DIFFERENTIATION OF MULTIPARAMETER SUPERADDITIVE PROCESSES

DOĞAN ÇÖMEZ

0. Introduction. In this article our purpose is to prove a differentiation theorem for multiparameter processes which are strongly superadditive with respect to a strongly continuous semigroup of positive L_{1} contractions (see Section 1 for definitions).

Recently, the differentiation theorem for superadditive processes with respect to a one-parameter semigroup of positive L_{1}-contractions has been proved by D. Feyel [9]. Another proof is given by M. A. Akçoğlu [1]. R. Emilion and B. Hachem [7] also proved the same theorem, but with an extra assumption on the process (see also [1]). The proof of this theorem for superadditive processes with respect to a Markovian semigroup of operators on L_{1} is given by M. A. Akçoglu and U. Krengel [4]. Thus [1] and [9] extend the result of [4] to the sub-Markovian setting. Here we will obtain the multiparameter sub-Markovian version of this theorem, namely Theorem 3.17 below.
Theorem 3.17 was proved by M. A. Akçoğlu and U. Krengel [5] for superadditive processes $\left\{F_{(u, v)}\right\}$ with respect to a semigroup of operators $\left\{U_{(t, r)}\right\}$ which is induced by measurable semigroup of measure preserving transformations on (X, \mathscr{F}, μ). In that paper the definition of superadditivity used is stronger than the superadditivity definition we consider in this work [5] but weaker than the strong superadditivity. R. Emilion and B. Hachem [8] proved Theorem 3.17 for strongly superadditive processes with respect to a Markovian semigroup $\left\{U_{(t, r)}\right\}$ of operators. The proof for the case that $\left\{F_{(u, v)}\right\}$ is an additive process with respect to a two-parameter semigroup of positive L_{1}-contractions $\left\{U_{(t, r)}\right\}$ which is strongly continuous for $(t, r)>\mathbf{O}$ was given by M. A. Akçoğlu and A. del Junco [3]. Hence 3.17 generalizes these theorems as well as Theorem 1.7 in [1].

Acknowledgement. I would like to express my gratitude to my supervisor, Professor M. A. Akçoğlu, for making the manuscript [1] available to me prior to publication and for his very helpful discussions and valuable remarks on the subject.

1. Definitions. Let \mathbf{R}^{2} be the usual two dimensional real vector space,
considered together with all its usual structure. The positive cone of \mathbf{R}^{2} is \mathbf{R}_{+}^{2} and the interior of \mathbf{R}_{+}^{2} is C. In particular \mathbf{R}^{2} is partially ordered in the usual way. Let $\mathbf{1}, \mathbf{O}$ and \mathbf{k} denote the vectors $(1,1),(0,0)$ and (k, k), for any real k, respectively.

Let (X, \mathscr{F}, μ) be a σ-finite measure space and $L_{1}=L_{1}(X, \mathscr{F}, \mu)$ be the classical Banach space of real valued integrable functions on $X . L_{1}^{+}$will denote the positive cone of L_{1}, and for any $E \in \mathscr{F}, L_{1}(E)=L_{1}(E, \mu)$ will denote the class of integrable functions with support in E. We shall not distinguish between the equivalence classes of functions and the individual functions. The relations below are often defined only modulo sets of measure zero; the words a.e. may or may not be omitted. For any $E \in \mathscr{F}, \chi_{E}$ will denote the characteristic function of E.

Let $\left\{T_{t}\right\}_{t \geqq 0}$ and $\left\{S_{r}\right\}_{r \geqq 0}$ be one-parameter strongly continuous semigroups of positive L_{1}-contractions (sub-Markovian operators) with $T_{0}=S_{0}=I$, the identity operator on L_{1}, and $T_{t} S_{r}=S_{r} T_{t}$ for each $t \geqq 0$ and $r \geqq 0$. This means that for each $t \geqq 0$ and $s \geqq 0, T_{t}$ and S_{r} are both bounded linear operators on L_{1} with $\left\|T_{t}\right\|_{1} \leqq 1$ and $\left\|S_{r}\right\|_{1} \leqq 1$ such that
(1.1) $T_{t} L_{1}^{+} \subset L_{1}^{+}$and $S_{r} L_{1}^{+} \subset L_{1}^{+}$,
(1.2) $T_{t} T_{s}=T_{t+s}$ and $S_{r} S_{p}=S_{r+p}$ for all $p, r, t, s \geqq 0$,

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}}\left\|T_{t} f-f\right\|_{1}=0=\lim _{s \rightarrow 0^{+}}\left\|S_{r} f-f\right\|_{1} \text { for all } f \in L_{1} . \tag{1.3}
\end{equation*}
$$

$\left\{T_{t}\right\}_{t \geqq 0}$ and $\left\{S_{r}\right\}_{r \geqq 0}$ are called Markovian operators if they satisfy

$$
\int T_{t} f d \mu=\int f d \mu=\int S_{r} f d \mu
$$

for all $t \geqq 0, s \geqq 0$ and for all $f \in L_{1}$ in addition to the conditions (1.1), (1.2) and (1.3). Consider the family

$$
\left\{U_{(t, r)}\right\}_{(t, r) \in \mathbf{R}_{+}^{2}}=\left\{T_{t} S_{r}\right\}_{(t, r) \in \mathbf{R}_{+}^{2}}
$$

which is a two-parameter strongly continuous semigroup of positive L_{1}-contractions with $U_{\mathbf{O}}=I$. So

$$
\begin{align*}
& U_{(t, r)} L_{1}^{+} \subset L_{1}^{+} \quad \text { for }(t, r) \in \mathbf{R}_{+}^{2}, \tag{1.4}\\
& U_{(t, r)} U_{(u, v)}=U_{t+u, r+v)} \text { for each }(t, r),(u, v) \in \mathbf{R}_{+}^{2}, \tag{1.5}\\
& \lim _{(t, r) \rightarrow \mathbf{0}}\left\|U_{(t, r)} f-f\right\|_{1}=0 \quad \text { for each } f \in L_{1} . \tag{1.6}
\end{align*}
$$

A family of functions $\left(F_{(u, v)}\right\}_{(u, v) \in C}$ is called a superadditive process (with respect to $\left\{U_{(t, r)}\right\}_{(t, r) \in \mathbf{R}_{+}^{2}}$) if it is superadditive with respect to each parameter separately [4], [10], [13], [6]; i.e.,

$$
\begin{equation*}
F_{(u, v)} \in L_{1} \quad \text { for each }(u, v) \in C \tag{1.7}
\end{equation*}
$$

(1.8) For each $(t, r) \in \mathbf{R}_{+}^{2}$ and $(u, v) \in C$ with $\mathbf{O} \leqq(t, r) \leqq(u, v)$
a) $\quad F_{(u, v)} \geqq F_{(u, r)}+U\left(_{0, r)} F_{(u, v-r)}\right.$ if $0<r<v$,
b) $\quad F_{(u, v)} \geqq F_{(t, v)}+U_{(t, 0)} F_{(u-t, v)} \quad$ if $0<t<u$.

If $\left\{-F_{(u, v)}\right\}$ is superadditive, then $\left\{F_{(u, v)}\right\}$ is called subadditive (with respect to $\left\{U_{(t, r)}\right\}$); and if both $\left\{F_{(u, v)}\right\}$ and $\left\{-F_{(u, v)}\right\}$ are superadditive, then $\left\{F_{(u, v)}\right\}$ is called additive [4], [3].

