡 ≥ 𝑟
ensures that 𝑠∗ ≥ 𝑟 and so 𝑑∗ ≥ 𝑟). Then, by Lemma 3.5 with 𝐿 = 25 log 𝑟 and 𝛿 = 𝑟 ,𝐺∗ has a 64-almost-
regular subgraph with average degree at least 𝑟

80 log 𝑟 . �

The next result is very similar to Lemma 5.1 – the main difference is that the codegree condition is
no longer present. This can be achieved using Lemma 3.2.

Lemma 5.2. Let 𝑘, 𝑟, 𝑠, 𝑡 be positive integers such that r is sufficiently large, 𝑠 < 𝑡 and 𝑠 ≥ 𝑡 (1− 1
6𝑟 ). Let

G be a 𝐾𝑘,𝑘 -free bipartite graph with parts A and B such that 𝑑𝐺 (𝑣) = 𝑟 for every 𝑣 ∈ 𝐵, 𝑑𝐺 (𝑢) ≤ 2𝑡

for every 𝑢 ∈ 𝐴 and 𝑒(𝐺) ≥ 4(𝑘 + 1)22𝑠 |𝐴|.
Then G contains a 64-almost-regular subgraph with average degree at least 𝑟

160(𝑘+1) log 𝑟 .

Proof. We may assume that 𝑟 ≥ 𝑘 log 𝑟 , otherwise the conclusion of the lemma is trivial. By Lemma 3.2,
G has a spanning subgraph 𝐺 ′ such that 𝑒(𝐺 ′) ≥ 𝑒(𝐺)/(𝑘 + 1) and 𝑑𝐺′ (𝑢, 𝑢′) ≤ 𝑘2(1−1/𝑘)𝑡 for any two
distinct 𝑢, 𝑢′ ∈ 𝐴. Since 𝑠 ≤ 𝑡−1 and 𝑠 ≥ 𝑡 (1− 1

6𝑟 ), we have 𝑡 ≥ 6𝑟 . Hence, 2 𝑡
2𝑘 ≥ 23𝑟/𝑘 ≥ 2log 𝑟 = 𝑟 ≥ 𝑘 .

Thus, 𝑘2(1−1/𝑘)𝑡 ≤ 2(1− 1
2𝑘 )𝑡 , so 𝑑𝐺′ (𝑢, 𝑢′) ≤ 2(1− 1

2𝑘 )𝑡 for any two distinct 𝑢, 𝑢′ ∈ 𝐴. Let �̃� be the subset
of B consisting of those vertices v which satisfy 𝑑𝐺′ (𝑣) ≥ 𝑟/(2𝑘 + 2). Now, the number of edges in
𝐺 ′ between A and 𝐵 \ �̃� is at most |𝐵 |𝑟/(2𝑘 + 2) = 𝑒(𝐺)/(2𝑘 + 2) ≤ 𝑒(𝐺 ′)/2, so there are at least
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𝑒(𝐺 ′)/2 edges between A and �̃�. Let 𝑟 ′ = 𝑟/(2𝑘 +2)� and let𝐺 ′′ be a spanning subgraph of𝐺 ′ [𝐴∪ �̃�]
obtained by keeping precisely 𝑟 ′ edges from each 𝑣 ∈ �̃�. Clearly, 𝑒(𝐺 ′′) ≥ 𝑒(𝐺 ′ [𝐴 ∪ �̃�])/(2𝑘 + 2) ≥
𝑒(𝐺 ′)/(4𝑘 + 4) ≥ 𝑒(𝐺)/(4(𝑘 + 1)2) ≥ 2𝑠 |𝐴|. Note that

2𝑟 ′𝑠 − (2𝑟 ′ − 1)𝑡 − 𝑟 ′ = 𝑡 − 𝑟 ′(2𝑡 − 2𝑠 + 1) ≥ 𝑡 − 𝑟
𝑘
(2𝑡 − 2𝑠 + 1) ≥ 𝑡 − 3𝑟

𝑘
(𝑡 − 𝑠)

≥ 𝑡 − 3𝑟
𝑘

· 𝑡
6𝑟

= (1 − 1
2𝑘

)𝑡,

so 𝑑𝐺′′ (𝑢, 𝑢′) ≤ 22𝑟 ′𝑠−(2𝑟 ′−1)𝑡−𝑟 ′ holds for any distinct 𝑢, 𝑢′ ∈ 𝐴. Thus, we can apply Lemma 5.1 with
𝐺 ′′ in place of G and 𝑟 ′ in place of r to get a 64-almost-regular subgraph with average degree at least

𝑟 ′

80 log 𝑟 ′ ≥
𝑟

160(𝑘+1) log 𝑟 . �

We are now in a position to prove our main result. In the proof and later in the paper, we omit floor
and ceiling signs whenever they are not crucial.

