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DIFFERENTIATION OF MULTIPARAMETER
SUPERADDITIVE PROCESSES

DOGAN COMEZ

0. Introduction. In this article our purpose is to prove a differentiation
theorem for multiparameter processes which are strongly superadditive
with respect to a strongly continuous semigroup of positive L;-
contractions (see Section 1 for definitions).

Recently, the differentiation theorem for superadditive processes with
respect to a one-parameter semigroup of positive L;-contractions has been
proved by D. Feyel [9]. Another proof is given by M. A. Akcoglu [1]. R.
Emilion and B. Hachem [7] also proved the same theorem, but with an
extra assumption on the process (see also [1]). The proof of this theorem
for superadditive processes with respect to a Markovian semigroup of
operators on L, is given by M. A. Akgoglu and U. Krengel [4]. Thus [1]
and [9] extend the result of [4] to the sub-Markovian setting. Here we will
obtain the multiparameter sub-Markovian version of this theorem, namely
Theorem 3.17 below.

Theorem 3.17 was proved by M. A. Akgoglu and U. Krengel [5] for
superadditive processes {F|,,,} with respect to a semigroup of operators
{U..,} which is induced by measurable semigroup of measure preserving
transformations on (X, % p). In that paper the definition of superadditiv-
ity used is stronger than the superadditivity definition we consider in this
work [5] but weaker than the strong superadditivity. R. Emilion and B.
Hachem [8] proved Theorem 3.17 for strongly superadditive processes
with respect to a Markovian semigroup {U,, )} of operators. The proof for
the case that {F, )} is an additive process with respect to a two-parameter
semigroup of positive L,-contractions {U,} which is strongly contin-
uous for (¢, r) > O was given by M. A. Akcoglu and A. del Junco [3].
Hence 3.17 generalizes these theorems as well as Theorem 1.7 in [1].

Acknowledgement. 1 would like to express my gratitude to my
supervisor, Professor M. A. Akc¢oglu, for making the manuscript [1]
available to me prior to publication and for his very helpful discussions
and valuable remarks on the subject.

1. Definitions. Let R? be the usual two dimensional real vector space,
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considered together with all its usual structure. The positive cone of R? is
RZL and the interior of R2+ is C. In particular R? is partially ordered in
the usual way. Let 1, O and k denote the vectors (1, 1), (0, 0) and (&, k),
for any real k, respectively.

Let (X, % p) be a o-finite measure space and L, = L(X, # p) be the
classical Banach space of real valued integrable functions on X. L;" will
denote the positive cone of L, and for any E € # L|(E) = L|(E, p) will
denote the class of integrable functions with support in E. We shall not
distinguish between the equivalence classes of functions and the individual
functions. The relations below are often defined only modulo sets of
measure zero;, the words a.e. may or may not be omitted. For any
E € Z x; will denote the characteristic function of E.

Let {T,},=, and {S,},=, be one-parameter strongly continuous
semigroups of positive L;-contractions (sub-Markovian operators) with
T, = S, = 1, the identity operator on L, and 7,S, = S,T, foreacht = 0
and r = 0. This means that for eachr = 0 and s = 0, 7, and S, are both
bounded linear operators on L, with ||7}||;, = 1 and [|S,||; = 1 such that

() T.L) c L and S.L; c L,

(1.2) T 7, =T, and S.S, =S,

(13)  lim. NT.f— fll, =0 = lim IIS.f — fll, for all f € L,.
—0 s—0

forall p, r,t,s = 0,

{T,},=0 and {S,},=, are called Markovian operators if they satisfy

fT,fdu = ffd# = fSrfdu

forall 7 = 0, s = 0 and for all f € L, in addition to the conditions (1.1),
(1.2) and (1.3). Consider the family

{ U(x,r)}(z,r) eRY = {T.S, }(z,r) eR%

which is a two-parameter strongly continuous semigroup of positive
L,-contractions with Ug = 1. So

(14) UL € L for (1, r) € R,
(1.5 UypyUsy = Ussupsy for each (1, r), (u, v) € R,
(1.6) lim ||U(,,)f—f||1 =0 foreachf e L,.
(1,r) =0 ?
A family of functions (F, )}« ec is called a superadditive process

(with respect to {U, )} er?) if it is superadditive with respect to each
parameter separately [4], [10], [13], [6]; i.e.,

(1.7)  F,,, € L, foreach (4, v) € C.
(1.8) For each (z, r) € R% and (u,v) € Cwith O = (1, r) = (u, v)
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a) F
b) F

If {—F,,} is superadditive, then {F,, } is called subadditive (with
respect to {U,,,)} ); and if both {F, , } and {—F, )} are superadditive,
then {F, )} is called additive [4], [3].