A family of functions $\left\{F_{(u, v)}\right\}_{(u, v) \in C}$ is called a strongly superadditive process (with respect to $\left\{U_{(t, r)}\right\}_{(t, r) \in \mathbf{R}_{+}^{2}}[\mathbf{1 3}]$ if it satisfies (1.7) and

$$
\begin{equation*}
\text { if }(t, r),(u, v) \in C \text { with } \mathbf{O}<(t, r)<(u, v) \tag{1.9}
\end{equation*}
$$

then

$$
\begin{aligned}
F_{(t, r)} & \leqq F_{(u, v)}-U_{(t, 0)} F_{(u-t, v)}-U_{(0, r)} F_{(u, v-r)} \\
& +U_{(t, r)} F_{(u-t, v-r)} .
\end{aligned}
$$

Any strongly superadditive process $\left\{F_{(u, v)}\right\}$ which satisfies

$$
\begin{equation*}
F_{(u, 0)}=F_{(0, v)} \equiv 0, u>0, v>0 \tag{1.10}
\end{equation*}
$$

is necessarily a superadditive process [13]. Below, when we mention a strongly superadditive process, we will mean a process satisfying (1.7), (1.9) and (1.10).

Let $D=\left\{m 2^{-k}: m, k=1,2, \ldots\right\}$ be the set of positive binary numbers, and let $D \times D=B$. A family of functions $\left\{F_{(u, v)}\right\}_{(u, v) \in B}$ defined on B will also be called superadditive process if $F_{(u, v)} \in L_{1}$ for each $(u, v) \in B$ and (1.8) is satisfied for each $(t, r),(u, v) \in B$. Similar definitions apply to subadditive and additive processes on B.
Throughout this paper only the two parameter case is considered and the extension of the results to arbitrary n-parameter case, $n \geqq 1$, is straightforward. By

$$
q-\lim _{(u, v) \rightarrow \mathbf{O}}
$$

we shall mean that the limit is taken as u and v approach to zero through the positive rational numbers [4], [3].
2. Positive superadditive processes. In this section will show that if $\left\{F_{(u, v)}\right\}$ is a superadditive process with

$$
\sup _{(u, v) \in C} \frac{1}{u v} \int F_{(u, v)}^{-} d \mu<\infty,
$$

where

$$
F_{(u, v)}^{-}=\max \left(0,-F_{(u, v)}\right),
$$

then it can be assumed to be a positive superadditive process with the further property that if $\left\{G_{(u, v)}\right\}$ is an additive process such that

$$
0 \leqq G_{(u, v)} \leqq F_{(u, v)} \quad \text { for each }(u, v) \in C
$$

then $G_{(u, v)}$ is identically zero.
A family $\left\{F_{(u, v)}\right\}_{(u, v) \in C}$ of L_{1}-functions is called continuous if $(u, v) \mapsto$ $F_{(u, v)}$ is a continuous function from C to L_{1} with the norm topology of L_{1}. Observe that if $f \in L_{1}$, then $\left\{U_{(t, r)} f\right\}$ is a continuous family. Hence

$$
I_{(t, r)} f=\int_{0}^{t} \int_{0}^{r} U_{\left(s_{1}, s_{2}\right)} f d s_{2} d s_{1}
$$

can be defined in the usual way as the L_{1}-limit of the corresponding Riemann sums. For convenience, we will consider a particular type of Riemann sums as in [1]. If α is a real number, let [α] be the largest integer which is strictly less than α. For a pair $(t, r) \in C$ and an integer $k \geqq 1$, let

$$
\begin{aligned}
& I_{(t, r)}^{k}=2^{-2 k} \sum_{i=0}^{\left[2^{k}\right]} \sum_{j=0}^{\left[r 2^{k}\right]} S_{2^{-k}}^{j} T_{2^{-k}}^{i} \\
& I_{\mathbf{O}}^{k}=0
\end{aligned}
$$

Then

$$
\lim _{k \rightarrow \infty} I_{(t, r)}^{k} f=I_{(t, r)} f
$$

exists in L_{1}-norm for each $(t, r) \in C$ and each $f \in L_{1}$. This defines $I_{(t, r)}$ as a positive linear operator on L_{1} with norm

$$
\left\|I_{(t, r)}\right\| \leqq t r .
$$

If ϕ is a bounded linear function on L_{1}, then

$$
\phi\left(I_{(t, r)} f\right)=\int_{0}^{t} \int_{0}^{r} \phi\left(U_{s} f\right) d s, \quad f \in L_{1}
$$

Here we note that if $h \in L_{1}^{+}$is a nonzero function, then $I_{(t, r)} h$ is also nonzero for each $(t, r) \in C$, which follows from the fact that $U_{(t, r)^{h}}$ converges to h as $(t, r) \rightarrow \mathbf{O}^{+}$.
Lemma 2.1. Let $\{F(u, v)\}_{(u, v) \in B}$ be a superadditive process on B. Then

$$
I_{(u, v)}^{k+1}\left(4^{k+1} F_{2^{-(k+1)}}\right) \leqq I_{(u, v)}^{k}\left(4^{k} F_{\left.\mathbf{2}^{-k}\right)} \leqq F_{(u, v)}\right.
$$

for every $(u, v) \in B$ and for each sufficiently large integer $k \geqq 0$ such that $2^{k} u$ and $2^{k} v$ are integers.

Proof. Let $s=2^{-(k+1)}$, and $u=2 m_{1} s, v=2 m_{2} s$. Then

$$
\begin{aligned}
& I_{(u, v)}^{k+1}\left(4^{k+1} F_{\mathbf{2}^{-(k+1)}}\right) \\
& =\sum_{i=0}^{2 m_{1}-1} \sum_{j=0}^{2 m_{2}-1} T_{2^{-(k+1)}}^{i} S_{2-(k+1)}^{j} F_{2^{-(k+1)}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=0}^{2 m_{1}-1} \sum_{j=0}^{2 m_{2}-1} T_{s}^{i} S_{s}^{j} F_{\mathrm{s}} \\
& =\sum_{i=0}^{2 m_{1}-1} T_{i}^{s}\left[\sum_{j=0}^{m_{2}-1} S_{2 s}^{j}\left(F_{\mathrm{s}}+S_{s} F_{\mathrm{s}}\right)\right] \\
& =\sum_{j=0}^{m_{2}-1} S_{2 s}^{j}\left[\sum_{i=0}^{m_{1}-1} T_{2 s}^{i}\left(F_{\mathrm{s}}+T_{s} F_{\mathrm{s}}\right)+S_{s} \sum_{i=0}^{m_{1}-1} T_{2 s}^{i}\left(F_{\mathrm{s}}+T_{s} F_{\mathrm{s}}\right)\right] \\
& \leqq \sum_{j=0}^{m_{2}-1} S_{2 s}^{j}\left[\sum_{i=0}^{m_{1}-1} T_{2 s}^{i}\left(F_{(2 s, s)}+S_{s} F_{(2 s, s)}\right)\right] \\
& \leqq \sum_{j=0}^{m_{2}-1} \sum_{i=0}^{m_{1}-1} S_{2 s}^{j} T_{2 s}^{i} F_{(2 s, 2 s)} \quad \text { by }(1.8)(\mathrm{a}) \text { and (b) } \\
& =I_{(u, v)}\left(4^{k} F_{2}-k\right) .
\end{aligned}
$$

