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Reducibility of Generalized Principal Series

Goran Muić

Abstract. In this paper we describe reducibility of non-unitary generalized principal series for classical

p-adic groups in terms of the classification of discrete series due to Mœglin and Tadić.

Introduction

In this paper we describe reducibility of non-unitary generalized principal series for

classical p-adic groups in terms of the classification of discrete series due to Mœglin

and Tadić [Mœ, MT]. Their results, and consequently ours, are complete only as-

suming that discrete series have generic supercuspidal support, thanks to the work of

Shahidi [Sh1] on rank-one supercuspidal reducibilities.

Even then, the structure of discrete series with generic supercuspidal support is

complicated and many of them are not generic themselves. Thus, our paper gener-

alizes known results (see [J, M1, M2, T1], for example) and the main application of

our results is to the determination of the unitary duals of classical p-adic groups.

To describe our results, we introduce some notation. Let Gn be a symplectic or

(full) orthogonal group having split rank n. Let σ ∈ Irr Gn be a discrete series. We

write (Jord, σ ′, ǫ) for the admissible triple associated to σ by Mœglin (see [Mœ] or

Section 1 here). Let δ ∈ Irr GL(Mδ, F) (this defines Mδ) be an essentially square

integrable representation. According to [Ze], δ is attached to a segment. We may

(and will) write this segment as follows, [ν−l1ρ, ν l2ρ], l1, l2 ∈ R, l1 + l2 ∈ Z≥0, with

ρ ∈ Irr GL(mρ, F) (this defines mρ) unitary.

In this paper we describe the reducibility of the following induced representation

(see [T1] for notation):

δ ⋊ σ.

Since the reducibility of unitary generalized principal series is an integral part of

the classification of discrete series [Mœ, MT] we consider only non-unitary general-

ized principal series. Thus, we may assume

(∗) l2 − l1 > 0,

since δ ⋊ σ and δ̃ ⋊ σ have the same composition factors.

To describe the reducibility, we write Jordρ for the set of all 2a + 1 ∈ (1/2)Z such

that (2a + 1, ρ) ∈ Jord.

The reducibility can be described in two steps. First, we have some simple re-

ducibility criteria that were established in the preliminary section of [M4] (see Sec-

tion 2 in that paper or Theorem 2.1 in this paper). We should point out that many

Received by the editors June 9, 2003; revised December 1, 2003.
AMS subject classification: Primary: 22E35, 22E50; secondary: 11F70.
c©Canadian Mathematical Society 2005.

616

https://doi.org/10.4153/CJM-2005-025-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-025-4


Reducibility of Generalized Principal Series 617

of them were known earlier. (See for example [T1] and references therein.) We now

recall these simple criteria.

• Assume that ρ 6∼= ρ̃ or 2l1 + 1 /∈ Z, then δ ⋊ σ is irreducible.
• If Jordρ 6= ∅ but 2l1 + 1 − a /∈ 2Z, a ∈ Jordρ, then δ ⋊ σ is irreducible.
• Assume Jordρ = ∅. Then δ ⋊ σ is reducible if and only if l1 ≥ −1/2, 2l1 + 1 ∈ Z,

and 2l1 + 1 is even if and only if ν1/2ρ ⋊ σ ′ is reducible. (Note that the other

possibility is ρ ⋊ σ ′ is reducible.)

This enables us to make the following assumption:

(∗∗)

{
Jordρ 6= ∅

2l1 + 1 − a ∈ 2Z, ∀a ∈ Jordρ .

We are now ready to describe all other reducibility points for the remaining cases.

We assume that (∗) and (∗∗) hold and we consider four cases (see Theorems 4.1, 5.1,

and 6.1). (All unexplained notation can be found in Section 1.)

• Assume l1 ≥ 0 and ]2l1 + 1, 2l2 + 1[ ∩ Jordρ 6= ∅. Then δ ⋊ σ is irreducible if

and only if 2l1 + 1, 2l2 + 1 ∈ Jordρ and there exists an alternated triple dominated

by (Jord, σ ′, ǫ) and contains all (2a + 1, ρ), 2a + 1 ∈ Jordρ ∩[2l1 + 1, 2l2 + 1].
• Assume l1 ≥ 0 and ]2l1 + 1, 2l2 + 1[∩ Jordρ = ∅. Then δ ⋊σ is irreducible if and

only if 2l1 + 1, 2l2 + 1 ∈ Jordρ and ǫ(2l2 + 1, ρ)ǫ(2l1 + 1, ρ)−1
= −1.

• Assume l1 ≤ −1/2 and [−2l1 − 1, 2l2 + 1[∩ Jordρ = ∅. Then δ ⋊σ is irreducible

unless l1 = −1/2, and if 2l2 + 1 ∈ Jordρ, then ǫ(2l2 + 1, ρ) = 1.
• Assume l1 ≤ −1/2 and [−2l1 − 1, 2l2 + 1[∩ Jordρ 6= ∅. Then δ ⋊ σ is reducible

unless there exists an alternated triple (Jordalt , σ
′, ǫalt) dominated by (Jord, σ ′, ǫ)

and contains all (2a + 1, ρ), 2a + 1 ∈ [−2l1 − 1, 2l2 + 1[ ∩ Jordρ and (2l2 + 1, ρ).

Moreover, if such an alternated triple exists, the induced representation δ ⋊ σ is

reducible if and only if l1 = −1/2 and ǫ(min(Jordalt )ρ, ρ) = 1.

This completes our description of the reducibility of generalized principal series.

The actual determination of the composition series is a more complicated problem

and it will be considered elsewhere. Our approach to the determination of the re-

ducibility of δ ⋊ σ is straightforward. For each reducibility point we construct an

irreducible subquotient non-isomorphic to the Langlands quotient of δ ⋊ σ. This

approach is used in many cases. (See the proofs of Theorems 3.1, 4.1, and 5.1). The-

orem 3.1 shows that a composition series of δ ⋊σ can be arbitrarily large, as opposed

to the case of general linear groups [Ze]. Reducibilities of the type described in The-

orem 3.1 were also known to Tadić, and following him we call them the independent

reducibilities. The general case (see the proof of Theorem 4.1 and the proof of Theo-

rem 6.1) constructs many more reducibilities and irreducible subquotients using the

inductive construction of discrete series given in [MT].

The results of this paper rely on our previous work [M4], but not on the complete

determination of composition series of δ ⋊ σ.

Many particular results were established earlier. We refer to [T1] and references

therein for the results before the classification of discrete series [Mœ, MT]. We also
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should point out that [M1, M2] contain, among other things, the reducibility of δ⋊σ
for generic discrete series representations σ. They were done without reference to any

classification of generic discrete series.

We should point out that Tadić, in an unpublished work [T2], worked out com-

pletely the case l2 = −l1 > 0, that is, the reducibility of ν l2ρ ⋊ σ, also using Jacquet

modules but in a different way. (See also [MT, Lemma 5.3].)

1 Preliminaries

Let F be a nonarchimedean field of characteristic different from 2. Let Z, R, and C

be the ring of rational integers, the field of real numbers, and the field of complex

numbers, respectively. If x1, x2 ∈ R, we denote by [x1, x2] (resp., ]x1, x2[) the set of

all x ∈ R such that x1 ≤ x ≤ x2 (resp., x1 < x < x2). Similarly, we define ]x1, x2] and

[x1, x2[.

Now, we describe the groups that we consider. (See [MVW] for more details.)

We look at the usual towers of orthogonal or symplectic groups Gn = G(Vn) that

are groups of isometries of F-spaces (Vn, ( · , · )), n ≥ 0, where the form ( · , · ) is

non-degenerate and it is skew-symmetric if the tower is symplectic and symmetric

otherwise. We fix a set of standard parabolic subgroups in the usual way.

We now fix basic notation from the representation theory of general linear groups

and use freely the well-known results of [Ze] throughout the paper. In particular, we

write ν for the character obtained by the composition of the determinant character

and (normalized as usual) absolute value of F.

If ρ ∈ Irr GL(Mρ, F) is a supercuspidal representation and k ∈ Z≥0, then we

define a segment [ρ, νkρ] as the set {ρ, νρ, . . . , νkρ}. This segment has associated to

it a unique essentially square integrable representation δ([ρ, νkρ]) given as the unique

irreducible subrepresentation of νkρ × · · · × νρ × ρ.

Now, we briefly describe the classification of discrete series in Irr ′ =
⋃

n≥1 Irr Gn.

This has been done in [Mœ, MT] under some assumptions on rank-one reducibil-

ities of the representation induced from supercuspidal. (See [MT] for the precise

statement.)

We start the discussion of discrete series by recalling [Mœ] the definition of two

invariants attached to a discrete series σ ∈ Irr ′. First, a partial supercuspidal support

of σcusp ∈ Irr ′ is a supercuspidal representation such that there exists an irreducible

representation π ∈ GL(Mπ, F) (this defines Mπ) such that σ →֒ π ⋊ σcusp . This

property determines σcusp ∈ Irr ′ uniquely.