A family of functions {F, )} ec 1s called a strongly superadditive
process (with respect to {U, )}, er [13] if it satisfies (1.7) and

(1.9 if(t,r), (u,v) € Cwith O < (t,r) < (u, v),

= F("J) + U(O.r)F(u,v—r) 0 <r <y,

uy) —

uy)

then
Fury = Fupy = UeoFu-w = YonFus—n
t UunFu—rv-ry
Any strongly superadditive process {£, )} which satisfies
(1.10) F(u,O) = F(O,v) =0u>0v>0

is necessarily a superadditive process [13]. Below, when we mention a
strongly superadditive process, we will mean a process satisfying (1.7),
(1.9) and (1.10).

Let D = {m2_k:m, k =1, 2,...} be the set of positive binary
numbers, and let D X D = B. A family of functions {F, }.cn
defined on B will also be called superadditive process if F,,, € L, for
each (4, v) € B and (1.8) is satisfied for each (¢, r), (4, v) € B. Similar
definitions apply to subadditive and additive processes on B.

Throughout this paper only the two parameter case is considered and
the extension of the results to arbitrary n-parameter case, n = 1, is
straightforward. By

g — lim
(uy)—0
we shall mean that the limit is taken as u and v approach to zero through
the positive rational numbers [4], [3].

2. Positive superadditive processes. In this section will show that if
{F.»} is a superadditive process with

1 _
sup — /F(W)dp < 00,
(uy)eC uy
where
F(;,v) = max(0, —Fi),

then it can be assumed to be a positive superadditive process with the
further property that if {G,,)} is an additive process such that
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0= Gy, = F,,, foreach(u,v)e C,

then G, ,, is identically zero.

A farr{ily {Fumuryec of Li-functions is called continuous if (u, v) —

F,

(u,v

) is a continuous function from C to L; with the norm topology of L,.

Observe that if / € L;, then {U,,,/} is a continuous family. Hence

t r
I(t,r)f: /O ./0 U(sl’sz)fdéédsl

can be defined in the usual way as the L,-limit of the corresponding
Riemann sums. For convenience, we will consider a particular type of
Riemann sums as in [1]. If «a is a real number, let [a] be the largest integer
which is strictly less than a. For a pair (2, r) € C and an integer k = 1,

let
(1241 1124
(tr)_2 * X ES "Té_k
i=0 j=0
Iy = 0.
Then

.k
lim I(t,r)f = I(t,r)f
k—00

exists in L,-norm for each (#, r) € C and each f € L,. This defines I, ) as

a positive linear operator on L; with norm

1l < tr

If ¢ is a bounded linear function on L,, then

stonh) = [o [ swnas, fe L,

Here we note that if # € L, is a nonzero function, then I b s also
nonzero for each (¢, r) € C which follows from the fact that U, ,)h

converges to h as (¢, r) = O~

LemMa 2.1. Let {F(u, v) }(u’v)e g be a superadditive process on B. Then

k
I @ Fy—atn) = 1Y, (& Fy-0) = F,,,
for every (u, v) € B and for each sufficiently large integer k
2ku and 2% are integers.
Proof. Let s = 27k+D and u = 2mys, v = 2m,s. Then

Ié‘ut;(4k+1F2—<k+l))

2my—1 2my—1 ) _
= 2 2 T'z—(k+1)S12—(k+|)F2v(k+1)
i= Jj=

(=)
(=)
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2m =1 2my—1
= > TIS/F,
i=0 ;=0
2m;—1 rmy -1
= X Ti| X SL(F + S,F)
i=0 - =0
my—1 b ny—1 v
= 2 st 2 Tfls(Fs + TA'FS) + Ss 2 TI2>(Fs + T\Fs)]
j=0 - =0 i=0
my—1 rm
= SJQs E IZ.V(FQS,.\') + S.YF(zS,S))]
j=0 - =0

my—1 m;—1

I . y
2 ShThFue, by (1.8)(a) and (b)

I\

k
= 14" Fy=+).
Now by superadditivity we see that, by induction,
k
I(u.v)(4 FZ_I\) é F(M,V)
giving the result desired.
LEMMA 2.2 Let {F,,\}.\ep be a positive superadditive process on B.