Now by superadditivity we see that, by induction,

$$
I_{(u, v)}\left(4^{k} F_{\mathbf{2}}-k\right) \leqq F_{(u, v)}
$$

giving the result desired.
Lemma 2.2 Let $\left\{F_{(u, v)}\right\}_{(u, v) \in B}$ be a positive superadditive process on B. Let

$$
f=\text { a.e. } \liminf _{\substack{(u, v) \rightarrow \mathbf{O} \\(u, v) \in B}} \frac{1}{u v} F_{(u, v)} .
$$

Then: a) If $h \in L_{1}^{+}$and $h \leqq f$, then

$$
I_{(u, v)} h \leqq F_{(u, v)} \text { for each }(u, v) \in B .
$$

b) $f<\infty$ a.e. and

$$
F_{(u, v)}{ }^{0} 0 \text { as }(u, v) \downarrow \mathbf{O} \text { in } B .
$$

Proof. Let

$$
f_{n}=\inf _{\substack{s_{1}, s_{2} \leq 2-n \\\left(s_{1}, s_{2}\right) \in B}} \frac{1}{s_{1} s_{2}} F_{\left(s_{1}, s_{2}\right)}
$$

and let

$$
h_{n}=\min \left(h, f_{n}\right)
$$

Then $f_{n} \leqq f_{n+1}$ for each positive integer n. Thus $h_{n} \uparrow h$ as $n \rightarrow \infty$, that is why it is enough to show that

$$
I_{(u, v)} h_{n} \leqq F_{(u, v)} .
$$

If $k \geqq n$ is an integer such that both $2^{k} u$ and $2^{k} v$ are also integers, then

$$
I_{(u, v)}^{k} h_{n} \leqq I_{(u, v)}^{k}\left(4^{k} F_{\mathbf{2}^{-k}}\right) \leqq F_{(u, v)}
$$

since

$$
f_{n} \leqq \frac{1}{s_{1} s_{2}} F_{\left(s_{1}, s_{2}\right)}
$$

for every $\left(s_{1}, s_{2}\right) \in B$ with $s_{i} \leqq 2^{-n}, i=1,2$. Thus this implies in turn that

$$
I_{(u, v)} h_{n} \leqq F_{(u, v)}
$$

giving (a).
If $f=\infty$ on a set of positive measure, then there is a nonzero $h \in L_{1}^{+}$such that $M h \leqq f$ for each constant $M \geqq 0$. Hence

$$
M I_{(u, v)} h \leqq F_{(u, v)} \text { for each } M \geqq 0
$$

by (a). This is a contradiction since $I_{(u, v)} h$ is a nonzero function and $F_{(u, v)} \in L_{1}$. Now we observe that

$$
F_{\left(u_{1}, v_{1}\right)} \geqq F_{\left(u_{2}, v_{2}\right)} \text { if } u_{1} \geqq u_{2} \text { and } v_{1} \geqq v_{2}
$$

where $\left(u_{i}, v_{i}\right) \in B, i=1,2$, by superadditivity and the positivity of $\left\{U_{(t, r)}\right\}$. If $F_{(u, v)}$ does not decrease to 0 a.e. as $(u, v) \rightarrow \mathbf{O}$, then f would be ∞ on a set of positive measure.

Lemma 2.3. Let $\left\{G_{(u, v)}\right\}_{(u, v) \in B}$ be a positive additive process on B. Then there exists a unique continuous additive process $\left\{G_{(u, v)}^{\prime}\right\}_{(u, v) \in C}$ that extends $\left\{G_{(u, v)}\right\}_{(u, v) \in B}$.

Proof. It is known that [3]

$$
q-\lim _{\substack{u \rightarrow 0 \\ u \in D}} \frac{1}{u^{2}} G_{\mathbf{u}} \text { exists a.e. }
$$

Then by the previous lemma $G_{(u, v)} \downarrow 0$ a.e. and in L_{1}-norm as $(u, v) \rightarrow \mathbf{O}$, $(u, v) \in B$. Therefore if $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in B$ with $\left(u_{1}, v_{1}\right)<\left(u_{2}, v_{2}\right)$ then

$$
\begin{aligned}
& \left\|G_{\left(u_{2}, v_{2}\right)}-G_{\left(u_{1}, v_{1}\right)}\right\| \\
& =\| T_{u_{1}} G_{\left(u_{2}-u_{1}, v_{1}\right)}+S_{v_{1}} G_{\left(u_{1}, v_{2}-v_{1}\right)} \\
& +T_{u_{1}} S_{v_{1}} G_{\left(u_{2}-u_{1}, v_{2}-v_{1}\right)} \|
\end{aligned}
$$

$$
\begin{aligned}
& \leqq\left\|G_{\left(u_{2}-u_{1}, v_{1}\right)}\right\|+\left\|G_{\left(u_{1}, v_{2}-v_{1}\right)}\right\| \\
& +\left\|G_{\left(u_{2}-u_{1}, v_{2}-v_{1}\right)}\right\|
\end{aligned}
$$

which implies that $\left\{G_{(u, v)}\right\}_{(u, v) \in B}$ is continuous on B. Here we also used the fact that for any fixed v (or u) the additive process $G_{(u, v)} \downarrow 0$ as $u \rightarrow 0^{+}$ (or $v \rightarrow 0^{+}$resp.) through dyadic rationals [1]. Hence $\left\{G_{(u, v)}\right\}_{(u, v) \in B}$ has a unique continuous extension

$$
\left\{G_{(u, v)}^{\prime}\right\}_{(u, v) \in \mathbf{R}^{2}}
$$

Additivity of this extension is straightforward.
Let $\left\{F_{(u, v)}\right\}_{(u, v) \in C}$ be a positive subadditive process (that is $\left\{-F_{(u, v)}\right\}$ is superadditive). For a pair $(u, v) \in B$ and an integer $k \geqq 0$ such that both $2^{k} u$ and $2^{k} v$ are also integer, let

$$
\begin{aligned}
G_{(u, v)}^{k} & =I_{(u, v)}^{k}\left(4^{k} F_{\mathbf{2}}-k\right) \\
& =\sum_{i=0}^{m_{1}-1} \sum_{j=0}^{m_{2}-1} S_{2^{-k}}^{j} T_{2-k}^{i} F_{\mathbf{2}^{-k},}
\end{aligned}
$$

where $\left(m_{1}, m_{2}\right)=\left(2^{k} u, 2^{k} v\right)$. Thus if

$$
\sup _{(u, v) \in C} \frac{1}{u v} \int F_{(u, v)} d \mu=\alpha<\infty
$$

then

$$
\int G_{(u, v)}^{k} d \mu \leqq m_{1} m_{2} \int F_{2}-k d \mu \leqq(u v) \alpha
$$

Moreover by Lemma 2.1 (applied to $\left\{-F_{(u, v)}\right\}$) we have

$$
F_{(u, v)} \leqq G_{(u, v)}^{k} \leqq G_{(u, v)}^{k+1} .
$$

Hence

$$
G_{(u, v)}^{k} \uparrow G_{(u, v)} \in L_{1} \quad \text { as } k \rightarrow \infty .
$$