Next, Jord(σ) is defined as a set of all pairs (a, ρ) (ρ ∼= ρ̃ is a supercuspidal repre-

sentation of some GL(mρ, F), a > 0 is integer) such that (a) and (b) hold:

(a) a is even if and only if L(s, ρ, r) has a pole at s = 0. The local L-function L(s, ρ, r)

is the one defined by Shahidi [Sh1, Sh2], where r = ∧2
C

mρ is the exterior square

representation of the standard representation on C
mρ of GL(mρ, C) if Gn is a

symplectic or even-orthogonal group and r = Sym2
C

mρ is the symmetric-square

representation of the standard representation on C
mρ of GL(mρ, C) if Gn is an

odd-orthogonal group.
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(b) The induced representation

δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]) ⋊ σ

is irreducible.

The main point of the classification is that discrete series are in one-to-one cor-

respondence with admissible triples (cf. [Mœ]), and our results are also formulated

in terms of admissible triples. So, we start recalling the definition of an admissible

triple. This will be given in several steps.

First, we look at the collection Trip of all triples (Jord, σ ′, ǫ), where

• σ ′ ∈ Irr ′ is a supercuspidal representation.

• Jord is a finite set (perhaps empty) of pairs (a, ρ) (ρ ∼= ρ̃ is supercuspidal of some

GL(Mρ, F), a > 0 is integer) such that a is even if and only if L(s, ρ, r) has a pole at

s = 0 (see (a) the above). We will also recall some notation from [MT]. We write

Jordρ = {a ; (a, ρ) ∈ Jord}, and for a ∈ Jordρ we write a− for the largest element

of Jordρ that is strictly less than a (if one exists).

• ǫ is a function defined on a subset of Jord ∪ (Jord × Jord) into {±1} as follows.

First, if (a, ρ) ∈ Jord, then ǫ(a, ρ) is not defined if and only if a is odd and (a ′, ρ) ∈
Jord(σ ′) for some positive integer a ′. Next, ǫ is defined on a pair (a, ρ), (a ′, ρ ′) ∈
Jord if and only if ρ ∼= ρ ′ and a 6= a ′. This ends the definition of the domain of

the definition of ǫ. The following compatibility conditions must hold for different

a, a ′, a ′′ ∈ Jordρ:

(i) If ǫ(a, ρ) is defined (hence ǫ(a ′, ρ) is also defined), then the value of ǫ on

(a, ρ) and (a ′, ρ) is ǫ(a, ρ)ǫ(a ′, ρ)−1. If ǫ(a, ρ) is not defined, then the value

of ǫ on the pair (a, ρ) and (a ′, ρ) we shall, after [MT], denote also (formally)

by ǫ(a, ρ)ǫ(a ′, ρ)−1.

(ii) ǫ(a, ρ)ǫ(a ′ ′, ρ)−1
=

(
ǫ(a, ρ)ǫ(a ′, ρ)−1

)
·
(
ǫ(a ′, ρ)ǫ(a ′ ′, ρ)−1

)
.

(iii) ǫ(a, ρ)ǫ(a ′, ρ)−1
= ǫ(a ′, ρ)ǫ(a, ρ)−1.

Let (Jord, σ ′, ǫ) ∈ Trip and (a, ρ) ∈ Jord, such that a− is defined, and

ǫ(a, ρ) · ǫ(a−, ρ)−1
= 1.

Now, it is easy to check the following: if we put Jord ′
= Jord \{(a, ρ), (a−, ρ)}, and

consider the restriction ǫ ′ of ǫ to Jord ′ ∪(Jord ′ × Jord ′), then (Jord ′, σ ′, ǫ ′) ∈ Trip.

We say that the triple (Jord ′, σ ′, ǫ ′) is subordinated to the triple (Jord, σ ′, ǫ).

We say that (Jord, σ ′, ǫ) ∈ Trip is an admissible triple of alternated type if

ǫ(a, ρ) · ǫ(a−, ρ)−1
= −1 whenever a− is defined and there is an increasing bijec-

tion φρ : Jordρ → Jord ′
ρ(σ ′), where

Jord ′
ρ(σ ′) =

{
Jordρ(σ ′) ∪ {0} if a is even and ǫ(min Jordρ, ρ) = 1;

Jordρ(σ ′) otherwise.

Here Jordρ(σ ′) is the set of all positive integers a such that (ρ, a) ∈ Jord(σ ′). We

write Tripalt for the set of all triples in Trip that have alternated type.

We say that the triple (Jord, σ ′, ǫ) ∈ Trip dominates the triple (Jord ′ ′, σ ′, ǫ ′ ′) ∈
Trip if we can find a sequence of triples (Jordi , σ

′, ǫi), 1 ≤ i ≤ k, such that
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• (Jord, σ ′, ǫ) = (Jord1, σ
′, ǫ1).

• (Jordi+1, σ
′, ǫi+1), is subordinated to (Jordi , σ

′, ǫi), for each i, 1 ≤ i ≤ k − 1.
• (Jord ′ ′, σ ′, ǫ ′ ′) = (Jordk, σ

′, ǫk).

Finally, we come to the definition of an admissible triple. We say that

(Jord, σ ′, ǫ) ∈ Trip

is an admissible triple if it dominates some triple of alternated type.

We write Tripadm for the set of all triples in Trip that are admissible. Obviously,

we have

Tripalt ⊆ Tripadm ⊆ Trip .

Now, the classification of discrete series [MT, Mœ] can be described as follows:

Theorem 1.1 There exists a one-to-one correspondence between the set of all discrete

series σ ∈ Irr ′ and the set of all triples (Jord, σ ′, ǫ) ∈ Tripadm denoted by

σ = σ(Jord,σ ′,ǫ)

such that the following hold:

(i) Jord(σ) = Jord and σcusp = σ ′.

(ii) Let (Jord, σ ′, ǫ) ∈ Tripalt . Then σ can be described explicitly as follows: For

each ρ such that Jordρ 6= ∅, we write the elements of Jordρ in increasing order

a
ρ
1 < a

ρ
2 < · · · < a

ρ
kρ

. Now, σ is the unique irreducible subrepresentation of

×ρ ×
kρ

i=1 δ([ν(φρ(a
ρ
i )+1)/2ρ, ν(a

ρ
i −1)/2ρ]) ⋊ σ ′.

(iii) Let (Jord, σ ′, ǫ) ∈ Tripadm and (2b + 1, ρ) ∈ Jord, such that 2b− + 1 :=

(2b + 1)− is defined, and ǫ(2b + 1, ρ) · ǫ(2b− + 1, ρ)−1
= 1. We put Jord ′ ′

=

Jord \{(2b + 1, ρ), (2b− + 1, ρ)}, and consider the restriction ǫ ′ ′ of ǫ to Jord ′ ′.

Then (Jord ′ ′, σ ′, ǫ ′ ′) ∈ Tripadm , and

(1.1) σ →֒ δ([ν−b−ρ, νbρ]) ⋊ σ ′′,

where σ ′′
= σ(Jord ′ ′,σ ′,ǫ ′ ′). Moreover, the induced representation

δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ]) ⋊ σ ′′

is a direct sum of two non-equivalent tempered representations τ±, and there exists

a unique τ ∈ {τ−, τ+} such that

(1.2) σ →֒ δ([ν(b−+1)/2ρ, ν(b−1)/2ρ]) ⋊ τ .

Our main tool for computing composition series is Tadić’s theory of Jacquet mod-

ules. We end this section by recalling his basic result.
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Reducibility of Generalized Principal Series 621

Let R(Gn) be the Grothendieck group of admissible representations of finite length.

Put

R(G) = ⊕n≥0R(Gn).

We write ≥ or ≤ for the natural order on R(G). In more detail, π1 ≤ π2, π1, π2 ∈
R(G), if and only if π2−π1 is a linear combination of irreducible representations with

non-negative coefficients.

We also define

R(GL) = ⊕n≥0R(GL(n, F)).

Let σ ∈ Irr Gn. Then for each standard proper maximal parabolic subgroup, cf.

[MVW], P j with Levi factor GL( j, F) × Gn− j , 1 ≤ j ≤ n, we can identify RP j
(σ)

with its semisimplification in R(GL( j, F)) ⊗ R(Gn− j). Thus, we can consider

µ∗(σ) = 1 ⊗ σ +

n∑

j=1

RP j
(σ) ∈ R(GL) ⊗ R(G).

Now, the basic result of Tadić is the following theorem (see [MT] and references

there):

Theorem 1.2 Let σ ∈ Irr Gn. We decompose in R(G) into irreducible constituents

(with repetitions possible):

µ∗(σ) =

∑

δ ′,σ1

δ ′ ⊗ σ1.