Let

oo 1

S = ae liminf —F, .
(u,y)—0 uy
(uy)EB

Then: a) If h € L| and h = f, then
lwh = Fy,, Joreach (u,v) € B.
b) f < oo a.e. and

F(u.v)‘Jm(‘) as (u,v) | Oin B.

Proof. Let
f nf 1
= in —F
" $1,5, 527" 858 G1.52)
(s1,5) €EB
and let

h, = min(h, f,).
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Then f, = f,,, for each positive integer n. Thus h, 1 h as n — oo, that is
why it is enough to show that
I(u.v)hn = F(u.v)'
If Kk = n is an integer such that both 2k and 2%y are also integers,

then
k k ¢
Iy, = 15, (& Fy-0) = F,,

(u,v)
since
1
n = (51.8)

S153

for every (s, 5,) € B withs; =2 ", i = 1, 2. Thus this implies in turn

that
I(u,v)hn = F(u.v)
giving (a).
If f = oo on a set of positive measure, then there is a nonzero

h € L, such that Mh = f for each constant M = 0. Hence
Ml h = F,, foreach M = 0

(u,y

by (a). This is a contradiction since L is a nonzero function and

F.,) € L;. Now we observe that

F,

(”I'VI) é F(uZ*VZ) lf ul ; u2 and Vl i V2

where (u;, v;) € B, i = 1, 2, by superadditivity and the positivity of
{U,»} If F,,, does not decrease to 0 a.e. as (u, v) — O, then f would be
oo on a set of positive measure.

LEMMA 2.3. Let {G, )} v)e p be a positive additive process on B. Then
there exists a unique continuous additive process {G(, ,\} vy e c that extends
{G(u,v)}(u,v) €B-

Proof. 1t is known that [3]

1
q — lim —G, exists a.e.
u—0 U
uebD
Then by the previous lemma G, | 0 a.e. and in L,-norm as (u, v) — O,
(u, v) € B. Therefore if (uy, v), (uy, v,) € B with (u, v)) < (uy, vp)
then

G () = Gyl

= HTu,G(uzful,vl) + SVIG("1~V2_V|)
-+ TuISle(uz,ul‘\,zfvl)”
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é ”G(MZ_MI'VI)H + ”G(ul’
+ “G(“Zhulv

Vz_"l)”
vz—v])”

which implies that {G, \}.,., e p is continuous on B. Here we also used
the fact that for any fixed v (or «) the additive process G, ,, | 0 as u — 0"
(or v — 07 resp.) through dyadic rationals [1]. Hence {Gu)Yu vyephasa
unique continuous extension

{G(’u,v)}(u.v)ERZ;

Additivity of this extension is straightforward.

Let {F,,)}u. vy c be a positive subadditive process (that is { — F, )} is
superadditive). For a pair (4, v) € B and an integer £ = 0 such that both
2ku and 2%y are also integer, let

k k k
G(u,v) = I(u,v)(4 Fy—+)
mp—1 my—1 _ )
= 2 2 ShH=«TH—xFy—k,
i=0 j=0
where (m,, m,) = (2*u, 2%v). Thus if
1
sup —

(uyy)eC Uy

fF(W)d,u =a < oo
then

j’G(ku,v)dN = mym, /Fz‘AdH = (uv)a.
Moreover by Lemma 2.1 (applied to {—F.)}) we have
k k+1
F(‘N’) = G(M,V) = (uv)*
Hence

k
G(u,v) 1 G(,,,v) S Ll as k — oo.

Obviously {Gf"u,v)}(u’v)E 5 is an additive process for every k = 0. Therefore
whenever k is sufficiently large we obtain a positive additive process
{G(u.v)}(w)eB such that

Fow = G, foreach (s, v) € B.