Theorem 5.3. Let k, r and Δ be positive integers such that r is sufficiently large. Let G be a 𝐾𝑘,𝑘 -
free graph with maximum degree at most Δ and average degree at least 80𝑟2 log logΔ . Then G has a
64-almost-regular subgraph with average degree at least 𝑟

160(𝑘+1) log 𝑟 .

Proof. Since r is sufficiently large, the degree conditions imply thatΔ is also sufficiently large. Moreover,
we may assume that 𝑟 ≥ 𝑘 , otherwise the conclusion of the lemma is trivial. Note that G has a bipartite
subgraph 𝐺 ′ with average degree at least 40𝑟2 log logΔ and 𝐺 ′ has a nonempty subgraph 𝐺 ′′ with
minimum degree at least 20𝑟2 log logΔ (this subgraph can be obtained by repeatedly discarding vertices
of degree less than 20𝑟2 log logΔ). Let A and B be the parts of 𝐺 ′′ such that |𝐴| ≤ |𝐵 |. Let H be a
spanning subgraph of 𝐺 ′′ such that 𝑑𝐻 (𝑣) = 20𝑟2 log logΔ for every 𝑣 ∈ 𝐵.

Let 𝑡0 = 𝑟 (log 𝑟) (log logΔ)1/2 and let ℓ be the smallest nonnegative integer such that 𝑡0/(1− 1
10𝑟 )

ℓ ≥
logΔ . Note that (1− 1

10𝑟 )
10𝑟 log logΔ ≤ exp(− log logΔ) ≤ 1/logΔ , so ℓ ≤ 10𝑟 log logΔ . For 1 ≤ 𝑖 ≤ ℓ,

let 𝑡𝑖 = 𝑡0/(1 − 1
10𝑟 )

𝑖 . Clearly, 𝑡ℓ ≥ logΔ .
Let 𝐴0 = {𝑢 ∈ 𝐴 : 𝑑𝐻 (𝑢) ≤ 2𝑡0 } and for 1 ≤ 𝑖 ≤ ℓ, let 𝐴𝑖 = {𝑢 ∈ 𝐴 : 2𝑡𝑖−1 < 𝑑𝐻 (𝑢) ≤ 2𝑡𝑖 }. Clearly,

these sets partition A. Hence, for every 𝑣 ∈ 𝐵, either v has at least 𝑑𝐻 (𝑣)/2 = 10𝑟2 log logΔ neighbours
(in the graph H) in 𝐴0 or ℓ > 0 and there is some 1 ≤ 𝑖 ≤ ℓ such that v has at least 𝑑𝐻 (𝑣)/(2ℓ) ≥ 𝑟
neighbours in 𝐴𝑖 .

Therefore, at least one of the following two cases must occur.
Case 1. There are at least |𝐵 |/2 vertices 𝑣 ∈ 𝐵 which have at least 10𝑟2 log logΔ neighbours in 𝐴0.
Case 2. There exist some 1 ≤ 𝑖 ≤ ℓ and at least |𝐵 |/(2ℓ) vertices 𝑣 ∈ 𝐵 which have at least r

neighbours in 𝐴𝑖 .
In Case 1, let 𝐵′ ⊂ 𝐵 be a set of size at least |𝐵 |/2 such that every 𝑣 ∈ 𝐵′ has at least 10𝑟2 log logΔ

neighbours in 𝐴0. For technical reasons, let us take a random subset 𝐴′
0 ⊂ 𝐴0 of size |𝐴0 |/3. With

positive probability, there is a set 𝐵′′ ⊂ 𝐵′ of at least 2|𝐵′ |/3 vertices which all have at least 𝑟2 log logΔ
neighbours in 𝐴′