Assume that l1, l2 ∈ R, l1 + l2 + 1 ∈ Z>0, and ρ ∈ Irr GL(mρ, F) (this defines mρ)

is a supercuspidal representation. Then we have

(1.3) µ∗
(
δ([ν−l1ρ, ν l2ρ]) ⋊ σ

)
=

∑

δ ′,σ1

l1+l2+1∑

i=0

i∑

j=0

δ([ν i−l2 ρ̃, ν l1 ρ̃])

× δ([ν l2+1− jρ, ν l2ρ])

× δ ′ ⊗ δ([ν l2+1−iρ, ν l2− jρ]) ⋊ σ1,

(We omit δ[ναρ, νβρ]) if α > β.)

2 Some Simple Reductions

In this section we fix the notation that we use through the paper. We assume that σ
is a discrete series representation attached to the triple (Jord, σ ′, ǫ), and

δ ∈ Irr GL(Mδ, F)

is an essentially square integrable representation. We study reducibility and compo-

sition series for δ ⋊ σ.
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By [Ze], δ is attached to a segment. We may (and will) write this segment as

follows:

(2.1) [ν−l1ρ, ν l2ρ], l1, l2 ∈ R, l1 + l2 ∈ Z≥0, ρ ∈ Irr GL(mρ, F) unitary.

Next, since δ ⋊ σ = δ̃ ⋊ σ in R(G), we also assume

(2.2) l2 − l1 > 0.

In this way δ ⋊ σ becomes a standard representation, and we denote by Lang(δ ⋊ σ)

its Langlands quotient.

In the remainder of the paper we assume that the following conditions hold:

(2.3)

{
Jordρ 6= ∅

2l1 + 1 − 2a ∈ Z, ∀a ∈ Jordρ,

since a simple Jacquet module computation in [M4] established the following result:

Theorem 2.1

(i) If ρ 6∼= ρ̃ or 2l1 + 1 6∈ Z, then δ ⋊ σ is irreducible.

(ii) If Jordρ 6= ∅ but 2l + 1 − 2a 6∈ 2Z, a ∈ Jordρ, then δ ⋊ σ is irreducible.

(iii) Assume Jordρ = ∅. Then δ ⋊ σ is reducible if and only if l1 ≥ −1/2, and 2l1 + 1

is even if and only if L(s, ρ, r) has a pole at s = 0.

(iv) Assume that (2.3) holds, Jordρ ∩[2l1 + 1, 2l2 + 1] = ∅, and l1 ≥ 0. Then in the

appropriate Grothendieck group we have an expansion of the form

δ ⋊ σ = σ1 + σ2 + Lang(δ ⋊ σ),

where σ1 and σ2 are discrete series obtained from σ by extending the triple of σ in

the usual way, cf. [MT].

Also, a simple computation of Jacquet modules established in [M4, §2] shows the

following:

Lemma 2.1 Assume that π is a tempered (but not square-integrable) irreducible sub-

quotient of δ ⋊ σ. Then one of the following must hold:

(a) π →֒ δ([ν−l2ρ, ν l2ρ]) ⋊ σ1, where σ1 is tempered representation satisfying

µ∗(σ) ≥ δ([ν l1+1ρ, ν l2ρ]) ⊗ σ1.

Moreover, unless l1 ≥ 0 and 2l1 + 1 ∈ Jordρ, we have σ1 in the discrete series and

Jord(σ1) =





Jord(σ) \ {(2l2 + 1, ρ)} ∪ {(2l1 + 1, ρ)}, l1 ≥ 0.

Jord(σ) \ {(2l2 + 1, ρ)}, l1 = −1/2,

Jord(σ) \ {(2l2 + 1, ρ), (−2l1 − 1, ρ)}, l1 ≤ −1.
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If l1 ≥ 0 and 2l1 + 1 ∈ Jordρ, then σ1 is a tempered representation, given as an

irreducible subrepresentation of

σ1 →֒ δ([ν−l1ρ, ν l1ρ]) ⋊ σ2,

where σ2 is a discrete series representation satisfying

Jord(σ2) = Jord(σ) \ {(2l1 + 1, ρ), (2l2 + 1, ρ)}.

(b) l1 ≥ 0, and π →֒ δ([ν−l1ρ, ν l1ρ]) ⋊ σ1, where σ1 is a tempered irreducible sub-

quotient of δ([ν l1+1ρ, ν l2ρ]) ⋊ σ. Moreover, if 2l2 + 1 6∈ Jordρ, then σ1 is a discrete

series representation satisfying

Jord(σ1) = Jord(σ) \ {(2l1 + 1, ρ)} ∪ {(2l2 + 1, ρ)}.

If 2l2 + 1 ∈ Jordρ, then σ1 is tempered representation, given as an irreducible

subrepresentation of

σ1 →֒ δ([ν−l2ρ, ν l2ρ]) ⋊ σ2,

where σ2 is a discrete series representation satisfying

Jord(σ2) = Jord(σ) \ {(2l1 + 1, ρ), (2l2 + 1, ρ)}.

Lemma 2.2 In order for δ ⋊ σ to have an irreducible non-tempered subquotient non-

isomorphic to Lang(δ ⋊ σ) it is necessary that (2.3) holds and there exists a ∈ Jordρ

such that l1,−l1 − 1 < (a − 1)/2 < l2.

3 Independent Reducibilities

In this section we prove some straightforward reducibility results.

Assume that 2b + 1 ∈ Jordρ is such that 2b− + 1 := (2b + 1)− ∈ Jordρ is de-

fined and ǫ(2b + 1, ρ) · ǫ(2b− + 1, ρ)−1
= 1. We define the discrete series σ ′′ as in

Theorem 1.1(iii). In particular, we have

(3.1) σ →֒ δ([ν−b−ρ, νbρ]) ⋊ σ ′′.

As can be easily seen from the [MT] results recalled in Section 1, the induced

representation in (3.1) has one more discrete series subrepresentation that we tem-

porarily denote by σ̂.

To motivate and explain the results of this section, let us look at some intertwining

operators.

(3.2) δ ⋊ σ →֒ δ([ν−l1ρ, ν l2ρ]) × δ([ν−b−ρ, νbρ]) ⋊ σ ′′

→ δ([ν−b−ρ, νbρ]) × δ([ν−l1ρ, ν l2ρ]) ⋊ σ ′ ′

→ δ([ν−b−ρ, νbρ]) × δ([ν−l2ρ, ν l1ρ]) ⋊ σ ′ ′

→ δ([ν−l2ρ, ν l1ρ]) × δ([ν−b−ρ, νbρ]) ⋊ σ ′ ′
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Observe that the second intertwining operator is not an isomorphism if and only

if the segments [ν−b−ρ, νbρ] and [ν−l1ρ, ν l2ρ] are linked [Ze]. This happens exactly

when one of the following holds:





l1 < b− < b < l2, l1 ≥ 0,

b− < l1 < l2 < b, l1 ≥ 0,

−l1 − 1 ≤ b < l2, l1 ≤ −1/2.

The fourth intertwining operator is not an isomorphism if and only if the seg-

ments [ν−b−ρ, νbρ] and [ν−l2ρ, ν l1ρ] are linked [Ze]. This happens exactly when the

following holds: {
b− < l2, l1 < b, l1 ≥ 0,

−l1 − 1 ≤ b− < l2, l1 ≤ −1/2.

Note that Theorem 2.1 shows that δ ⋊ σ reduces if l1 ≥ 0 and b− < l1 < l2 < b

((2.3) holds). The first result of this section is the following theorem.

Theorem 3.1 Assume that (2.3) holds and there exists 2b + 1 ∈ Jordρ such that 2b− +

1 := (2b + 1)− ∈ Jordρ is defined, ǫ(2b + 1, ρ) · ǫ(2b− + 1, ρ)−1
= 1, and

{
l1 < b− < b < l2, l1 ≥ 0,

−l1 − 1 ≤ b− < b < l2, l1 ≤ −1/2.

Then the unique irreducible quotient of

δ([ν−bρ, ν l2ρ])× δ([ν−l1ρ, νb−ρ]) ⋊σ ′ ′ ∼= δ([ν−l1ρ, νb−ρ])× δ([ν−bρ, ν l2ρ]) ⋊σ ′ ′

is an irreducible subquotient of δ ⋊ σ and it appears with multiplicity one in its compo-

sition series. In particular, δ ⋊ σ reduces.

Proof Let us denote by L the irreducible quotient mentioned. The proof of the the-

orem consists of two parts. First, assuming that L appears twice in the composition

series of the standard representation

(3.3) δ([ν−l1ρ, ν l2ρ]) × δ([ν−b−ρ, νbρ]) ⋊ σ ′′,

we complete the proof of the theorem. Then we prove that claim.