Obviously $\left\{G_{(u, v)}^{k}\right\}_{(u, v) \in B}$ is an additive process for every $k \geqq 0$. Therefore whenever k is sufficiently large we obtain a positive additive process $\left\{G_{(u, v)}\right\}_{(u, v) \in B}$ such that

$$
F_{(u, v)} \leqq G_{(u, v)} \quad \text { for each }(u, v) \in B .
$$

Now extend $\left\{G_{(u, v)}\right\}_{(u, v) \in B}$ to \mathbf{R}_{+}^{2} by Lemma 2.3 and denote it by

$$
\left\{G_{(u, v)}\right\}_{(u, v) \in C} .
$$

Let $(u, v) \in C$ be fixed and let

$$
(u, v)=(t, r)+(x, y)
$$

$$
\text { for } \begin{aligned}
(t, r) & \in B \text { and }(x, y) \in C . \text { Then } \\
& F_{(u, v)}-G_{(u, v)} \\
& \leqq\left[F_{(t, r)}-G_{(t, r)}\right]+T_{t}\left[F_{(x, r)}-G_{(x, r)}\right] \\
& +S_{r}\left[F_{(t, y)}-G_{(t, y)}\right]+T_{t} S_{r}\left[F_{(x, y)}-G_{(x, y)}\right] \\
& \leqq T_{t}\left[F_{(x, r)}-G_{(x, r)}\right]+S_{r}\left[F_{(t, y)}-G_{(t, y)}\right] \\
& +T_{t} S_{r}\left[F_{(x, y)}-G_{(x, y)}\right]
\end{aligned}
$$

since

$$
F_{(t, r)}-G_{(t, r)} \leqq 0
$$

On the other hand,

$$
\begin{aligned}
\left\|F_{(u, v)}-G_{(u, v)}\right\| & =\left\|F_{(x, r)}-G_{(x, r)}\right\|+\left\|F_{(t, y)}-G_{(t, v)}\right\| \\
& +\left\|F_{(x, y)}-G_{(x, y)}\right\| \\
& \leqq 2(x+y+x y) \alpha<\infty .
\end{aligned}
$$

Thus $\left\|F_{(u, v)}-G_{(u, v)}\right\|$ can be made arbitrarily small. This together with the above inequality implies that

$$
G_{(u, v)} \geqq F_{(u, v)} \text { for each }(u, v) \in C \text {. }
$$

So we have obtained:
Fact 2.4 Let $\left\{F_{(u, v)}\right\}_{(u, v) \in C}$ be a positive subadditive process. If

$$
\sup _{(u, v) \in C} \frac{1}{u v} \int F_{(u, v)} d \mu=\alpha<\infty
$$

then there is a positive additive process $\left\{G_{(u, v)}\right\}_{(u, v) \in C}$ such that

$$
F_{(u, v)} \leqq G_{(u, v)} \text { for each }(u, v) \in C .
$$

Secondly let $\left\{F_{(u, v)}\right\}_{(u, v) \in C}$ be a positive superadditive process. For ($u, v) \in B$ and sufficiently large integer $k \geqq 0$ again let

$$
G_{(u, v)}^{k}=I_{(u, v)}^{k}\left(4^{k} F_{2}-k\right) .
$$

Assume that $\left\{G_{(u, v)}^{\prime}\right\}_{(u, v) \in C}$ is an additive process satisfying

$$
0 \leqq G_{(u, v)}^{\prime} \leqq F_{(u, v)}, \quad(u, v) \in C .
$$

Consequently $F_{2^{-k}} \geqq G_{2}^{\prime-k}$, and hence

$$
G_{(u, v)}^{k} \geqq I_{(u, v)}^{k}\left(4^{k} G_{2}^{\prime}-k\right)=G_{(u, v)}^{\prime}
$$

by the additivity of $\left\{G_{(u, v)}^{\prime}\right\}$. Also by Lemma 2.1, we have

$$
F_{(u, v)} \geqq G_{(u, v)}^{k} \geqq G_{(u, v)}^{k+1} \geqq 0 .
$$

Hence $G_{(u, v)}^{k} \downarrow G_{(u, v)}$ exists as $k \rightarrow \infty$, and satisifies

$$
G_{(u, v)}^{\prime} \leqq G_{(u, v)} \leqq F_{(u, v)} \text { for each }(u, v) \in B .
$$

Additivity of $\left\{G_{(u, v)}\right\}_{(u, v) \in B}$ is obvious. Hence, by continuity, it can be extended to all $(u, v) \in C$. Moreover for a fixed $(u, v) \in C$ let $(t, r) \in B$ and $(x, y) \in C$ such that

$$
(u, v)=(t, r)+(x, y) .
$$

Then

$$
\begin{aligned}
& G_{(u, v)}-F_{(u, v)} \\
& \leqq\left[G_{(t, r)}-F_{(t, r)}\right]+T_{t}\left[G_{(x, r)}-F_{(x, r)}\right] \\
& +S_{r}\left[G_{(t, v)}-F_{(t, y)}\right]+T_{t} S_{r}\left[G_{(x, y)}-F_{(x, y)}\right] \\
& \leqq T_{t}\left[G_{(x, r)}-F_{(x, r)}\right]+S_{r}\left[G_{(t, v)}-F_{(t, y)}\right] \\
& +T_{t} S_{r}\left[G_{(x, y)}-F_{(x, y)}\right]
\end{aligned}
$$

since

$$
G_{(t, r)}-F_{(t, r)} \leqq 0 .
$$

By Lemma 2.2 both $\left\|G_{(x, y)}\right\|$ and $\left\|F_{(x, y)}\right\|$ decrease to 0 as $(x, y) \rightarrow \mathbf{O}$. The same holds for $\left\|G_{(x, r)}\right\|,\| \|_{(t, y)}\|,\| F_{(x, r)} \|$ and $\left\|F_{(t, y)}\right\|$ as x or y tend to 0^{+}. Consequently we have

$$
G_{(u, v)} \leqq F_{(u, v)} .
$$

Thus

$$
G_{(u, v)} \leqq F_{(u, v)} \quad \text { for each }(u, v) \in C .
$$

This gives:
Fact 2.5. Given a positive superadditive process

$$
\left\{F_{(u, v)}\right\}_{(u, v) \in C} .
$$

Then there is a maximal additive process $\left\{G_{(u, v)}\right\}_{(u, v) \in C}$ such that

$$
0 \leqq G_{(u, v)} \leqq F_{(u, v)} \text { for each }(u, v) \in C
$$

and such that if $\left\{G_{(u, v)}^{\prime}\right\}_{(u, v) \in C}$ is another process with

$$
0 \leqq G_{(u, v)}^{\prime} \leqq F_{(u, v)}
$$

then also

$$
G_{(u, v)}^{\prime} \leqq G_{(u, v)} .
$$

Theorem 2.6. Let $\left\{F_{(u, v)}\right\}_{(u, v) \in C}$ be a superadditive process such that

$$
\begin{equation*}
\sup _{(u, v) \in C} \frac{1}{u v} \int F_{(u, v)}^{-} d \mu<\infty \tag{2.7}
\end{equation*}
$$

Then there are two positive additive processes $\left\{G_{(u, v)}^{i}\right\}_{(u, v) \in C}, i=1,2$, such that

$$
\left\{F_{(u, v)}+G_{(u, v)}^{1}-G_{(u, v)}^{2}\right\}_{(u, v) \in C}
$$

is a positive superadditive process that does not dominate any nonzero positive additive process.