0. Let 𝐻 ′ be a spanning subgraph of 𝐻 [𝐴′
0 ∪ 𝐵′′] obtained by keeping precisely

𝑟2 log logΔ edges from each vertex in 𝐵′′. Now, note that |𝐴′
0 | = |𝐴0 |/3 ≤ |𝐴|/3 ≤ |𝐵 |/3 ≤ 2|𝐵′ |/3 ≤

|𝐵′′ |. Moreover, 𝑑𝐻 ′ (𝑢) ≤ 𝑑𝐻 (𝑢) ≤ 2𝑡0 for every 𝑢 ∈ 𝐴′
0. This implies that 𝐻 ′ is (𝐿, 𝑑)-almost biregular

for 𝐿 = 2𝑡0 = 2𝑟 (log 𝑟 ) (log logΔ)1/2 and 𝑑 = 𝑟2 log logΔ . Hence, by Lemma 3.5, 𝐻 ′ has a 64-almost-regular
subgraph with average degree at least 𝑟2 log logΔ

16𝑟 (log 𝑟 ) (log logΔ)1/2 ≥ 𝑟
160(𝑘+1) log 𝑟 .

In Case 2, let us choose some 1 ≤ 𝑖 ≤ ℓ and a set 𝐵′ ⊂ 𝐵 of size at least |𝐵 |/(2ℓ) such that for
every 𝑣 ∈ 𝐵′, v has at least r neighbours in 𝐴𝑖 . Let 𝐻 ′ be a subgraph of 𝐻 [𝐴𝑖 ∪ 𝐵′] obtained by
keeping precisely r edges incident to each 𝑣 ∈ 𝐵′. We will apply Lemma 5.2 for this graph. Let 𝑡 = 𝑡𝑖
and let 𝑠 = 𝑡 (1 − 1

6𝑟 ). Note that for any 𝑢 ∈ 𝐴𝑖 , 𝑑𝐻 ′ (𝑢) ≤ 𝑑𝐻 (𝑢) ≤ 2𝑡 . Let 𝐶 = 4(𝑟 + 1)2. Using that
|𝐵 | · 20𝑟2 log logΔ = 𝑒(𝐻) ≥ |𝐴𝑖 |2𝑡𝑖−1 , we get
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𝑒(𝐻 ′) = |𝐵′ |𝑟 ≥ |𝐵 |𝑟/(2ℓ) = 𝑒(𝐻)
40ℓ𝑟 log logΔ

≥ 𝑒(𝐻)
400𝑟2 (log logΔ)2 ≥ 𝐶 |𝐴𝑖 |2𝑡𝑖−1

400𝐶𝑟2 (log logΔ)2

= 𝐶 |𝐴𝑖 |2𝑡𝑖−1−log(400𝐶𝑟2 (log logΔ)2) .

Note that

𝑡𝑖−1 − log(400𝐶𝑟2 (log logΔ)2) = 𝑡
(
1 − 1

10𝑟

)
− log(400𝐶𝑟2 (log logΔ)2) ≥ 𝑡

(
1 − 1

6𝑟

)
= 𝑠,

where the inequality follows from 𝑡/𝑟 ≥ 𝑡0/𝑟 = (log 𝑟) (log logΔ)1/2 and since Δ is sufficiently large.
Hence, 𝑒(𝐻 ′) ≥ 𝐶 |𝐴𝑖 |2𝑠 ≥ 4(𝑘 + 1)2 |𝐴𝑖 |2𝑠 .

Thus, we can apply Lemma 5.2 to the graph 𝐻 ′ and get a 64-almost-regular subgraph with average
degree at least 𝑟

160(𝑘+1) log 𝑟 . �

Theorem 1.2 now follows easily.

Proof of Theorem 1.2. Let r be sufficiently large in terms of k, and let 𝐶 = 80𝑟2. Let G be a graph with
maximum degree Δ and average degree at least 𝐶 log logΔ . If G contains 𝐾𝑘,𝑘 as a subgraph, then it
has a k-regular subgraph. Else, by Theorem 5.3, G has a 64-almost-regular subgraph 𝐺 ′ with average
degree at least 𝑟

160(𝑘+1) log 𝑟 . Since r is sufficiently large in terms of k, Theorem 3.8 implies that 𝐺 ′ has
a k-regular subgraph. �

6. Concluding remarks

Motivated by the study of the Turán number of the cube, in 1970, Erdős and Simonovits [15] proved the
following result.