Now extend {G, )} ep t0 R2+ by Lemma 2.3 and denote it by

{G(u,v)}(u,v)EC'
Let (u, v) € C be fixed and let

(u,v) = (t,r) + (x,»)
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for (¢, r) € B and (x, y) € C. Then

F(LH) G(uv)

= [Fo) — Gupnl + T[F ) = Gl

T S Euyy = Gupd + TS E () = Gy
T,[F.‘. 7 (x.r)] + Sr[F(t._r) - G(t.y)]
T TS F ) = G

lIA

since
Fopy — Gupy = 0.
On the other hand,
|\F(L,Jv) - G(,”)H = HF(‘\‘J) \r)H + H (ty) (,Jv)ll
+ ”F(x.y) - G(.\:)')”
S2x+ty+ xpa < co.

Thus [|F, ) = Gl can be made arbitrarily small. This together with the
above inequality implies that
Gy = F,, for each (u,v) € C.

So we have obtained:
Fact 2.4 Let {Fu‘,)}(uv)eC be a positive subadditive process. If
sup / Flundp = a < oo,
(uv)e C uy
then there is a positive additive process {G, )} vy c such that

F,

(u,v

y = G,y foreach (u,v) € C.

Secondly let {F,, }wuvec be a positive superadditive process. For
(u, v) € B and sufficiently large integer & = 0 again let

k k k

G(u,v) = I(u,v)(4 FZN")‘
Assume that {Gfu,v)}(u,v)ec is an additive process satisfying

0= G{u,v) = F(u,v)» (u, v) € C.
Consequently F,—« = G5—+, and hence

k

G(uv) = I(uv)(4 2 I‘) = G(uv)

by the additivity of {G(W)}. Also by Lemma 2.1, we have

k k+1
Fouvy = Gy = Gy = 0.
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Hence Gf",m | G, exists as k — co, and satisifies
Gy = G,y = F,,, foreach (u,v) € B.

Additivity of {G, )} ep 1s obvious. Hence, by continuity, it can be
extended to all (u, v) € C. Moreover for a fixed (u, v) € Clet(z,r) € B
and (x, y) € C such that

(u,v)y =(,r) + (x,p).

Then
Gluwy = Fruw
= Gy = Funl + TGy = Fiuon]
+ 8,0Guyy = Fupyl + TGy — Fiop)
= TG = Fun) + S1Guy) = Fuy)
+ T.8,[Gy) = Fapl

since

Gury = Furn = 0.

By Lemma 2.2 both HG(W)II and IIF(x,_‘,)II decrease to 0 as (x, y) — O. The
same holds for IIG(X,,)II, ||G(,,_V)||’ IIF(”)II and HF(,J,)H as x or y tend to ot.
Consequently we have

Gluyy = Fuyy
Thus

Gy = F,,) foreach (u,v) € C.
This gives:

Fact 2.5. Given a positive superadditive process
{F(u,v)}(u,v)EC'
Then there is a maximal additive process {G, )} ec such that
0 =Gy, = F,, foreach(uv)eC
and such that if {G{,,}(,,)ec 1s another process with
0= zu,v) = F(u,v)
then also

qu’v) é G(M,V)'
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THEOREM 2.6. Let {F, ) }uv e c be a superadditive process such that

1
2.7) sup —

fF(;,v)du < oo.
(uv)€C Uy

Then there are two positive additive processes {qu,v)}(u,v)EC’ i=1,2,such
that

1 2
{Fu,v) + G(u.v) - G(u,v)}(u,v)GC

is a positive superadditive process that does not dominate any nonzero positive
additive process.

Proof. {F(,,)}(u»)e c IS @ positive subadditive process. Hence by Fact 2.4

we can find a positive additive process

|
{G(u,v)}(u,v)EC
such that

G(lu,v) = F,,, foreach(u,v)e C

Then {F,,, + G(lu‘v)} becomes a positive superadditive process. Then
applying Fact 2.5 we get a maximal additive process

2
{G(u,v)}(u,v)GC
such that
2 1
0=G,, = Fow t G(u’v).