Proof. $\left\{F_{(u, v)}^{-}\right\}_{(u, v) \in C}$ is a positive subadditive process. Hence by Fact 2.4 we can find a positive additive process

$$
\left\{G_{(u, v)}^{1}\right\}_{(u, v) \in C}
$$

such that

$$
G_{(u, v)}^{1} \geqq F_{(u, v)}^{-} \quad \text { for each }(u, v) \in C .
$$

Then $\left\{F_{(u, v)}+G_{(u, v)}^{1}\right\}$ becomes a positive superadditive process. Then applying Fact 2.5 we get a maximal additive process

$$
\left\{G_{(u, v)}^{2}\right\}_{(u, v) \in C}
$$

such that

$$
0 \leqq G_{(u, v)}^{2} \leqq F_{(u, v)}+G_{(u, v)}^{1} .
$$

Hence $\left\{F_{(u, v)}+G_{(u, v)}^{1}-G_{(u, v)}^{2}\right\}$ is the process with desired properties.
Remark 2.8. For any positive process $\left\{G_{(u, v)}\right\}_{(u, v) \in C}$ if the limit

$$
g=q-\lim _{(u, v) \rightarrow \mathbf{0}} \frac{1}{u v} G_{(u, v)}
$$

exists a.e., then it is finite a.e. by Lemma 2.2(b). Since we know that the limits

$$
g_{i}=q-\lim _{u \rightarrow 0^{+}} \frac{1}{u^{2}} G_{\mathbf{u}}^{i}, \quad i=1,2,
$$

exist and are finite a.e. [3], Theorem 2.6 shows that given any superadditive process

$$
\left\{F_{(u, v)}\right\}_{(u, v) \in C}
$$

with (2.7), we can assume without loss of generality that it is a positive superadditive process that does not dominate any nonzero positive additive process.
3. Almost everywhere convergence. Given a strongly continuous semigroup $\left\{K_{t}\right\}_{t \geqq 0}$ of positive L_{1}-contractions with $K_{0}=I$. In [1] a set $E \in \mathscr{F}$ is called bounded if there exists a positive constant $\lambda<\infty$ and $t>0$ such that

$$
\begin{equation*}
\int K_{t} f d \mu \geqq \lambda \int f d \mu, \text { for each } f \in L_{1}^{+}(E) \tag{3.1}
\end{equation*}
$$

The following lemma which we will use here is due to M. A. Akçoğlu [1].

Lemma 3.2. Given any $g \in L_{1}^{+}$and $\epsilon>0$. Then there exists a bounded set $E \in \mathscr{F}$ such that

$$
\int_{E^{\star}} g d \mu<\epsilon
$$

Proof. Let K_{t}^{*} be the adjoint transformation of K_{t}. Then a bounded set can be characterized by the fact that

$$
K_{t}^{*} 1 \geqq \lambda \text { a.e. on } E .
$$

Since $K_{t}^{*} 1 \leqq K_{s}^{*} 1 \leqq 1$, whenever $0 \leqq s \leqq t$, (1.3) implies that

$$
q-\lim _{t \rightarrow 0} K_{t}^{*} 1=1 \text { a.e. }
$$

Then the proof follows.
Lemma 3.3. For any $A \in \mathscr{F}$ and $s>0$,

$$
\lim _{s \downarrow 0} \frac{1}{s} \int_{0}^{s} K_{r}^{*} \chi_{A} d r=\chi_{A} \text { a.e. }
$$

Proof. Since $K_{t}^{*} \chi_{A} \leqq K_{t}^{*} 1 \leqq 1$ a.e., we see that

$$
\frac{1}{s} \int_{0}^{s} K_{r}^{*} \chi_{A} d r \leqq 1 \text { a.e. for each } s>0
$$

Now observe that if $u_{0} \in L_{1}^{+}$is strictly positive a.e., then

$$
u=\int_{0}^{\infty} e^{-t} K_{t} u_{0} d t
$$

is an L_{1}^{+}-function and is also strictly positive a.e. with

$$
e^{-t} K_{t} u \leqq u
$$

Therefore the operator $P_{t}=e^{-t} K_{t}^{*}$ is a positive contraction on $L_{1}(X, u d \mu)$. Moreover $\left\{P_{t}\right\}_{t \geqq 0}$ on $L_{1}(X, u d \mu)$ is also a strongly continuous semigroup of positive L_{1}-contractions [12]. Now consider the process $\left\{R_{s}\right\}_{s \geqq 0}$, where

$$
R_{s}=\int_{0}^{s} P_{t} \chi_{A} d t
$$

This is an additive process on $L_{1}(X, u d \mu)$ with respect to the semigroup $\left\{P_{t}\right\}$. Then we know that [11], [2], [4]

$$
\begin{equation*}
q-\lim _{s \rightarrow 0} \frac{R_{s}}{s}=\psi \text { exists a.e. } \tag{3.4}
\end{equation*}
$$

and is finite a.e. Recalling that $P_{0}=K_{0}^{*}=I$, we see that $\psi=\chi_{A}$. Then

$$
\frac{1}{s} \int_{0}^{s} K_{r}^{*} \chi_{A} d r=\frac{1}{s} \int_{0}^{s}\left(1-e^{-r}\right) K_{r}^{*} \chi_{A} d r+\frac{R_{s}}{s}
$$

Since

$$
q-\lim _{s \rightarrow 0} \frac{1}{s} \int_{0}^{s}\left(1-e^{-r}\right) K_{r}^{*} \chi_{A} d r=0 \text { a.e. }
$$

we obtain by (3.4) that

$$
q-\lim _{s \rightarrow 0} \frac{1}{s} \int_{0}^{s} K_{r}^{*} \chi_{A} d r=\chi_{A} \text { a.e. }
$$

Remark 3.5. In the n-parameter case, when $n>2$, (3.4) is given by Terrel's Theorem [14].

Corollary 3.6. Given $A \in \mathscr{F}, h \in L_{1}^{+}(A)$ and $\epsilon>0$. There exists a subset B of A with $\int_{B} h d \mu<\epsilon$ positive constants $\beta=\beta_{B}<\infty$ and s' such that

$$
\int\left[\frac{1}{s} \int_{0}^{s} K_{r}^{*} \chi_{A} d r\right](h) d \mu \geqq \beta \int_{A \backslash B} h d \mu
$$

for each s with $0 \leqq s \leqq s^{\prime}$.
Proof. The conclusion of this corollary is the same as asserting the existence of a bounded set $A \backslash B$ with constant β such that

$$
\int_{B} h d \mu<\epsilon \quad \text { for each } h \in L_{1}^{+}(A)
$$

Since

$$
q-\lim _{s \rightarrow 0} \frac{1}{s} \int_{0}^{s} K_{r}^{*} \chi_{A} d r=\chi_{A} \text { a.e. }
$$

by Lemma 3.3, the result follows easily.
For convenience, in the two parameter case we will define a bounded set somewhat differently than in [1]:

Definition 3.7. A set $E \in \mathscr{F}$ is called a bounded set if there exists a positive constant $\lambda=\lambda_{E}$ and $u>0, v>0$ such that
(3.8) $\frac{1}{u v} \int I_{(u, v)} f d \mu \geqq \lambda \int_{E} f d \mu \quad$ for each $f \in L_{1}^{+}$.