First, the induced representations δ ⋊ σ and δ ⋊ σ̂ are subrepresentations of the

induced representation in (3.3) (apply (3.1)). Now, it is enough to show that the

multiplicity of the irreducible representation δ([ν−l2ρ, νbρ])×δ([ν−b−ρ, ν l1ρ])⊗σ ′ ′

is one in both µ∗(δ ⋊ σ) and µ∗(δ ⋊ σ̂), and two in

(3.4) µ∗
(
δ([ν−l1ρ, ν l2ρ]) × δ([ν−b−ρ, νbρ]) ⋊ σ ′′

)
.

We show just the last claim, since using the same method we can check that it

appears in µ∗(δ ⋊ σ) and µ∗(δ ⋊ σ̂) at least once, and this will complete the proof.
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Now, we expand (3.4) using Theorem 1.2. Thus, we take indices 0 ≤ j ≤ i ≤
l1 + l2 + 1, 0 ≤ j ′ ≤ i ′ ≤ b− + b + 1, and irreducible constituents δ ′ ⊗ σ1 of µ∗(σ ′′),

and we obtain

δ([ν−l2ρ, νbρ]) × δ([ν−b−ρ, ν l1ρ]) ≤ δ([ν i−l2ρ, ν l1ρ]) × δ([ν l2+1− jρ, ν l2ρ])

× δ([ν i ′−bρ, νb−ρ])

× δ([νb+1− j ′ρ, νbρ]) × δ ′

(3.5)

σ ′′ ≤ δ([ν l2+1−iρ, ν l2− jρ]) × δ([νb+1−i ′ρ, νb− j ′ρ]) ⋊ σ1.

The first formula in (3.5) shows that δ ′ is non-degenerate. In particular, it is

fully induced from the tensor product of essentially square-integrable representa-

tions [Ze]. Now, if i > 0, then the first formula in (3.5) shows that one of those

essentially square-integrable representations must be attached to a segment of the

form [ν−l2ρ, νkρ], for some k < l2. Since µ∗(σ ′ ′) ≥ δ ′ ⊗ σ1, we obtain σ ′′ →֒
νkρ × · · · × ν−l2ρ ⋊ σ ′

1, for some irreducible representation σ ′
1. This contradicts the

square-integrability criterion for σ ′ ′. Thus, i = 0, and since 0 ≤ j ≤ i, we obtain

j = 0. Now, the first formula in (3.5) is

δ([ν−l2ρ, νbρ]) × δ([ν−b−ρ, ν l1ρ]) ≤ δ([ν−l2ρ, ν l1ρ]) × δ([ν i ′−bρ, νb−ρ])

× δ([νb+1− j ′ρ, νbρ]) × δ ′.

This implies that only possible terms in a supercuspidal support of δ ′ are

ν−b−ρ, . . . , νbρ

(no repetition of the terms).

Next, j ′ > 0, or otherwise one of the segments that determine δ ′ would end with

νbρ and this would imply 2b+1 ∈ Jordρ(σ ′′), a contradiction. Now, if j ′ = b−+b+1,

then since j ≤ i ≤ b− + b + 1, we obtain i ′ = b− + b + 1. Since [Ze] implies that

δ([ν−l2ρ, ν l1ρ]) × δ([ν−b−ρ, νbρ]) contains δ([ν−l2ρ, νbρ]) × δ([ν−b−ρ, ν l1ρ]) with

multiplicity one, we see that δ ′ is trivial and σ ′′
= σ1 (using the second formula of

(3.5)). This produces the desired term once.

If j ′ < b− + b + 1, then b − j ′ = b−, or one of the segments that determine δ ′

would be [νb−+1ρ, νb− j ′ρ], and this would imply that Jordρ(σb) ∩ ]2b− + 1, 2b + 1[
is not empty. This is contradicts Theorem 1.1(ii). Thus, j ′ = b − b−. If i ′ − b 6=
−b−, then δ ′ must be attached to the segment of the form [ν−b−ρ, νkρ], for some

k < b−. As above, this contradicts the square-integrability criterion for σ ′ ′. Thus,

i ′ = j ′ = b − b−. Now, δ ′ is trivial and σ1 = σ ′′. This produces the desired term

once.

Now, we prove that L appears twice in the composition series of the induced rep-

resentation in (3.3).
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The above considerations of Jacquet modules show that it appears at most twice.

We have

(3.6) δ([ν−l1ρ, ν l2ρ]) × δ([ν−b−ρ, νbρ]) ⋊ σ ′′ →

δ([ν−b−ρ, νbρ]) × δ([ν−l1ρ, ν l2ρ]) ⋊ σ ′′ →

δ([ν−b−ρ, νbρ]) × δ([ν−l2ρ, ν l1ρ]) ⋊ σ ′′ →

δ([ν−l2ρ, ν l1ρ]) × δ([ν−b−ρ, νbρ]) ⋊ σ ′ ′

Now, applying [Ze], the third intertwining operator above has kernel isomorphic

to

δ([ν−l2ρ, νbρ]) × δ([ν−b−ρ, ν l1ρ]) ⋊ σ ′′,

and this representation has L as the unique irreducible subrepresentation (Langlands

subrepresentation).

More delicate is to show that the kernel of the first intertwining operator contains

L as an irreducible subquotient. First, applying [Ze], the first intertwining operator

in (3.6) has kernel isomorphic to

(3.7) δ([ν−b−ρ, ν l2ρ]) × δ([ν−l1ρ, νbρ]) ⋊ σ ′′.

We use the following intertwining operators:

(3.8) δ([ν−l1ρ, νb−ρ]) × δ([ν−bρ, ν l2ρ]) ⋊ σ ′′ →֒

δ([ν−l1ρ, νb−ρ]) × δ([ν−b−ρ, ν l2ρ]) × δ([ν−bρ, ν−b−−1ρ]) ⋊ σ ′′ ∼=

δ([ν−l1ρ, νb−ρ]) × δ([ν−b−ρ, ν l2ρ]) × δ([νb−+1ρ, νbρ]) ⋊ σ ′′ ∼=

δ([ν−b−ρ, ν l2ρ]) × δ([ν−l1ρ, νb−ρ]) × δ([νb−+1ρ, νbρ]) ⋊ σ ′ ′ →

δ([ν−b−ρ, ν l2ρ]) × δ([ν−l1ρ, νbρ]) ⋊ σ ′ ′.

The claims implicit in the above sequence of intertwining operators are obvious, ex-

cept the first isomorphism. It follows from the fact that the standard representation

δ([νb−+1ρ, νbρ]) ⋊ σ ′ ′ is irreducible. This is easy since Lemma 2.1 and Lemma 2.2

immediately imply that it has no non-discrete series subquotients. Finally, since

2b− + 1 /∈ Jordρ(σ ′ ′), a consideration of the sets of Jordan blocks as in [MT, §8]

shows that it also has no discrete series subquotient.

Also, we note that the last intertwining operator in (3.8) is an epimorphism. To

complete the proof, it is enough to show that L is not in the kernel of the last inter-

twining operator in (3.8). To accomplish that it is enough to show that

δ([ν−l2ρ, νbρ]) × δ([ν−b−ρ, ν l1ρ]) ⊗ σ ′′

appears exactly once in

µ∗
(
δ([ν−b−ρ, ν l2ρ]) × δ([ν−l1ρ, νb−ρ]) × δ([νb−+1ρ, νbρ]) ⋊ σ ′ ′

)
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and in

µ∗
(
δ([ν−b−ρ, ν l2ρ]) × δ([ν−l1ρ, νbρ]) ⋊ σ ′′

)
.

Since this analysis is entirely analogous to the one given in the first part of the proof

we omit the details.

We prove that constructed copies of L differ. We write δ = δ([ν−l1ρ, ν l2ρ]) as

before (see the beginning of Section 2). Now, the long-intertwining operator

(3.9) δ ⋊ σ ⊕ δ ⋊ σ̂ → δ̃ ⋊ σ ⊕ δ̃ ⋊ σ̂

has image isomorphic to

(3.10) Lang(δ ⋊ σ) ⊕ Lang(δ ⋊ σ̂).

Next, we can fix embeddings

(3.11)
δ ⋊ σ ⊕ δ ⋊ σ̂ →֒ δ([ν−l1ρ, ν l2ρ]) × δ([ν−b−ρ, νbρ]) ⋊ σ ′′

δ̃ ⋊ σ ⊕ δ̃ ⋊ σ̂ →֒ δ([ν−l2ρ, ν l1ρ]) × δ([ν−b−ρ, νbρ]) ⋊ σ ′′

such that the long-intertwining operator in (3.9) factors using (3.6). We write Π for

the image of the first embedding in (3.11).