Hence {F,,, + G(]u.v) - G(zuqv)} is the process with desired properties.

uy)
Remark 2.8. For any positive process {G, )} e c if the limit

1
=g — Ilim —G
& 9 (uy)—0 Uy ()

exists a.e., then it is finite a.e. by Lemma 2.2(b). Since we know that the
limits
lim SG, i=1,2
L= _— imm — , =12,
& 1 u—0" u2 4
exist and are finite a.e. [3], Theorem 2.6 shows that given any
superadditive process
{F(u,v)}(u,v)eC

with (2.7), we can assume without loss of generality that it is a positive
superadditive process that does not dominate any nonzero positive
additive process.
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3. Almost everywhere convergence. Given a strongly continuous
semigroup {K,},=, of positive L,-contractions with K, = I. In [1] a set
E € Zis called bounded if there exists a positive constant A < oo and
t > 0 such that

3.1 /K[fa’u = A /fdu, for each f € L (E).
The following lemma which we will use here is due to M. A. Akc¢oglu
(1].

LEMMA 3.2. Given any g € LfL and € > 0. Then there exists a bounded
set E € % such that

./E' gdp < e

Proof. Let K} be the adjoint transformation of K,. Then a bounded set
can be characterized by the fact that

K¥1 = A ae. on E.
Since K¥1 = K¥1 = 1, whenever 0 = s = ¢, (1.3) implies that

g — lim K}l =1 ae.
=0

Then the proof follows.

LeMMA 3.3. For any A € Fands > 0,

L
hlrgl; o Kfxqdr = x4 ae.
s

Proof. Since K¥x, = K1 = 1 a.e., we see that
1 s
B /0 K¥xdr = 1 aee. for each s > 0.

Now observe that if u, € L, is strictly positive a.e., then

©° —
u= .[0 e 'Kudt
is an L, -function and is also strictly positive a.e. with
e 'Ku = u

Therefore the operator P, = e 'K* is a positive contraction on L,(X, udy).
Moreover {P,},=, on L,(X, udp) is also a strongly continuous semigroup
of positive L,-contractions [12]. Now consider the process {R,};=q,
where

S
RS = /0 PtxAdt'
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This is an additive process on L,(X, udu) with respect to the semigroup
{P,}. Then we know that [11], [2], [4]

. R .
(3.4) ¢ — lim = = { exists a.e.
s—0 8

and is finite a.e. Recalling that P, = K} = I, we see that ¢ = x,. Then

s

L[, 1 (s P R;
— ) o Kixqdr = = | (0 — e DKExydr + —.
s s s

Since

1 [ _
g—lim- | (1 —e ") Kixdr =0ace,
=05 70 ’

we obtain by (3.4) that

1 N
q — 1ir18; /0 K¥x, dr = x4 ae.
s

Remark 3.5. In the n-parameter case, when n > 2, (3.4) is given by
Terrel’s Theorem [14].

COROLLARY 3.6. Given A € # h € L1+(A) and € > 0. There exists a
subset B of A with fB hdp. < € positive constants B = By < 0o and 5" such
that

1 (¢
/ [; [ kexadr| o = 8 [,
Jfor each s with 0 = s = 5.
Proof. The conclusion of this corollary is the same as asserting the
existence of a bounded set 4\ B with constant § such that
/;hdu < e foreachh € L1+(A).

Since
1 [
— lim - K¥x dr = a.e.
7 s—0 § 0 rXa Xa
by Lemma 3.3, the result follows easily.

For convenience, in the two parameter case we will define a bounded set
somewhat differently than in [1]:

Definition 3.7. A set E € % is called a bounded set if there exists a
positive constant A = Ap and u > 0, v > 0 such that
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1
(3.8) — /I(uv)fdu =\ fEfdp for each f € L.
uv '

LEMMA 3.9. Given any g € L1+ and any € > 0. Then there exists a
bounded set E € F such that

e gdp < e
Proof. By Lemma 3.2 find @ > 0, u > 0 and a set A € % with

A[.fdu < €/2

such that

(3.10) fT,fdu = a /Afdu

for each f € L,+ and for each ¢t with 0 = ¢t = u. Then by Corollary 3.6
find B > 0, v > 0 and a subset B of 4 with

Lfd,u <e€/2

such that
1 [ ]
(3.11) f[; fo S¥Xadr [fdp = B |\ 5 Jdp

for each s with 0 = s = v. Therefore if /' € LFL(A\B), then

[ttt = [ ([ [ s1s0a]a
f; fo U Tz(XAS,f)du]drdt

«a /0 .[0 fXAS,fdudrdt by (3.10)
since x4S,f € L; (4). So

fI(u,v)fdP' = au f(v) foS,fdudr = au(,Bv ffdu)

By (3.11) since f € L, (A\B). Thus for each f € L, (4\B) we have
(3.8) where E = A\B and A = af3. Now take