Lemma 3.9. Given any $g \in L_{1}^{+}$and any $\epsilon>0$. Then there exists a bounded set $E \in \mathscr{F}$ such that

$$
\int_{E^{\bullet}} g d \mu<\epsilon
$$

Proof. By Lemma 3.2 find $\alpha>0, u>0$ and a set $A \in \mathscr{F}$ with

$$
\int_{A^{c}} f d \mu<\epsilon / 2
$$

such that
(3.10) $\int T_{t} f d \mu \geqq \alpha \int_{A} f d \mu$
for each $f \in L_{1}^{+}$and for each t with $0 \leqq t \leqq u$. Then by Corollary 3.6 find $\beta>0, v>0$ and a subset B of A with

$$
\int_{B} f d \mu<\epsilon / 2
$$

such that

$$
\begin{equation*}
\int\left[\frac{1}{s} \int_{0}^{s} S_{r}^{*} \chi_{A} d r\right] f d \mu \geqq \beta \int_{A \backslash B} f d \mu \tag{3.11}
\end{equation*}
$$

for each s with $0 \leqq s \leqq v$. Therefore if $f \in L_{1}^{+}(A \backslash B)$, then

$$
\begin{aligned}
\int I_{(u, v)} f d \mu & =\int\left[\int_{0}^{u} \int_{0}^{v} S_{r} T_{t} f d r d t\right] d \mu \\
& \geqq \int_{0}^{u} \int_{0}^{v}\left[\int T_{t}\left(\chi_{A} S_{r} f\right) d \mu\right] d r d t \\
& \geqq \alpha \int_{0}^{u} \int_{0}^{v} \int \chi_{A} S_{r} f d \mu d r d t \quad \text { by }(3.10)
\end{aligned}
$$

since $\chi_{A} S_{r} f \in L_{1}^{+}(A)$. So

$$
\int I_{(u, v)} f d \mu \geqq \alpha u \int_{0}^{v} \int \chi_{A} S_{r} f d \mu d r \geqq \alpha u\left(\beta v \int f d \mu\right)
$$

By (3.11) since $f \in L_{1}^{+}(A \backslash B)$. Thus for each $f \in L_{1}^{+}(A \backslash B)$ we have (3.8) where $E=A \backslash B$ and $\lambda=\alpha \beta$. Now take

$$
f=\chi_{A-B} g \in \mathrm{~L}_{1}^{+}(A \backslash B) .
$$

Moreover $E^{c}=A^{c} \cup B$ and

$$
\int_{E^{c}} g d \mu=\int_{A^{c}} g d \mu+\int_{B} g d \mu<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Lemma 3.12. Let $\left\{F_{(u, v)}\right\}_{(u, v) \in C}$ be a positive superadditive process, and let E be a bounded set. If

$$
\lim _{(u, v) \rightarrow \mathbf{O}} \frac{1}{u v} \int_{E} F_{(u, v)} d \mu>0
$$

then $\left\{F_{(u, v)}\right\}$ dominates a nonzero positive additive process

$$
\left\{G_{(u, v)}\right\}_{(u, v) \in C}
$$

Proof. Let $(\alpha, \beta),(u, v) \in C$, then

$$
I_{(u, v)}\left[\frac{1}{\alpha \beta} F_{(\alpha, \beta)}\right]=\frac{1}{\alpha \beta} \int_{0}^{u} \int_{0}^{v} U_{\left(s_{1}, s_{2}\right)} F_{(\alpha, \beta)} d s_{1} d s_{2} .
$$

By superadditivity

$$
\begin{aligned}
& I_{(u, v)}\left[\frac{1}{\alpha \beta} F_{(\alpha, \beta)}\right] \\
& \leqq \frac{1}{\alpha \beta} \int_{0}^{u} \int_{0}^{v}\left[F_{\left(\alpha+s_{1}, \beta+s_{2}\right)}-T_{s_{1}} F_{\left(\alpha, s_{2}\right)}\right. \\
& \left.-S_{s_{2}} F_{\left(s_{1}, \beta\right)}-F_{\left(s_{1}, s_{2}\right)}\right] d s_{1} d s_{2} .
\end{aligned}
$$

Since $F_{(u, v)} \geqq 0$ and S_{r} and T_{t} are positive operators, we see that

$$
\begin{aligned}
I_{(u, v)}\left(\frac{1}{\alpha \beta} F_{(\alpha, \beta)}\right) & \leqq \frac{1}{\alpha \beta} \int_{u}^{u+\alpha} \int_{v}^{v+\beta} F_{\left(s_{1}, s_{2}\right)} d s_{1} d s_{2} \\
& \leqq F_{(u+\alpha, v+\beta)}
\end{aligned}
$$

since $F_{\left(s_{1}, s_{2}\right)}$ is increasing with increasing $\left(s_{1}, s_{2}\right)$. Now let $\alpha_{n}>0$ and $\beta_{n}>0$ be sequences such that $\alpha_{n} \downarrow 0, \beta_{n} \downarrow 0$ as $n \rightarrow \infty$ and such that
(3.13) $\lim _{n \rightarrow \infty} \frac{1}{\alpha_{n} \beta_{n}} \int_{E} F_{\left(\alpha_{n}, \beta_{n}\right)} d \mu=K>0$.

For each fixed $(u, v) \in C$, the sequence

$$
I_{(u, v)}\left(\frac{1}{\alpha_{n} \beta_{n}} F_{\left(\alpha_{n}, \beta_{n}\right)}\right)
$$

is dominated by the integrable function $F_{\left(u+\alpha_{1}, v+\beta_{1}\right)}$. Hence one can choose a subsequence of $\left(\alpha_{n}, \beta_{n}\right)$, which we will also denote by $\left(\alpha_{n}, \beta_{n}\right)$, such that

$$
G_{(u, v)}=w-\lim _{n \rightarrow \infty} I_{(u, v)}\left(\frac{1}{\alpha_{n} \beta_{n}} F_{\left(\alpha_{n}, \beta_{n}\right)}\right)
$$

exists for each $(u, v) \in B$. This new process

$$
\left\{G_{(u, v)}\right\}_{(u, v) \in B}
$$

is a positive additive process, hence extends to a continuous additive process

$$
\left\{G_{(u, v)}\right\}_{(u, v) \in C} .
$$

If $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in B$ such that $\mathbf{O}<\left(u_{1}, v_{1}\right)<\left(u_{2}, v_{2}\right)$, then we have

$$
G_{\left(u_{1}, v_{1}\right)} \leqq F_{\left(u_{2}, v_{2}\right)} .
$$

Hence by continuity,

$$
G_{(u, v)} \leqq F_{(u, v)} \quad \text { for each }(u, v) \in B
$$

and consequently

$$
0 \leqq G_{(u, v)} \leqq F_{(u, v)} \text { for each }(u, v) \in C
$$

as in Section 2.