The computations of Jacquet modules given above show that Π must intersect the

kernel of the first intertwining operator in (3.6) and that the intersection must con-

tain L as an irreducible subquotient. Now, to complete the proof, it is enough to show

that the image of Π under the composition of the first and the second intertwining

operator in (3.6) intersects the kernel of the third (which has L as the unique irre-

ducible subrepresentation). If not, then since the image of Π under the composition

of all three intertwining operators in (3.6) is isomorphic to (3.10), we see that

(3.12) δ([ν−b−ρ, νbρ]) × δ([ν−l2ρ, ν l1ρ]) ⋊ σ ′′

has at least three different irreducible subrepresentations. Thus, by Frobenius reci-

procity,

(3.13) δ([ν−b−ρ, νbρ]) ⊗ δ([ν−l2ρ, ν l1ρ]) ⊗ σ ′′

appears at least three times in appropriate Jacquet module of (3.12). We show that

this is not the case combining Theorem 1.2 and transitivity of Jacquet modules. First,

we express

µ∗
(
δ([ν−b−ρ, νbρ]) × δ([ν−l2ρ, ν l1ρ]) ⋊ σ ′′

)

using Theorem 1.2, and arguing as before we can easily see that only the two terms

δ([ν−b−ρ, νbρ]) × δ([ν−l2ρ, ν l1ρ]) ⊗ σ ′′

δ([ν−b−ρ, νb−ρ]) × δ([νb−+1ρ, νbρ]) × δ([ν−l2ρ, ν l1ρ]) ⊗ σ ′ ′
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can have (3.13) in appropriate Jacquet modules. Finally, the Jacquet modules of

δ([ν−b−ρ, νbρ]) × δ([ν−l2ρ, ν l1ρ])

δ([ν−b−ρ, νb−ρ]) × δ([νb−+1ρ, νbρ]) × δ([ν−l2ρ, ν l1ρ])

can be computed easily and explicitly, cf. [Ze], showing that each of them contains

δ([ν−b−ρ, νbρ]) ⊗ δ([ν−l2ρ, ν l1ρ]) exactly once.

In the remainder of this section we assume that l1 ≥ 0, and we analyze the other

cases related to b− < l2 and l1 < b.

Theorem 3.2 Assume that (2.3) holds, l1 ≥ 0, and there exists 2b + 1 ∈ Jordρ such

that 2b− + 1 := (2b + 1)− ∈ Jordρ is defined and ǫ(2b + 1, ρ) · ǫ(2b− + 1, ρ)−1
= 1.

Let σ ′′ be defined by Theorem 1.1(iii). Then we have the following:

(i) If b− ≤ l1 < b < l2, then the Langlands quotient Lang(δ([ν−bρ, ν l2ρ])⋊τ ) is an

irreducible subquotient of δ ⋊ σ for a unique irreducible subrepresentation τ →֒
δ([ν−b−ρ, ν l1ρ]) ⋊ σ ′ ′, and it appears with multiplicity one in its composition

series. Note that τ is in the discrete series if and only b− < l1, otherwise τ is

tempered. Finally, σ →֒ δ([ν l1+1ρ, νbρ]) ⋊ τ .

(ii) If l1 < b− < l2 ≤ b, then the Langlands quotient Lang(δ([ν−l1ρ, νb−ρ]) ⋊ τ )

is an irreducible subquotient of δ ⋊ σ for a unique irreducible subrepresentation

τ →֒ δ([ν−l2ρ, νbρ])⋊σ ′ ′, and it appears with multiplicity one in its composition

series. Note that τ is in the discrete series if and only b > l2, otherwise τ is

tempered. Finally, τ →֒ δ([νb−+1ρ, ν l2ρ]) ⋊ σ.

(iii) If l1 = b− < l2 ≤ b, then there exists a unique irreducible subrepresentation τ →֒
δ([ν−l2ρ, νbρ])⋊σ ′′ such that the induced representations δ([ν−b−ρ, νb−ρ])⋊τ
and δ ⋊ σ have a common (tempered) irreducible subrepresentation. It appears

with multiplicity one in the composition series of δ ⋊ σ. Note that τ is in the

discrete series if and only b > l2, otherwise τ is tempered.

(iv) If b− < l1 < b = l2, then there exists a unique irreducible subrepresentation τ →֒
δ([ν−b−ρ, ν l1ρ]) ⋊ σ ′ ′ such that the induced representations δ([ν−bρ, νbρ]) ⋊ τ
and δ ⋊ σ have a common (tempered) irreducible subrepresentation. It appears

with multiplicity one in the composition series of δ ⋊ σ. Note that τ is in the

discrete series.

Proof The proofs of (i) and (ii) are similar to the proof of Theorem 3.1. We leave

the straightforward verification to the reader.

The proofs of (iii) and (iv) are also similar to the proof of Theorem 3.1, but there

are some differences. We sketch the proof for (iii); the proof of (iv) is similar. The

kernel of the last intertwining operator in (3.2) is isomorphic to

(3.14) δ([ν−l2ρ, νbρ]) × δ([ν−b−ρ, νb−ρ]) ⋊ σ ′′

∼= δ([ν−b−ρ, νb−ρ]) × δ([ν−l2ρ, νbρ]) ⋊ σ ′ ′.
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By [MT], the induced representation δ([ν−l2ρ, νbρ]) ⋊ σ ′ ′ has exactly two irre-

ducible subrepresentations. They are in the discrete series and non-isomorphic, say

σi , i = 1, 2. Also, [MT] shows that δ([ν−b−ρ, νb−ρ]) ⋊ σi is direct sum of two non-

equivalent tempered irreducible subrepresentations. Thus, (3.14) has at least four

irreducible subrepresentations.

Now, to complete the proof, it is enough to show that the multiplicity of the ir-

reducible representation δ([ν−b−ρ, νb−ρ]) × δ([ν−l2ρ, νbρ]) ⊗ σ ′′ is one in both

µ∗(δ ⋊ σ) and µ∗(δ ⋊ σ̂), and four in

µ∗
(
δ([ν−l1ρ, ν l2ρ]) × δ([ν−b−ρ, νbρ]) ⋊ σ ′′

)
.

The last multiplicity can be calculated as in the proof of Theorem 3.1. The other two

multiplicities are similar, but we need to use the fact that µ∗(σ) ≥ δ([ν−b−ρ, νbρ])⊗
σ3 for some irreducible representation σ3 implies that σ3

∼= σ ′ ′ [M3, Theorem 2.3],

and similarly for σ̂.

4 General Case for l1 ≥ 0, I

In this section we determine the reducibility of the generalized principal series δ ⋊ σ
in the case of l1 ≥ 0 and

(4.1) ]2l1 + 1, 2l2 + 1[ ∩ Jordρ 6= ∅.

The main result of this section is the following theorem.

Theorem 4.1 Assume l1 ≥ 0, (2.3), and (4.1) hold. Then δ ⋊ σ is irreducible if and

only if there is an alternated triple dominated by that of σ containing all pairs (2a+1, ρ),

2a + 1 ∈ ]2l1 + 1, 2l2 + 1[ ∩ Jordρ, (2l1 + 1, ρ) and (2l2 + 1, ρ).

The theorem will be proved in several steps. First, we prove a lemma that extends

Theorem 3.1 and Theorem 3.2.

Lemma 4.1 Assume l1 ≥ 0, (2.3), and (4.1) hold. Let us write 2a0 + 1 for the smallest

element and 2b0 + 1 for the largest element in ]2l1 + 1, 2l2 + 1[ ∩ Jordρ, respectively.

Then δ ⋊ σ reduces if one of the following holds:

(i) There exists 2a−0 +1 ∈ Jordρ such that a−0 < a0, ǫ(2a0 +1, ρ)ǫ(2a−0 +1, ρ)−1
= 1,

and
]
2a−0 + 1, 2a0 + 1

[
∩ Jordρ is either empty or can be divided into disjoint sets

of pairs {2a−j + 1, 2a j + 1}, j = 1, . . . , k (this defines k), such that a−j < a j ,

ǫ(2a j + 1, ρ)ǫ(2a−j + 1, ρ)−1
= 1 and we can have neither a−j < a−i < a j < ai

nor a−i < a−j < ai < a j , for i 6= j.

(ii) There exists 2b+
0 + 1 ∈ Jordρ such that b0 < b+

0 , ǫ(2b0 + 1, ρ)ǫ(2b+
0 + 1, ρ)−1

= 1,

and
]
2b0 + 1, 2b+

0 + 1
[
∩ Jordρ is either empty or can be divided into disjoint sets

of pairs {2b−j + 1, 2b j + 1}, j = 1, . . . , k (this defines k), such that b−j < b j ,

ǫ(2b j + 1, ρ)ǫ(2b−j + 1, ρ)−1
= 1 and we can have neither b−j < b−i < b j < bi

nor b−i < b−j < bi < b j , for i 6= j.
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Proof We prove (i). The proof of (ii) is analogous. We change the indices of the

pairs {2a−j + 1, 2a j + 1}, j = 1, . . . , k, so that a1 > a2 > · · · > ak. Note that

a1 ≤ l1 < a0.