Theorem 6.1 (Erdős–Simonovits [15]). For every 𝛼 > 0 there exist some 𝐾 = 𝐾 (𝛼) and 𝑛0 = 𝑛0 (𝛼)
such that any graph with 𝑛 ≥ 𝑛0 vertices and at least 𝑛1+𝛼 edges contains a K-almost-regular subgraph
with m vertices and at least 2

5𝑚
1+𝛼 edges for some 𝑚 ≥ 𝑛𝛼(1−𝛼)/(1+𝛼) .

This result has since become one of the most widely used tools for Turán type problems. Its extreme
usefulness comes from the fact that it allows us to replace a general host graph by an almost-regular
one at negligible cost. Usually extremal problems are much easier to deal with when the host graph is
almost-regular.

In their paper, Erdős and Simonovits asked whether a similar ‘regularization’ is possible for sparser
graphs. More precisely, they asked whether there exist absolute constants 𝜀, 𝐾 > 0 such that any n-
vertex graph with at least 𝑛 log 𝑛 edges contains a K-almost-regular subgraph with m vertices and at
least 𝜀𝑚 log𝑚 edges, where 𝑚 → ∞ as 𝑛→ ∞. Using a variant of the construction of Pyber, Rödl and
Szemerédi from Theorem 1.1, Alon [1] gave a negative answer to this question as follows.

Theorem 6.2 (Alon [1]). For every 𝐾 > 0 and 𝑛 > 106, there is an n-vertex graph with at least 𝑛 log 𝑛
edges in which any K-almost-regular m-vertex subgraph has at most 72𝑚

√
log𝑚 + 18 log(64𝐾) + 324

edges.

Thus, we cannot necessarily pass to an almost-regular m-vertex subgraph with much more than
𝑚
√

log𝑚 edges. This naturally leads to the question what density we can actually guarantee in an almost-
regular subgraph of a graph with 𝑛 log 𝑛 edges. Our Theorem 5.3 essentially answers this question.
Indeed, it implies that we can always find an almost-regular m-vertex subgraph with nearly 𝑚

√
log𝑚

edges, showing that Theorem 6.2 is tight up to log log factors.

Theorem 6.3. For any positive integer 𝑚0, there exist some 𝑛0 = 𝑛0 (𝑚0) and 𝜀 = 𝜀(𝑚0) > 0 such
that any graph with 𝑛 ≥ 𝑛0 vertices and at least 𝑛 log 𝑛 edges has a 64-almost-regular subgraph with
𝑚 ≥ 𝑚0 vertices and at least 𝜀𝑚

√
log𝑚/(log log𝑚)3/2 edges.
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Proof. Let 𝑛0 be sufficiently large in terms of 𝑚0, and let G be a graph with 𝑛 ≥ 𝑛0 vertices and

at least 𝑛 log 𝑛 edges. Let 𝑟 =
√

log 𝑛

10
√

log log 𝑛
, and let Δ be the maximum degree of G. Since Δ ≤ 𝑛,

the average degree of G is at least log 𝑛 ≥ 100𝑟2 log logΔ . If 𝐾𝑚0 ,𝑚0 is a subgraph of G, then we
are done. Else, by Theorem 5.3, G has a 64-almost-regular subgraph 𝐺 ′ with average degree at least

𝑟
160(𝑚0+1) log 𝑟 . This is at least 2𝜀

√
log 𝑛/(log log 𝑛)3/2 for some 𝜀 > 0 that depends only on 𝑚0. Now,

if m is the number of vertices in 𝐺 ′, then 𝑚 ≥ 𝑚0 (since n is sufficiently large) and 𝐺 ′ has at least
𝜀𝑚

√
log 𝑛/(log log 𝑛)3/2 ≥ 𝜀𝑚

√
log𝑚/(log log𝑚)3/2 edges, as desired. �

In certain extremal problems one wants to pass to almost-regular subgraphs whose average degree is
large not just compared to the number of vertices in the subgraph but also compared to the number of
vertices in the original graph (which we call n). Using a variant of Pyber’s argument, it was shown in
[6] and [10] that passing to such a subgraph is possible with the loss of only a log 𝑛 factor in the average
degree. Also, by considering a variant of the construction of Pyber, Rödl and Szemerédi, it was shown
in [10] that this log 𝑛 loss is necessary for graphs with average degree at least 𝑛𝜀 . However, when the
graph has at most 𝑛 log 𝑛 edges, then this log 𝑛 loss means that the above result becomes trivial. Our
methods apply in this sparse regime and give the following.

