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1. Introduction
At the 29th Meeting of the British Mathematical Colloquium held at Edinburgh in

March 1977, D. H. Fremlin announced the following result.
Let <J> denote the proposition that there exists a K-analytic Hausdorff space,

having metrizable compacta, which is not Souslin. (We refer the reader to Fremlin's
paper (1) for the relevant definitions)

Theorem 1.1. (Fremlin) (i) Assume 2*°= K,. Then <D is valid.
(ii) Assume Martin's Axiom together with 2X°> K,. Then $ is false.

Corollary 1.2. (Fremlin) $ cannot be decided on the basis of the usual (Zermelo-
Fraenkel) axioms of set theory.

Now, it is well known that whereas the continuum hypothesis—2*° = ^!—is a very
powerful assumption, its negation is rather a weak statement. Martin's Axiom, on the
other hand, is a consequence of the continuum hypothesis, but in the presence of the
negation of the continuum hypothesis is an extremely powerful assumption, many of
whose consequences are in direct contradiction with consequences of 2K°= K,. The
consistency of the combination of Martin's Axiom and 2K°> K, is known. In Frem-
lin's proof of part (ii) of Theorem 1.1, Martin's Axiom is used essentially. Thus it is of
interest to know whether the result needs Martin's axiom, or whether the truth or
falsity of <t> depends simply upon the truth or falsity of the continuum hypothesis. In
this case, as in almost all others, one would expect the answer to be "no", but such a
question deserves to be settled properly. In this note we do just this: namely we prove
the following result:

Theorem 1.3. The falsity of 4> cannot be established on the basis of the axioms of
set theory plus the negation of the continuum hypothesis.

Indeed, even if we assume any "axiom" such as 2X° = K2,2S° = K1M, etc., we cannot
prove that <t> fails.

'The result in this paper was proved during our attendance at the BMC meeting at Edinburgh (March 1977),
following a lecture given by Fremlin at the meeting. We wish to thank the organisers of that meeting for
their efforts and their hospitality.
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After hearing Fremlin's lecture, we asked the question raised above, and, as well
as conjecturing the correct answer to our question, Fremlin remarked (with absolute
justification) that this question could only be answered by a mathematical logician,
and that logicians rarely publish answers to questions of this nature: the result being
that the analyst is presented with a bald fact, unaccompanied by any hint of the
reasoning behind that fact. Having been ourselves guilty of this in the past, we felt it
would be of assistance to devote a little time to writing up the proof. The result is this
note. To the expert in the techniques involved in obtaining independence results, what
we do does not involve anything greatly different from many other independence
proofs, but hopefully the paper will prove illuminating to the analyst not versed in
such sorcery.

As fundamental we take the Zermelo-Fraenkel system of set theory. More loosely,
we adopt the "usual" set theory underlying mathematics, including the Axiom of
Choice. Our notation is that current in set theoretical circles. The ordinals are defined
in the von Neumann manner, with every ordinal equal to the set of all its predeces-
sors. We reserve lower case Greek letters to denote arbitary ordinal numbers. The
first infinite ordinal (i.e. the set of all natural numbers) is denoted by &>, the first
uncountable ordinal by «i, the first ordinal not equinumerous with any ordinal a ^ a>i
by (o2, the first ordinal not equinumerous with any a =s w2 by o>3, and so on. The
ordinals w, a>\, w2, . . . are the infinite cardinals; considered in its role as a cardinal
number, we usually write Ko in place of <o and Kn in places of «„. The cardinality of
any set X is denoted by \X\. Thus a set X will be countable iff \X\« Ko, and
uncountable iff \X\ =s K,.

2. The method of boolean extensions

In order that our paper may be accessible to a fairly wide range of readers, we
present here an extremely brief account of the main method used to obtain in-
dependence results. For more details we refer the reader to (2).