Let λ be the constant associated with the bounded set E and let $(u, v) \in$ C be such that (3.8) holds. Then

$$
\int I_{(u, v)}\left(\frac{1}{\alpha_{n} \beta_{\mathrm{n}}} F_{\left(\alpha_{n} \beta_{n}\right)}\right) d \mu \geqq \lambda u v \int_{E} \frac{1}{\alpha_{n} \beta_{n}} F_{\left(\alpha_{n} \beta_{n}\right)} d \mu
$$

Since

$$
\int_{E} \frac{1}{\alpha_{n} \beta_{n}} F_{\left(\alpha_{n} \beta_{n}\right)} d \mu \rightarrow K
$$

by (3.13), we see that

$$
\int G_{(u, v)} d \mu \geqq \lambda u v K>0
$$

showing that $\left\{G_{(u, v)}\right\}$ is a nonzero process and hence proving the lemma.
Before stating the following lemma it would be convenient to introduce some notation: for a given process $\left\{F_{(u, v)}\right\}$ and $t, r \in \mathbf{R}^{+}$, let

$$
\theta_{t} F_{(u, v)}=F_{(u+t, v)}, \quad \phi_{r} F_{(u, v)}=F_{(u, v+r)}
$$

and

$$
\tau_{t} F_{(u, v)}=\left(\theta_{t}-T_{t}\right) F_{(u, v)}, \quad \sigma_{r} F_{(u, v)}=\left(\phi_{r}-S_{r}\right) F_{(u, v)}
$$

Then the superadditivity conditions (1.8)(a) and (b) take the forms

$$
\begin{align*}
& \left(\mathrm{a}^{\prime}\right) \quad F_{(u, r)} \leqq \sigma_{r} F_{(u, v)} \\
& \left(\mathrm{b}^{\prime}\right) \quad F_{(t, v)} \leqq \tau_{t} F_{(u, v)}
\end{align*}
$$

and the strong superadditivity condition (1.9) takes the form (1.9') $\quad F_{(t, r)} \leqq \tau_{t} \sigma_{r} F_{(u, v)}$.

Lemma 3.14. Let $\left\{F_{(u, v)}\right\}_{(u, v) \in C}$ be a positive strongly superadditive process. Let $(\alpha, \beta) \in C$, and define for each $(u, v) \in C$

$$
\begin{aligned}
H_{(u, v)}^{\alpha \beta} & =\left(I-T_{u}\right)\left(I-S_{v}\right)\left[\frac{1}{\alpha \beta} \int_{0}^{\alpha} \int_{0}^{\beta} F_{\left(s_{1}, s_{2}\right)} d s_{2} d s_{1}\right] \\
& +\left(I-T_{u}\right)\left[\frac{1}{\alpha \beta} \int_{0}^{\alpha} \int_{0}^{v} S_{s_{2}} F_{\left(s_{1}, \beta\right)} d s_{2} d s_{1}\right] \\
& +\left(I-S_{v}\right)\left[\frac{1}{\alpha \beta} \int_{0}^{u} \int_{0}^{\beta} T_{s_{1}} F\left(\alpha, s_{2}\right) d s_{2} d s_{1}\right] \\
& +\frac{1}{\alpha \beta} \int_{0}^{u} \int_{0}^{v} S_{s_{2}} T_{s_{1}} F_{(\alpha, \beta)} d s_{2} d s_{1} .
\end{aligned}
$$

Then $\left\{H_{(u, v)}^{\alpha \beta}\right\}_{(u, v) \in C}$ is a positive additive process and

$$
\begin{equation*}
H_{(u, v)}^{\alpha \beta} \geqq\left(1-\frac{u}{\alpha}\right)\left(1-\frac{v}{\beta}\right) F_{(u, v)} \tag{3.15}
\end{equation*}
$$

Proof. If $\mathbf{O}<(u, v)<(\alpha, \beta)$, then

$$
\begin{aligned}
\alpha \beta H_{(u, v)}^{\alpha \beta} & =\left(I-T_{u}\right)\left\{\int _ { 0 } ^ { \alpha } \left[\left(I-S_{v}\right) \int_{0}^{\beta} F_{\left(s_{1}, s_{2}\right)} d s_{2}\right.\right. \\
& \left.\left.+\int_{0}^{v} S_{s_{2}} F_{\left(s_{1}, \beta\right)} d s_{2}\right] d s_{1}\right\} \\
& +\int_{0}^{u} T_{s_{1}}\left[I-S_{v}\right) \int_{0}^{\beta} F_{\left(\alpha, s_{2}\right)} d_{2} \\
& \left.+\int^{v} S_{s_{2}} F_{(\alpha, \beta)} d s_{2}\right] d s_{1} .
\end{aligned}
$$

Let

$$
\beta G_{v}(x)=\left(I-S_{u}\right) \int_{0}^{\beta} F_{\left(x, s_{2}\right)} d s_{2}+\int_{0}^{v} S_{s_{2}} F_{(x, \beta)} d s_{2}
$$

Then

$$
\alpha \beta H_{(u, v)}^{\alpha \beta}=\left(I-T_{u}\right) \int_{0}^{\alpha} \beta G_{v}\left(s_{1}\right) d s_{1}+\int_{0}^{u} \beta T_{s_{l}} G_{v}(\alpha) d s_{1} .
$$

Now

$$
\begin{aligned}
\beta G_{v}(x) & =\int_{0}^{v} F_{\left(x, s_{2}\right)} d s_{2} \\
& +\int_{v}^{\beta}\left[F_{\left(x, s_{2}\right)}-S_{v} F_{\left(x, s_{2}-v\right)}\right] d s_{2} \\
& +\int_{0}^{v}\left[S_{s_{2}} F_{(x, \beta)}-S_{v} F_{\left(x, \beta+S_{2}-v\right)}\right] d s_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{v} F_{\left(x, s_{2}\right)} d s_{2}+\int_{v}^{\beta} \sigma_{v} F_{\left(x, s_{2}-v\right)} d s_{2} \\
& +\int_{0}^{v} S_{s_{2}} \sigma_{v-s_{2}} F_{\left(x, \beta+s_{2}-v\right)} d s_{2} .
\end{aligned}
$$

Also, similarly,

$$
\begin{aligned}
\alpha \beta H_{(u, v)}^{\alpha \beta} & =\int_{0}^{u} \beta G_{v}\left(s_{1}\right) d s_{1}+\int_{u}^{\alpha} \beta \tau_{u} G_{v}\left(s_{1}-u\right) d s_{1} \\
& +\int_{0}^{u} \beta T_{t_{1}} \tau_{u-s_{1}} G_{v}\left(\alpha+s_{1}-u\right) d s_{1} .
\end{aligned}
$$

Hence, combining the last two equations, we obtain

$$
\begin{aligned}
\alpha \beta H_{(u, v)}^{\alpha \beta} & =\int_{0}^{u} \int_{0}^{v} F_{\left(s_{1}, s_{1}\right)} d s_{2} d s_{1} \\
& +\int_{0}^{u} \int_{v}^{\beta} \sigma_{v} F_{\left(s_{1}, s_{2}-v\right)} d s_{2} d s_{1} \\
& +\int_{0}^{u} \int_{0}^{v} S_{s_{2}} \sigma_{v-s_{2}} F_{\left(s_{1}, s_{2}+\beta-v\right)} d s_{2} d s_{1} \\
& \left.+\int_{u}^{\alpha} \int_{0}^{v} \tau_{u} F_{\left(s_{1}-u, s_{2}\right.} d s_{2}\right) d s_{1} \\
& +\int_{u}^{\alpha} \int_{v}^{\beta} \tau_{u} \sigma_{v} F_{\left(s_{1}-u, s_{1}-v\right)} d s_{2} d s_{1} \\
& +\int_{u}^{\alpha} \int_{0}^{v} S_{s_{2}} \tau_{u} \sigma_{v-s_{2}} F_{\left(s_{1}-u, s_{2}+\beta-v\right)} d s_{2} d s_{1} \\
& +\int_{0}^{u} \int_{0}^{v} T_{t_{1}} \tau_{u-s_{1}} F_{\left(\alpha+s_{1}-u, s_{2}\right)} d s_{2} d s_{1} \\
& +\int_{0}^{u} \int_{v}^{\beta} T_{t_{1}} \tau_{u-s_{1}} \sigma_{v} F_{\left(s_{1}+\alpha-u, s_{2}-v\right)} d s_{2} d s_{1} \\
& +\int_{0}^{u} \int_{0}^{v} S_{s_{2}} T_{s_{1}} \tau_{u-s_{1}} \sigma_{v-s_{2}} F_{\left(s_{1}+\alpha-u, s_{2}+\beta-v\right)} d s_{2} d s_{1} \\
& \geqq(\alpha-u)(\beta-v) F_{(u, v)}
\end{aligned}
$$