We also write σ0 for the discrete series having the triple (Jord(σ0), σ ′, ǫσ0
), where

Jord(σ0) is the subset of Jord obtained by removing all pairs (2a j + 1, ρ), (2a−j + 1, ρ),

1 ≤ j ≤ k, and ǫσ0
is the restriction of ǫ to that set. Next, the classification of discrete

series (see Theorem 1.1) shows that there exists a (unique) sequence of discrete series

σ j , 1 ≤ j ≤ k, such that

(4.2)

{
σ j →֒ δ([ν−a−j ρ, νa j ρ]) ⋊ σ j−1, 1 ≤ j ≤ k

σk = σ.

Now, we use Theorem 3.2(i) to show that δ ⋊ σ0 is reducible and identify an

irreducible subquotient. First, since
]
2a−0 + 1, 2a0 + 1

[
∩ Jordρ(σ0) = ∅ and

ǫ(2a0 + 1, ρ)ǫ(2a−0 + 1, ρ)−1
= 1,

there exists a discrete series σ0
′ ′ obtained from σ0 by removing (2a−0 + 1, ρ), and

(2a0 + 1, ρ) from the triple of σ0 and then restricting ǫ to that new set. We have

(4.3) σ0 →֒ δ([ν−a−
0 ρ, νa0ρ]) ⋊ σ0

′ ′.

Then there exists a unique irreducible (discrete series) subrepresentation

(4.4) τ0 →֒ δ([ν−a−
0 ρ, ν l1ρ]) ⋊ σ0

′ ′,

such that the Langlands quotient Lang(δ([ν−a0ρ, ν l2ρ]) ⋊ τ0) is a subquotient of δ ⋊

σ0, and it occurs with multiplicity one. In fact, δ([ν−a0ρ, ν l2ρ]) ⊗ τ0 occurs with

multiplicity one in µ∗(δ ⋊ σ0), and σ0 →֒ δ([ν l1+1ρ, νa0ρ]) ⋊ τ0.

To complete the proof, we prove the following claim.

Claim 1 Under the above assumptions, there exist discrete series representations τ j ,

1 ≤ j ≤ k, and a tempered representation τk+1 such that the following hold:

(1) τ j →֒ δ([ν−a−j ρ, νa j ρ]) ⋊ τ j−1, 1 ≤ j ≤ k.

(2) Lang(δ([ν−a0ρ, ν l2ρ]) ⋊ τ j) ≤ δ ⋊ σ j and δ([ν−l2ρ, νa0ρ]) ⊗ τ j appears with

multiplicity one in µ∗(δ ⋊ σ j), j = 1, . . . , k.

(3) δ([ν l1+1ρ, νa0ρ]) ⋊ τ j , j = 1, . . . , k.

To prove Claim 1, we use induction. In fact we may consider j = 0 also, if we

adjust the notation appropriately using (4.3) and (4.4) and the discussion immedi-

ately before the claim. Now, the proof of the base of induction and the proof of the

inductive step are the same. Therefore, we prove the inductive step only. Thus, we

assume that the claim holds for j − 1, 1 ≤ j ≤ k, and we prove it for j. We start with

the following claim.

Claim 2 Assume that Claim 1 holds for j −1, 1 ≤ j ≤ k. Then we have the following:
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(i) µ∗(σ j−1) contains δ([ν l1+1ρ, νa0ρ]) ⊗ τ j−1 with multiplicity one.

(ii) The irreducible representation δ([ν−l2ρ, νa0ρ])×δ([ν−a−j ρ, νa j ρ])⊗τ j−1 appears

with multiplicity two in µ∗(δ × δ([ν−a−j ρ, νa j ρ]) ⋊ σ j−1).

(iii) The irreducible representation δ([ν−l2ρ, νa0ρ])×δ([ν−a−j ρ, νa j ρ])⊗τ j−1 appears

with multiplicity two in µ∗(δ × δ([ν−a−j ρ, νa j ρ]) × δ([ν l1+1ρ, νa0ρ]) ⋊ τ j−1).

(iv) The irreducible representation δ([ν l1+1ρ, νa0ρ]) × δ([ν−a−j ρ, νa j ρ]) ⊗ τ j−1 ap-

pears with multiplicity two in in µ∗(δ([ν l1+1ρ, νa0ρ])×δ([ν−a−j ρ, νa j ρ])⋊τ j−1).

Proof To prove (i), we observe that the assumption that Claim 1(2) holds for j − 1,

implies that µ∗(δ ⋊σ j−1) contains δ([ν−l2ρ, νa0ρ])⊗ τ j−1 with multiplicity one. We

unfold this using Theorem 1.2. Thus, there are indices 0 ≤ j ′ ≤ i ′ ≤ l1 + l2 + 1, and

an irreducible constituent δ ′ ⊗ σ ′
1 of µ∗(σ j−1) such that

(4.5)
δ([ν−l2ρ, νa0ρ]) ≤ δ([ν i ′−l2ρ, ν l1ρ]) × δ([ν l2+1− j ′ρ, ν l2ρ]) × δ ′

τ j−1 ≤ δ([ν l2+1−i ′ρ, ν l2− j ′ρ]) ⋊ σ ′
1.

The first formula in (4.5) shows that δ ′ is non-degenerate. In particular, it is

fully induced from the tensor product of essentially square-integrable representa-

tions [Ze]. Now, if i ′ > 0, then the first formula in (4.5) shows that one of those

essentially square-integrable representations must be attached to the segment of the

form [ν−l2ρ, νkρ], for some k < l2. Since µ∗(σ j−1) ≥ δ ′ ⊗ σ ′
1, we obtain σ j−1 →֒

νkρ × · · · × ν−l2ρ ⋊ σ ′ ′
1, for some irreducible representation σ ′ ′

1. This contradicts

the square-integrability criterion for σ j−1. Thus, i ′ = 0, and since 0 ≤ j ′ ≤ i ′, we

obtain j ′ = 0. We also obtain δ ′
= δ([ν l1+1ρ, νa0ρ]) and σ ′

1 = τ j−1. Now, (i) is clear.

We prove (ii). Again we use Theorem 1.2. Thus, we take indices 0 ≤ j ′ ≤ i ′ ≤
l1 + l2 + 1, 0 ≤ j ′ ′ ≤ i ′ ′ ≤ a−j + a j + 1, and an irreducible constituent δ ′ ⊗ σ ′

1 of

µ∗(σ j−1), and we obtain

(4.6)

δ([ν−l2ρ, νa0ρ]) × δ([ν−a−j ρ, νa j ρ])

≤ δ([ν i ′−l2ρ, ν l1ρ]) × δ([ν l2+1− j ′ρ, ν l2ρ])

× δ([ν i ′ ′−a j ρ, νa−j ρ]) × δ([νa j +1− j ′ ′ρ, νa j ρ]) × δ ′

τ j−1 ≤ δ([ν l2+1−i ′ρ, ν l2− j ′ρ]) × δ([νa j +1−i ′′ρ, νa j− j ′ ′ρ]) ⋊ σ ′
1.

As above, we conclude that i ′ = 0. This implies j ′ = 0. Since a−j < a j ≤ l1 < a0,

we conclude that δ ′ must contain ν l1+1, . . . , νa0ρ in its support. We note that δ1

must be non-degenerate and thus [Ze] it must be isomorphic to the representation

induced from the product of essentially square integrable representations attached to

non-linked segments. We analyze several cases.

• i ′′ = a−j + a j + 1, j ′′ = 0. Then δ ′ ∼= δ([ν−a−j ρ, νa j ρ]) × δ([ν l1+1ρ, νa0ρ])

if a j < l1 (and this is a contradiction since then 2a j + 1 ∈ Jordρ(σ j−1)), and

δ ′ ∼= δ([ν−a−j ρ, νa0ρ]) if a j = l1. In the last case we find that for some irreducible

representation σ ′ ′
1 we have

σ j−1 →֒ νa0ρ × · · · × ν−a−j ρ ⋊ σ ′′
1.
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Now, since Jordρ(σ j−1) ∩ [2a−j + 1, 2a0 + 1] = {2a0 + 1}, arguing as in [M4,

Lemma 4.1], we conclude that

(4.7) σ j−1 →֒ δ([ν−a−j ρ, ν l1ρ]) ⋊ σ ′
2,

or

(4.8) σ j−1 →֒ δ([ν−a−j ρ, νa0ρ]) ⋊ σ ′
2,

for some irreducible representation σ ′
2. Equation (4.7) implies 2l1 + 1 ∈ Jordρ(σ j−1).