Let V denote the collection of all sets (the set-theoretic universe). Now, there
is a one-many correspondence between sets and characteristic functions, so if we are
prepared to accept the presence of many functions representing the same set (because
they have different domains), we can replace V by an "equivalent" collection of
characteristic functions. Now suppose B is any complete boolean algebra. Suppose
that we define a "universe" VB now consisting not of functions which take only the
values 0 and 1 (as do characteristic functions), but of functions whose range is a
subset of B. For two "sets" in VB, it will not now always be the case that they are
equal or distinct, but there will be some member of B which represents the degree to
which they are equal. In a natural way, this induces a boolean truth valuation for any
set theoretical assertion <f>, denoted by \\<f>\\. Thus \\<f>\\ represents the amount (in the
sense of B) by which <f> is true in the "universe" VB. (As the reader may suspect, this
all works out correctly by virtue of the fact that boolean algebras behave in the same
way as do "truth tables".) Now, it can be proved that if </> is a theorem of
Zermelo-Fraenkel set theory, then, regardless of the actual choice of B, \\<f>\\ = 1, and
if <f> is provably false in Zermelo-Fraenkel set theory, then \\4>\\ = 0. Hence, if we can
find an algebra B for which 0<||</>||< 1, then <f> will be proved to be undecidable! In
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our present case, with <f> the assertion of Section 1, we know that 4> follows from
2H° = K t (in set theory), and it suffices to find an algebra B for which ||0|| > 0, were <t> is
the conjunction of the assertions <& and 2K°> K,, for this will imply that the
implication

2*« > K, => not - 4>

cannot be proved in set theory, which is what we require. (As might be expected, for
any statement 0, ||not-</>|| = 1-||0||. Indeed, boolean values combine in precisely the
manner one would expect.) In fact, in order to prove that ||</>|| > 0, we shall need to
assume the continuum hypothesis. That this will still give the required consistency
result follows from the fact that the continuum hypothesis is itself consistent with
Zermelo-Fraenkel set theory. Of course, having once decided on the algebra B to be
used, we shall be faced with the problem of calculating \\<}>\\ for the relevant assertion
<j>, and this will require some knowledge of how boolean truth values are defined. We
indicate briefly the (natural) definition here.

Since elements of VB are B-valued "characteristic functions", if u G VB and
iGdom(«), then u(x) represents the truth value of x being a member of u. This
enables us to define the truth values ||w £ v\\ and \\u = u|| for elements u, v of Ve. These
definitions are quite natural, but we do not give them in full here. (In fact the most
"obvious" definition, setting \u G t>|| = v{u), does not work, since \\u G v\\ needs to be
defined for all u, v, not just when u is in dom(i;). The reader is urged to refer to (2) if
he wishes to understand fully these boolean valued notions.) Having defined truth
values for such atomic sentences, we can define ||0|| for any 4> by induction on the
construction of <f>. (Being a set theoretical assertion, <f> will only contain such atomic
subformulas, built up using quantifiers and logical connectives). The schemata are as
follows:

| |not-0| | = - | |0 | | ;
110 or 0|| = ||0||v ||*||;

||0 and 0|| = ||0|| A ||0||;

P«0(«)||= V J0(ii)||;

||VH0(«)||= A ||0(H)||.
uev*

Of course, for any algebra B, VB is just a collection of sets (in set theory,
everything is a set), and hence Vb is a subcollection of V. We may, nevertheless,
regard VB as an extension of V. Indeed, we may define a subcollection V̂  of VB,
isomorphic to V (in an obvious, characteristic function sense) by defining, for x £ V ,
the element x of VB having domain {y|y G x}, such that x(y) = 1 for all y G x. (This is
really a definition by induction on the well-founded relation G.) The presence of the
copy, V, of V inside VB will be very useful to us in the ensuing development.

3. The main theorem

During his BMC talk, Fremlin sketched a proof of the following theorem.
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Theorem 3.1. (Fremlin) Let X denote the space ay" endowed with the product
topology induced by the discrete topology on u>. (It is well known that X is
homeomorphic to the irrationals.) Then <t> is equivalent to ty, where ¥ is the following
assertion:

there is an uncountable set AC X such that AC\K is countable for every compact
set KcX.