by $\left(1.8^{\prime}\right)$ and (1.9') together with the fact that both $\left\{T_{t}\right\}$ and $\left\{S_{r}\right\}$ are positive operators and

$$
F_{(u, v)} \geqq 0 \quad \text { for each }(u, v) \in C .
$$

Obviously $\left\{H_{(u, v)}^{\alpha \beta}\right\}_{(u, v) \in C}$ is an additive process. Since it is positive for small values of $(u, v) \in C$, it is positive for all $(u, v) \in C$, consequently we have (3.15) for each $(u, v) \in C$.
Notice that since $\left\{H_{(u, v)}^{\alpha \beta}\right\}_{(u, v)}$ is a positive additive process,

$$
h_{\alpha \beta}=q-\lim _{u \rightarrow 0^{+}} \frac{1}{u^{2}} H_{\mathbf{u}}^{\alpha \beta}
$$

exists and is finite a.e. for each $(\alpha, \beta) \in C$ [3]. Furthermore, if

$$
f=q-\lim _{u \rightarrow 0^{+}} \sup \frac{1}{u^{2}} F_{\mathbf{u}}
$$

then $0 \leqq f \leqq h_{\alpha \beta}$ for each $(\alpha, \beta) \in C$.
Lemma 3.16. Let $\left\{F_{(u, v)}\right\}_{(u, v) \in C}$ be a positive strongly superadditive process and let $A \in \mathscr{F}$ be a set. If

$$
\lim _{(u, v) \rightarrow \mathbf{0}} \int_{A} \frac{1}{u v} F_{(u, v)} d \mu=0
$$

then

$$
q-\lim _{u \rightarrow 0} \frac{1}{u^{2}} F_{\mathbf{u}} \text { exists and is zero a.e. on } A \text {. }
$$

Proof. Let

$$
f=q-\lim _{u \rightarrow 0^{+}} \sup \frac{1}{u^{2}} F_{\mathbf{u}}
$$

If $f>0$ on a subset of A with positive measure, then there exists an L_{1}^{+}-function h such that

$$
\int_{A} h d \mu>0
$$

and such that

$$
0 \leqq h \leqq f \leqq h_{\alpha \beta} \quad \text { for each }(\alpha, \beta) \in C
$$

Then by (a) of Lemma 2.2 we have

$$
I_{(u, v)} h \leqq H_{(u, v)}^{\alpha \beta} .
$$

But

$$
\begin{aligned}
H_{(u, v)}^{\alpha \beta} & \leqq F_{(\alpha, \beta)}+F_{(\alpha, v+\beta)}+F_{(u+\alpha, \beta)}+2 F_{(u+\alpha, v+\beta)} \\
& \leqq 5 F_{(u+\alpha, v+\beta)}
\end{aligned}
$$

since $F_{(u, v)} \geqq 0$ and is increasing as (u, v) increases. Hence, if $\mathbf{O}<(\alpha, \beta)$ $<(u, v)$, then

$$
I_{(u, v)} h \leqq 5 F_{(2 u, 2 v)}
$$

or

$$
\int_{A}\left[\frac{1}{u v} I_{(u, v)} h\right] d \mu \leqq 20 \int_{A}\left[\frac{1}{4 u v} F_{(2 u, 2 v)}\right] d \mu
$$

This is a contradiction since the left hand side converges to $\int_{A} h d \mu>0$ as $(u, v) \rightarrow \mathbf{O}$, and the right hand side converges to zero.

Theorem 3.17. Let $\left\{F_{(u, v)}\right\}_{(u, v) \in C}$ be a strongly superadditive process such that

$$
\sup _{(u, v) \in C} \frac{1}{u v} \int F_{(u, v)}^{-} d \mu<\infty
$$

Then

$$
q-\lim _{u \rightarrow 0^{+}} \frac{1}{u^{2}} F_{\mathbf{u}}
$$

exists and is finite a.e.
Proof. By the remarks of Section 2, without loss of generality we can assume that $\left\{F_{(u, v)}\right\}$ is a positive strongly superadditive process that does not dominate any nonzero positive additive process. Hence if we can show that

$$
q-\lim _{u \rightarrow 0^{+}} \frac{1}{u^{2}} F_{\mathbf{u}}=0 \text { a.e., }
$$

then the proof will be completed. If $E \in \mathscr{F}$ is a bounded set, then

$$
\lim _{(u, v) \rightarrow \mathbf{0}} \frac{1}{u v} \int_{E} F_{(u, v)} d \mu=0
$$

by Lemma 3.12. Hence we see that

$$
q-\lim _{u \rightarrow 0^{+}} \frac{1}{u^{2}} F_{\mathbf{u}}=0 \text { a.e. on } E
$$

by Lemma 3.16. Consequently

$$
q-\lim _{u \rightarrow 0^{+}} \frac{1}{u^{2}} F_{\mathbf{u}}=0 \text { a.e. on } X
$$

by Lemma 3.9.

References

1. M. A. Akçoglu, Differentiation of superadditive process, Preprint.
2. M. A. Akçoglu and R. V. Chacon, A local ergodic theorem, Can. J. Math. 22 (1970), 545-552.
3. M. A. Akçoglu and A. del Junco, Differentiation of n-dimensional additive processes, Can. J. Math. 33 (1981), 749-768.
4. M. A. Akçoglu and U. Krengel, A differentiation theorem for additive processes, Math. Z. 163 (1978), 199-210.
5. Ergodic theorems for superadditive processes, J. Reine Angew. Math. 323 (1981), 53-67.
6. M. A. Akçoglu and L. Sucheston, A ratio ergodic theorem for superadditive processes, Z. Wahr. 44 (1978), 269-278.
7. R. Emilion and B. Hachem, Un theoreme ergodique local sur-additif, C. R. Acad. Sci. Paris 294 (1982), 337-340.
8. R. Emilion and B. Hachem, Differentiation des procesus sur-additifs a plusieurs parameters, Preprint.
9. D. Feyel, Convergence locale des procesus sur-abeliens et sur-additifs, to appear.
10. J. F. C. Kingman, Subadditive ergodic theory, Ann. Prob. 1 (1973), 883-905.
11. U. Krengel, A local ergodic theorem, Invent. Math. 6 (1969), 329-333.
12. M. Lin, On local ergodic convergence of semigroups and additive processes, Israel J. Math., to appear.
13. R. T. Smythe, Multiparameter subadditive processes, Ann. Prob. 4 (1976), 772-782.
14. T. R. Terrell, Local ergodic theorems for n-parameter semigroups of operators, in Contributions to ergodic theory and probability, Lecture Notes in Math. 160 (Springer-Verlag, 1970), 262-278.

University of Toronto, Toronto, Ontario