This is a contradiction. If (4.8) holds, then let a0 > α ≥ a−j be the largest such that

there exists an irreducible representation σ2
′ ′

(4.9) σ j−1 →֒ δ([ν−αρ, νa0ρ]) ⋊ σ2
′ ′,

Using [Mœ, Remark 3.2], σ2
′′ is in the discrete series. Next, considering Jordan

blocks and using (4.9), we see 2α + 1 ∈ Jordρ(σ j−1). This is impossible since

Jordρ(σ j−1) ∩ [2a−j + 1, 2a0 + 1] = {2a0 + 1}.

• i ′′ = a−j + a j + 1 and j ′′ > 0. If j ′ ′ < a−j + a j + 1, then

δ ′ ∼= δ([ν−a−j ρ, νa j− j ′ ′ρ]) × δ([ν l1+1ρ, νa0ρ]).

This either contradicts the square-integrability criterion for σ j−1 (if a j − j ′′ < a−j )

or implies Jordρ(σ j−1) ∩ [2a−j + 1, 2a j + 1] 6= ∅ (if a j − j ′′ ≥ a−j ) which is also a

contradiction. Thus, j ′ ′ = a−j + a j + 1. Now, the second formula in (4.6) holds using

already proved (i). We have produced the desired term once.

• i ′′ < a−j + a j + 1 and j ′ ′ > 0. An analysis similar to the previous case shows that

δ ′ ∼= δ([ν l1+1ρ, νa0ρ]) and i ′′ = j ′ ′ = a j − a−j . Now, the second formula in (4.6)

holds using already proved (i). We have produced the desired term once.

• i ′′ < a−j + a j + 1 and j ′′ = 0. We must have

(4.10)

δ ′ ∼=

{
δ([ν−a−j ρ, ν i ′′−a j−1ρ]) × δ([νa−j +1ρ, νa j ρ]) × δ([ν l1+1ρ, νa0ρ]), a j < l1

δ([ν−a−j ρ, ν i ′′−a j−1ρ]) × δ([νa−j +1ρ, νa0ρ]), a j = l1.

If the first formula in (4.10) holds then 2a j + 1 ∈ Jordρ(σ j−1). This is a con-

tradiction. If the second formula holds in (4.10), i ′′ = 0, or as in the proof for

i ′ = 0 we would violate the square-integrability criterion for σ j−1. Thus, δ ′ ∼=
δ([νa−j +1ρ, νa0ρ]). The second formula in (4.6) shows σ ′

1
∼= τ j−1. This implies

µ∗(σ j−1) ≥ δ([νa−j +1ρ, νa0ρ]) ⊗ τ j−1.

This clearly violates (i) since l1 > a−j . This completes proof of Claim 2(ii). (iii) and

(iv) have similar proofs. We leave the details to the reader.
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Now, we complete the proof of the inductive step in Claim 1.

Let us write σ ′
j for the other discrete series subrepresentation in the induced rep-

resentation (4.2). We also write τ and τ ′ for the irreducible subrepresentations of (i).

We have

(4.11) δ([ν−l2ρ, νa0ρ]) ⋊ τ ⊕ δ([ν−l2ρ, νa0ρ]) ⋊ τ ′ →֒

δ([ν−l2ρ, νa0ρ]) × δ([ν−b−j ρ, νb j ρ]) ⋊ τ j−1.

Now, Frobenius reciprocity and Claim 2(iii) imply the following claim.

Claim 3 The Langlands quotients

Lang(δ([ν−l2ρ, νa0ρ]) ⋊ τ ) and Lang(δ([ν−l2ρ, νa0ρ]) ⋊ τ ′)

are the only irreducible subquotients of δ×δ([ν−a−j ρ, νa j ρ])×δ([ν l1+1ρ, νa0ρ])⋊τ j−1

having δ([ν−l2ρ, νa0ρ])×δ([ν−b−j ρ, νb j ρ])⊗τ j−1 in the appropriate Jacquet modules.

Next, we have

(4.12) σ j ⊕ σ ′
j →֒ δ([ν−a−j ρ, νa j ρ]) ⋊ σ j−1

→֒ δ([ν−a−j ρ, νa j ρ]) × δ([ν l1+1ρ, νa0ρ]) ⋊ τ j−1

∼= δ([ν l1+1ρ, νa0ρ]) × δ([ν−a−j ρ, νa j ρ]) ⋊ τ j−1,

and

(4.13) δ([ν l1+1ρ, νa0ρ]) ⋊ τ ⊕ δ([ν l1+1ρ, νa0ρ]) ⋊ τ ′ →֒

δ([ν l1+1ρ, νa0ρ]) × δ([ν−a−j ρ, νa j ρ]) ⋊ τ j−1.

Combining Claim 2(iv), (4.12), and (4.13), we may assume

(4.14)
σ j →֒ δ([ν l1+1ρ, νa0ρ]) ⋊ τ ,

σ ′
j →֒ δ([ν l1+1ρ, νa0ρ]) ⋊ τ ′.

We use (4.14) to define τ j = τ ′ to show that Claim 1(3) holds. Also, combining

(4.14) with Theorem 1.2 and (4.13) implies that

(4.15)
µ∗

(
δ ⋊ σ j

)
≥ δ([ν−l2ρ, νa0ρ]) × δ([ν−b−j ρ, νb j ρ]) ⊗ τ j−1,

µ∗
(
δ ⋊ σ ′

j

)
≥ δ([ν−l2ρ, νa0ρ]) × δ([ν−b−j ρ, νb j ρ]) ⊗ τ j−1.

Now, Claim 1(1) and (2) also hold.

The next combinatorial lemma generalizes Theorem 3.1 and Lemma 4.1.
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Lemma 4.2 Assume that (2.3) holds and that there is a pair 2a ′ +1 < 2a+1, 2a+1 ∈
]2l1 + 1, 2l2 + 1[ ∩ Jordρ or 2a ′ + 1 ∈ ]2l1 + 1, 2l2 + 1[ ∩ Jordρ, ǫ(2a + 1, ρ)ǫ(2a ′ +

1, ρ)−1
= 1, and ]2a ′ + 1, 2a + 1[∩ Jordρ is either empty or can be divided into disjoint

sets of pairs {2a−j + 1, 2a j + 1}, j = 1, . . . , k (this defines k), such that a−j < a j ,

ǫ(2a j + 1, ρ)ǫ(2a−j + 1, ρ)−1
= 1 and we can have neither a−j < a−i < a j < ai nor

a−i < a−j < ai < a j , for i 6= j. Then δ ⋊ σ is reducible.

Proof This follows from Theorem 3.1 and Lemma 4.1. First, if 2a + 1, 2a ′ + 1 ∈
]2l1 + 1, 2l2 + 1[ ∩ Jordρ, then we have two cases.

If ]2a + 1, 2a ′ + 1[ ∩ Jordρ is empty, we are done by Theorem 3.1. If not, we can

find a pair {2a−j + 1, 2a j + 1} such ]2a−j + 1, 2a j + 1[ ∩ Jordρ is empty and we are

again done by Theorem 3.1.

Next, assume 2a ′+1 ∈ ]2l1+1, 2l2+1[ ∩Jordρ and 2a+1 /∈ ]2l1+1, 2l2+1[∩ Jordρ.

Then we take the largest say 2b + 1 in ]2l1 + 1, 2l2 + 1[ ∩ Jordρ. By the assumption

there must exist j such that 2b + 1 = 2a j + 1 or 2b + 1 = 2a−j + 1. If 2b + 1 = 2a j + 1,

then ]2a−j + 1, 2a j + 1[ ⊆ ]2l1 + 1, 2l2 + 1[. Thus, if ]2a−j + 1, 2a j + 1[ ∩ Jordρ is

empty, we are done by Theorem 3.1. If not, we can find i so that ]2a−i + 1, 2ai + 1[ ⊆
]2a−j + 1, 2a j + 1[, ]2a−i + 1, 2ai + 1[ ∩ Jordρ is empty, and we are done by Theorem

3.1. If 2b + 1 = 2a−j + 1, we apply Lemma 4.1(ii).

We treat the cases

2a + 1 ∈ ]2l1 + 1, 2l2 + 1[ ∩ Jordρ

and

2a ′ + 1 /∈ ]2l1 + 1, 2l2 + 1[ ∩ Jordρ

similarly.

In view of combinatorics of admissible triples recalled in Section 1, Lemma 4.2

enables us to assume that there exists an alternated triple subordinated to that of σ
that contains all ]2l1 + 1, 2l2 + 1[ ∩ Jordρ 6= ∅.