Theorem 6.4. There is an absolute constant 𝜀 > 0 such that any n-vertex graph with average degree
𝑑 ≥ 2 log log 𝑛 has a 64-almost-regular subgraph with average degree at least 𝜀 (𝑑/log log 𝑛)1/4

(log(𝑑/log log 𝑛))1/2 .
Furthermore, for any positive integer t there is some 𝜀𝑡 > 0 such that any 𝐾𝑡 ,𝑡 -free n-vertex graph
with average degree 𝑑 ≥ 2 log log 𝑛 has a 64-almost-regular subgraph with average degree at least
𝜀𝑡

(𝑑/log log 𝑛)1/2

log(𝑑/log log 𝑛) .

Proof. We only prove the first assertion – the second one has a very similar proof.
Let G be an n-vertex graph with average degree d. We may assume that 𝑑/log log 𝑛 is sufficiently

large, otherwise the statement is trivial. Let 𝜀 be a sufficiently small positive absolute constant, and let
𝑘 = 𝜀 (𝑑/log log 𝑛)1/4

(log(𝑑/log log 𝑛))1/2 �. We want to show that G has a 64-almost-regular subgraph with average degree
at least k. Let 𝑟 = ( 𝑑

80 log log 𝑛 )
1/2. If G contains 𝐾𝑘,𝑘 as a subgraph, then we are done; else, by Theorem

5.3, G has a 64-almost-regular subgraph with average degree at least 𝑟
160(𝑘+1) log 𝑟 . But for sufficiently

small 𝜀, we have 𝑟
160(𝑘+1) log 𝑟 ≥ 𝑘 , so the proof is complete. �

Since the problem of finding regular subgraphs arises naturally in many combinatorial settings, it
seems very likely that our results will have further applications. We conclude the paper by discussing
two such applications.

• Our results can be used to answer a recent question posed by Alon et al. in [6]. Motivated by
applications to neural networks, in [6] the authors defined the notion of an 𝛼-multitasker graph and
asked (see the discussion after Theorem 1.3 in the full version of their paper [3]) if there exists
an n-vertex 𝛼-multitasker with average degree Θ(log 𝑛) for some 𝛼 > 0, independent of n. Our
Theorem 6.4 (or Theorem 1.2) can be used to show that there is no such multitasker with average
degree 𝜔(log log 𝑛). This is tight as Alon et al. showed that there are 𝛼-multitaskers with average
degree Θ(log log 𝑛) and constant 𝛼.

• The second application concerns the notion of spectral degeneracy, introduced by Dvořák and Mohar
[13]. The spectral radius of a graph G is the largest eigenvalue of the adjacency matrix of G and is
denoted by 𝜌(𝐺). We say that G is spectrally d-degenerate if for every subgraph H of G, we have
𝜌(𝐻) ≤

√
𝑑Δ (𝐻) and call the smallest such d the spectral degeneracy of G. It was observed in [13]

that every d-degenerate graph is spectrally 4𝑑-degenerate. Moreover, they showed the rough converse
that any spectrally d-degenerate graph with maximum degree 𝐷 ≥ 2𝑑 is 4𝑑 log(𝐷/𝑑)-degenerate. In
addition, they asked whether there exists a function f such that any spectrally d-degenerate graph is
𝑓 (𝑑)-degenerate. This was answered negatively by Alon [2], who constructed, for every M, a spectrally
50-degenerate graph which is not M-degenerate. Analyzing his construction more carefully, one can
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see that in fact there is a positive constant c such that for every n there is a spectrally 50-degenerate
n-vertex graph with degeneracy at least 𝑐 log log 𝑛. Our results can be used to show that this is best
possible, that is, that for every d there is a constant 𝐶 = 𝐶 (𝑑) such that any spectrally d-degenerate
n-vertex graph has degeneracy at most𝐶 log log 𝑛. This follows from our Theorem 1.2 and the simple
fact that the spectral degeneracy of a d-regular graph is precisely d.
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