Indeed, Fremlin's proof of 1.1 proceeds by establishing the analogous result with
¥ in place of <t>. We shall prove 1.3 by finding a complete boolean algebra B such that
||2X°> Ki|| = 1 and ||¥|| = 1. By modifying the proof, we could obtain more specific
results such as ||2*° = Kl3|| = 1 and ||¥|| = 1, and indeed the expert in such techniques
will see this at once, but we do not give any details here.

We commence by describing the algebra B. Let / = 2"X<U2 have the product topology
determined by the discrete topology on 2( = {0, 1}). Let C be the algebra of all Borel
subsets of /, and let A be the ideal of all meagre Borel sets. C is a tr-algebra and A a
a--ideal, but since the quotient algebra B = C/A satisfies the countable chain condition
(c.c.c.) it is in fact complete. (By the c.c.c, any sup or inf reduces to a countable sub
sup or subinf, and hence is well defined by the ^-completeness of B.)

We show first that ||2^& K2|| = 1. Firstly, what do the symbols Ko and R2 mean
here. Well, Ko is just the set of natural numbers, and then K, is the first ordinal
beyond Ko not equinumerous with Ko, and K2 is the first ordinal beyond K, not
equinumerous with K,. Now, it is a standard result that if a is an ordinal, then \\d is an
ordinal|| = 1, but K being a cardinal does not necessarily imply ||K is a cardinal|| = 1.
Certainly, ||&0 is the first infinite ordinal|| = 1, so ||&0 is a cardinal|| = 1, but for K, this
need no longer be the case. The point is, although K, is a cardinal in V, VB contains
more "sets" than V, and one of these sets may be a bijection between w and &i, so
that we may have to look further than &i in VB in order to find "the K, of VB".
However, in the present case there will be no problem, due to the following standard
fact, whose proof we sketch.

Lemma 3.2. / / B satisfies the c.c.c, then ||&0 = Ko|| = 1, ||&, = Ki|| = 1, ||&2 = K2|| =
1, etc.

Proof. (Sketch) Suppose ||&i = K,||< 1. Thus ||w, is a cardinal||< 1. Hence there
must be an / G V* such that | |/: u> - ^ c5,|| = b > 0. Then b =£ Aa<wivn<a)||/(n) = d\\, so
for each a < co^ we can find a n n = j(a) < 10 such that b A ||/(n) = a|| > 0. Since wi is
uncountable there is an uncountable set AC (ot such that a G A->j(a) = n for some
fixed n. Let ba = b A \\f(n) = a\\ for a G A. If a, fi G A, a * /3, then ba A be « b A \\f(n) =
all A ||/(n) = /3|| =£ \\d = f}\\. But since a* /3, \\d = 0\\ = 0. Hence {ba\a G A} is pairwise
disjoint in B. This contradicts the c.c.c. for B.

A similar argument works for K2, K3, etc.

The above sketch indicates the way in which boolean truth values imitate the
logical behaviour of the system, with, for instance, ||</>||ss||i/'|| corresponding to
||</>-»i/r|| = 1, and An<a,||<£(/i)|| being equal to ||(Vn G a>)<£(w)||. The following lemma is
also "standard", so again we simply sketch the proof.
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Lemma 3.3. ||2*»3s K2|| = 1.

Proof. (Sketch) By 3.2 it suffices to show that there is no / £ VB with

for then ||Card (3P(co)) > Ki|| = 1, as required.(As usual, for each set X, &(X) is the power
set of X.)

Suppose there is such an / £ VB.
For each a < a>2, define ua dom(di)-»B by

Since dom(«a) = dom(w), we clearly have ||wa C a>\\ = 1. For each n £ co,

\\nEua\\=ua(n),

so

(*) | k = u j = A nem{ua(n)<* up(n)) = {pE X\(Vn £ co)(p(n, a) = p(n, /3))}/A.

(Here O denotes the boolean operation defined by p<$ q = (-p v q) A (-q v p).) Now,
for a?£ B, {p £ X|(V/i £ a>)(p(n, a) = p(«, B))} can clearly contain no basic open set in
/, and hence is nowhere dense. Thus by (*), a^ B implies ||«o = wp|| = 0.