[ = X4—p8 € L (A\B).
Moreover E = A U B and

€ €
/I;{gduz‘[‘(,gdu+/l;gdp<£+5=e.

v

%
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Lemma 3.12. Let {F, )}y e c be a positive superadditive process, and let
E be a bounded set. If

lim sup — f Flupdr >0,

(uv)—0 Uy

then {F, )} dominates a nonzero positive additive process

{G(u,v)}(u,v)EC'
Proof. Let ((x, B), (u, v) € C, then

1 u v
I(uv) F(a B) = — fo .[0 U(s,,sz)F(a,,B)dSldsl
af of

By superadditivity

1
I(uv)[ BFmB)]

1 u v
;B -/0 ./0 [F(“+S|-B+sz) N Tle(mS:z)

- Sst(s,,B) - (slsz)]dslds2

Since F,,, = 0 and S, and 7, are positive operators, we see that
1 1 uta [v+B8
Im)( BF(aﬁ)) = B /u fv Fy, 55145,

= Futar+p)

lIA

since F, ,, is increasing with increasing (s, 5,). Now let @, > 0 and
B, > 0 be sequences such that a, | 0, 8, | 0 as n — oo and such that

(3.13) lim — fF(a podn = K > 0.

n—0o0 01

For each fixed (u, v) € C, the sequence

1
( )
uy) a, B
( nlB (

is dominated by the integrable function F,,, ,+g, Hence one can
choose a subsequence of (a,, 8,), which we will also denote by (a,, B,),
such that

1
G(u,v) = w — 1lm I(uv)( B F(a B ))

n—>o00

exists for each (u, v) € B. This new process
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{G(u,v)}(u,v)eB

is a positive additive process, hence extends to a continuous additive
process

{G(u,v)}(u,v)EC'
If (uy, v)), (uy, v,) € B such that O < (u;, v;) < (4, v,), then we have
G(“]Jﬂ) = F(“2~"2)'
Hence by continuity,
Gy = F,,y foreach (u,v) € B,
and consequently
0=¢,, = F,, foreach(u,v)e C

as in Section 2.
Let A be the constant associated with the bounded set E and let (u, v) €
C be such that (3.8) holds. Then

1 1
I (—F )d _Z_Auvf———F dp.
f (u,v) anﬂn (anvﬁn) “ E aan (an‘iBn) ‘u

Since

1
[ rion
E anﬁn ( H’Bn)

by (3.13), we see that
Guwdr = AwK > 0
showing that {G, )} is a nonzero process and hence proving the lemma.

Before stating the following lemma it would be convenient to introduce
some notation: for a given process {F, )} and 1, r € RY, let

0tF(u,v) = F(u+t,v)’ ¢'rF(u,v) = F(u,v+r)
and
TtF(u,v) = (0t _Tt)F(u,v)’ 0rF(u,v) = (¢r - Sr)F(u,v)'
Then the superadditivity conditions (1.8)(a) and (b) take the forms
(1.8) (@) Fy, = o,F,,
(b/) F(t,v) = TIF(M,V)
and the strong superadditivity condition (1.9) takes the form

(1.9) F(t,,) = 'r,orF(uyv).
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LEMMA 3.14. Let {F, ) }uyec be a positive strongly superadditive
process. Let (a, B) € C, and definefor each (u,v) € C

Higy = = T)I =S )[ N Sz)dszds,]
)
+ (1 - Tu) @ 0 0 SSZF(SI,B)dSstl

+ - S\,)[i /; /g TSIF(a,sz)dszdSI]

f / S‘S2 AIF(a’B)d52dsl.

Then {H ?fv)}(u,v)EC is a positive additive process and

3.15) H® = (1 - )(1 - K)F .
( ) (u,v) a ,8 (uy)
Proof- 1f O < (u, v) < (a, B), then
opHE = (1 - T ){ / [(1 S,) / Fiy, )5

/ )dszldsl}
v fon = s [0 Fas

+ f So,Fiapds: ] ds.