Now, for each a < w 2 w e can pick a £(a) < wt such that ||/(MO) = $(a)\\ = ba > 0 and
b A ba > 0. For a subset A C o>2 of cardinality K2, we must have £(a) = £ for all a £ A,
some fixed £ < w,. Then, for a £ A, b A ba «||/(«a) = |||, so for a, /3 £ A, a * B,

= III A |

Hence {fe A foa|a £ A} is a pairwise disjoint subset of B, contrary to the c.c.c. for B.

Lemma 3.4. Assume 2S° = X,. Then \\V\\ = 1.

Proof. By 2*° = X\, 1.1 implies that <l> is valid. Hence by 3.1 we can find an
uncountable set A C X such that A (1 K is countable for every compact set K C.X. We
prove the lemma by showing that

||if K Ceo" is compact, then An K is countable|| = 1.

(If / : w, - ^ A, then ||/: w, -^4. A\\ = 1, so by 3.2, \\A is uncountable || = 1.) Notice that we
write o>" and not X here. This is because VB will contain many more elements of the
space co™ than does V. We can, however, replace co" by w" here, and this we shall do.

Suppose that, contrary to our desires there is a K £ VB such that

||X C w" is compact and A D K is uncountable|| = 6 > 0.

Now, a subset of co" is compact iff it is a product of finite subsets of co. Let {F;}1<(U

enumerate all finite subsets of co, and let
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bni = ||the nth component of K is Pi\\.

Then iV / -» bni A fcn/ = 0, and

\\K is compact|| = A V bni.

For each finite map p0 from a subset of o> x «j2 into 2, let

Po={pe/ |poCp}/A.

The collection of all sets {p £ I\poQ p} as p<> varies is a base for the topology on /, so
the collection of all p0 is a dense subset of B. Hence, for each pair n, i such that
b A bnif> 0 we can pick a maximal pairwise disjoint collection 3vi of elements
d =£ b A &„, such that each d is non-zero and of the form pd for some finite function pd

from a subset of w x w2 into 2. Since B satisfies the c.c.c, &nj is countable. Hence for
each pair n,i with b A bni>0 we can find a sequence {p(n, i )/}/<«. of finite functions
from subsets of <o x u2 into 2 such that {p(/i, i)y|i < to} is a maximal disjoint subset of
{d £ b\d =s fc A bni\. Let o-= UB.,-,y dom(p(n,/),-), a countable subset of « x io2. Let
{p*K<«, enumerate all finite functions from subsets of cr into 2.

For each a£A now, let foa = \\a £ X||. Set A' = {a £ A|fra A b > 0}. For a £ A - /4',
fta A b = 0, so b =£ - fca = - ||d £ X|| = ||a£ X||. Hence fc «\\A D K C i' | |. So by choice
of b, A' must be uncountable.

For each k £ o>, let £K = {a £ y4'|pt =£ \\a £ X||}. Suppose a £ A'. Then fta A b > 0, so
as b «£ An£a, v,-eu 6n, we can find «, i with ba * b A bni >0. Since ba A b A bni ^ b A bni

there is a / £ w such that p(n, /), A ba A b A bni > 0. By definition of the algebra B, it
follows that we can find a it £ « with pk^p(n,i)i A ba A b A bni, with dom(pk) C
dom(p(w, i)y). Since p* =s fcfl, pk =s \\d £ X||, so a £ Ek. Hence UtSa, £* = A'. It follows that
for some k, Ek is uncountable. Fix such a k from now on.

We claim that there are integers Nn, n E w, such that Ek C nnes, [0, Nn]. Let n £ w be
given. Now, p t =£ b « A ne<u v ,G<U fem, so for some unique /„ £ w, p* A bnin > 0. Let
JVn = max(F). We show that {Nn}n<ol so defined is as required.

Let a £ E*. Fix n £ w. Since p t A bn,n ^ bn,n, pk A bnin =s ||dn £ i\ | | . Thus ||dn « Nn\\ > 0.
This can only be so if an == Nn. The claim is proved.

Let £ = nnG(O[0, Nn], a compact subset of X. Since Ek C E H A,E D A is uncountable.
This contradiction completes the proof of Lemma 3.4.
Hence our proof of 1.3 is also complete
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