Let
B v
BGV(X) = (I - Su) /0 F(x’sz)dsz + /0 Sst(X,,B)dSZ'
Then
o u
a,BH(u w==u—-T) /O BG,(s))ds, + .[0 BTG, (a)ds,.
Now

v
BG,(x) f o Fosnds)
B
+ v F(x,sz) - SVF(x,szﬁv)]dS2

v
+ /0 [SSZF(X,B) - SVF(X,B+SZ—V)]ds2

https://doi.org/10.4153/CJM-1985-023-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-023-6

SUPERADDITIVE PROCESSES 401

v B
= ,/.O F(x‘xz)déé + ‘/Av o Fqu‘\ )d52

/ Ssz v— 52 (x,B+s,— \)ds2
Also, similarly,

a,BH(uv) ./0 BG,(s))ds; + fu Br,G,(sy — u)ds,

_[ BT, 0 Tu— x]Gv(a + 5 = u)ds,.

Hence, combining the last two equations, we obtain
u v
(X,BH(L”) /0 fO F(s].s,)dSZdSl
u (B
+ ./0 , GVF(SI‘szﬂ,)dszdsl
u
+ f()/ sz V=S, (s,sz+B dS2dSl

[43
+ /u f T F(‘Y';uSzdSz)dSl
a« (B
+ /u /v TV (s, — s, —vyd52dS)

(43

+ f“ —/ SS TuOv— SzF(Sl_”~52+B*V)dS2dS1
u v

+ f() fo TtlTu—SlF(a-i—sl—u,sz)dszdsl
u (B

+ -[O /v Tt Tu—s, VF(51+a—u,S2‘v)dS2dSl

f f sz s, Tu—s, Oy— st(sl+a—u,52+[3—v)ds2dsl
= (¢ — u)(B — V)F,,

by (1.8") and (1.9’) together with the fact that both {7,} and {S,} are
positive operators and

Fuw =0 foreach (uy) € C.

Obviously {H(u,v)}(u,v)EC is an additive process. Since it is positive for
small values of (u, v) € C, it is positive for all (1, v) € C, consequently we
have (3.15) for each (u, v) € C.

Notice that since {H?fv)}(u,v) is a positive additive process,
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1
— = 1 aB
haﬂ — 4 u£?+ quu

exists and is finite a.e. for each (a, 8) € C [3]. Furthermore, if
1
=g — lim sup =F,
f 1 u—a()+ P u2 v
then 0 = f = h,p for each (a, B) € C.
Lemma 3.16. Let {F,,\}u.yec be a positive strongly superadditive
process and let A € F be a set. If

, 1
lim | ;—;F(u’v)dp =0,

(u,v)—0
then
. . .
q — lim —F, exists and is zero a.e. on A.
u—0 U
Proof. Let

) 1
=g — lim sup — F,.
S =4 ot Pz

If /> 0 on a subset of 4 with positive measure, then there exists an
L, -function 4 such that

_//; hdy > 0
and such that
0=h=f=h, foreach(a, p) € C.
Then by (a) of Lemma 2.2 we have
af
Tunh = Hi,,

But
H?uﬁ.v) = F(a,,B) + F((x,v+,8) + F(u+a,ﬁ) + 2F(u+¢x,v+ﬂ)
= 5F(u+a,v+ﬁ)
since £, ,) = 0 and is increasing as (u, v) increases. Hence, if O < (a, B)

< (u, v), then
1(u,v)h = 5F(2u,2v)’

or

1 1
‘//; [;I(u,v)h]dp’ =20 '[4 [4—qu(2u’2V)]d,U..
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This is a contradiction since the left hand side converges to f  hdp > 0 as
(u, v) = O, and the right hand side converges to zero.

THEOREM 3.17. Let {F,\\} . e ¢ be a strongly superadditive process such

that
1 _
sup — | F,,dp < oo
(uyv)eC uv ’
Then
g lF
0= Jim ot

exists and is finite a.e.

Proof. By the remarks of Section 2, without loss of generality we can
assume that {F, )} is a positive strongly superadditive process that does
not dominate any nonzero positive additive process. Hence if we can show
that

. 1
q — ul—l)l(’)n+ 7Fu = 0a.e,
then the proof will be completed. If £ € % is a bounded set, then
1
lim — f F, dp =0
(uy)—0 uv vE O
by Lemma 3.12. Hence we see that
) 1
q — ul_l)Igl+ ;Fu =0ae onk

by Lemma 3.16. Consequently

1
q— ,ﬁgh ;Fu =0ae onX
by Lemma 3.9.
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