We leave to the reader that this assumption excludes the assumption of Lemma

4.2 that there is a pair 2a ′ +1 < 2a+1, 2a+1 ∈ ]2l1 + 1, 2l2 + 1[ ∩ Jordρ or 2a ′ +1 ∈
]2l1 + 1, 2l2 + 1[ ∩ Jordρ, ǫ(2a+1, ρ)ǫ(2a ′+1, ρ)−1

= 1, and ]2a ′+1, 2a+1[ ∩ Jordρ

is either empty or can be divided into disjoint sets of pairs {2a−j + 1, 2a j + 1}, j =

1, . . . , k (this defines k), such that a−j < a j , ǫ(2a j + 1, ρ)ǫ(2a−j + 1, ρ)−1
= 1 and we

can have neither a−j < a−i < a j < ai nor a−i < a−j < ai < a j , for i 6= j.

It is also easy to verify that they are the only options that we have. The next lemma

completes the proof of Theorem 4.1.

Lemma 4.3 Assume that (2.3) holds and that there exists a triple of alternated type

(Jordalt , σ
′, ǫalt ) subordinated to that of σ that contains all ]2l1 + 1, 2l2 + 1[ ∩ Jordρ 6=

∅. Then δ ⋊ σ is irreducible if and only if 2l1 + 1, 2l2 + 1 ∈ (Jordalt)ρ.
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Proof We write σalt for a strongly positive discrete series attached to

(Jordalt , σ
′, ǫalt).

We also write 2a0 + 1 (resp., 2b0 + 1) for the largest (resp., smallest) of

[2l1 + 1, 2l2 + 1] ∩ (Jordalt)ρ.

Then we have the following result, which follows from [M4, Theorem 4.1] and its

proof:

Lemma 4.4

(i) If 2l1 + 1, 2l2 + 1 ∈ (Jordalt )ρ, then δ ⋊ σalt is irreducible.

(ii) Assume 2l2 + 1 6∈ (Jordalt )ρ. This means a0 < l2, and we define a new strongly

positive discrete series σ ′
alt , replacing 2a0 + 1 with 2l2 + 1 in all relevant formulas

that define the triple of σalt . Then σ ′
alt →֒ δ([νa0+1ρ, ν l2ρ]) ⋊ σalt . Finally,

Lang
(
δ([ν−l1ρ, νa0ρ]) ⋊ σ ′

alt

)
≤ δ ⋊ σ,

and δ([ν−l1ρ, νa0ρ]) ⊗ σ ′
alt appears in µ∗(δ ⋊ σalt) with multiplicity one.

(iii) Assume 2l1 + 1 /∈ (Jordalt)ρ. This means b0 > l1, and we define a new strongly

positive discrete series σ ′′
alt , replacing 2b0 + 1 with 2l1 + 1 in all relevant formulas

that define the triple of σalt . Then σalt →֒ δ([ν l1+1ρ, νb0ρ]) ⋊ σ ′′
alt . Finally,

Lang
(
δ([ν−b0ρ, ν l2ρ]) ⋊ σ ′′

alt

)
≤ δ ⋊ σ,

and δ([ν−b0ρ, ν l2ρ]) ⊗ σ ′′
alt appears in µ∗(δ ⋊ σalt) with multiplicity one.

Now, we are ready to begin the proof. First, by definition of admissible triple,

Jord \ Jordalt is either empty or can be divided into disjoint sets of pairs (2a−j +1, ρ j),

(2a j + 1, ρ j), j = 1, . . . , k (this defines k), such that a−j < a j , ǫ(2a j + 1, ρ j)ǫ(2a−j +

1, ρ j)
−1

= 1 and we can have neither a−j < a−i < a j < ai nor a−i < a−j < ai < a j ,

for i 6= j and ρi
∼= ρ j . There exists a (unique) sequence of discrete series σ j , 1 ≤ j ≤

k, such that

(4.16)
σ j →֒ δ([ν−a−j ρ j , ν

a j ρ j]) ⋊ σ j−1, 1 ≤ j ≤ k

σ0 = σalt σk = σ.

Next, we consider the case 2l2 + 1 6∈ (Jordalt )ρ. Then, as in the proof of Lemma

4.1, the next claim that clearly completes the proof of Lemma 4.3 in that case.

Claim 4 Under the above assumptions, there exist discrete series representations τ j ,

1 ≤ j ≤ k such that the following hold:

(1) τ j →֒ δ([ν−a−j ρ j , ν
a j ρ j]) ⋊ τ j−1, 1 ≤ j ≤ k, τ0 = σ ′

alt .
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(2) Lang(δ([ν−l1ρ, νa0ρ]) ⋊ τ j) ≤ δ ⋊ σ j and δ([ν−l1ρ, νa0ρ]) ⊗ τ j appears with

multiplicity one in µ∗
(
δ ⋊ σ j

)
, j = 1, . . . , k.

(3) τ j →֒ δ([νa0ρ, ν l2+1ρ]) ⋊ σ j , j = 1, . . . , k.

Now, we consider the case 2l1 + 1 /∈ (Jordalt)ρ. Then, as in the proof of Lemma

4.1, the next claim that clearly completes the proof of Lemma 4.3 in that case.

Claim 5 Under the above assumptions, there exist discrete series representations τ j ,

1 ≤ j ≤ k such that the following hold:

(1) τ j →֒ δ([ν−a−j ρ j , ν
a j ρ j]) ⋊ τ j−1, 1 ≤ j ≤ k, τ0 = σ ′′

alt .

(2) Lang(δ([ν−b0ρ, ν l2ρ]) ⋊ τ j) ≤ δ ⋊ σ j and δ([ν−l2ρ, νb0ρ]) ⊗ τ j appears with

multiplicity one in µ∗
(
δ ⋊ σ j

)
, j = 1, . . . , k.

(3) σ j →֒ δ([ν l1+1ρ, νb0ρ]) ⋊ τ j , j = 1, . . . , k.

The details of the verification of both claims are left to the reader.

To complete the proof of Lemma 4.3 we prove the following claim:

Claim 6 If 2l1 + 1, 2l2 + 1 ∈ (Jordalt )ρ, then δ ⋊ σ j , 0 ≤ j ≤ k is irreducible.

Proof We use induction on j. If j = 0, then the claim follows from Lemma 4.4(i)

using the definition of σ0 given in (4.15).

Next, we have the following intertwining operators:

(4.17)

δ ⋊ σ j →֒ δ × δ([ν−a−j ρ j , ν
a j ρ j]) ⋊ σ j−1

∼= δ([ν−a−j ρ j , ν
a j ρ j]) × δ ⋊ σ j−1

∼= δ([ν−a−j ρ j , ν
a j ρ j]) × δ̃ ⋊ σ j−1

∼= δ̃ × δ([ν−a−j ρ j , ν
a j ρ j]) ⋊ σ j−1.

The first and third isomorphisms follow form [Ze] using the definition of Jordalt .

(Compare with the discussion immediately after (3.2).) The second intertwining

operator is an isomorphism since δ ⋊ σ j−1 is irreducible. Now, (4.16) implies the

first below formula (and the second is obvious)

(4.18)
δ ⋊ σ j →֒ δ̃ × δ([ν−a−j ρ j , ν

a j ρ j]) ⋊ σ j−1

δ̃ ⋊ σ j →֒ δ̃ × δ([ν−a−j ρ j , ν
a j ρ j]) ⋊ σ j−1.

Now, if we show that Lang(δ ⋊ σ j) appears with multiplicity one in

δ̃ × δ([ν−a−j ρ j , ν
a j ρ j]) ⋊ σ j−1,

then clearly δ ⋊ σ j is irreducible. To establish that it is enough to check that δ̃⊗σ j−1

appears in µ∗(δ̃ × δ([ν−a−j ρ j , ν
a j ρ j]) ⋊ σ j−1) with multiplicity one. Since this is

completely analogous to the computation of multiplicities given in the proof of Claim

2 but much simpler, we leave the verification to the reader.
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5 General Case for l1 ≥ 0, II

To complete the study of reducibility of the generalized principal series δ ⋊ σ (in the

case of l1 ≥ 0), we analyze the case

]2l1 + 1, 2l2 + 1[ ∩ Jordρ = ∅,

in this section. The main result of this section is the following theorem:

Theorem 5.1 Assume that (2.3) and ]2l1 + 1, 2l2 + 1[∩ Jordρ = ∅ hold. Then δ ⋊ σ
is irreducible if and only if 2l1 +1, 2l2 +1 ∈ Jordρ and ǫ(2l1 +1, ρ)·ǫ(2l2 +1, ρ)−1

= −1.

First, Theorem 2.1 enables us to assume 2l1 + 1 ∈ Jordρ or 2l2 + 1 ∈ Jordρ. Now,

we start the proof of Theorem 5.1 with the next lemma.

Lemma 5.1 Suppose 2l1 + 1 ∈ Jordρ or 2l2 + 1 ∈ Jordρ but not both. Then δ ⋊ σ
reduces.

Proof This has the same proof as [M4, Lemma 4.4]. Nowhere in the proof of that

lemma did we use the assumption that σ is positive.

The next lemma completes the proof of the theorem.

Lemma 5.2 Assume 2l1+1 ∈ Jordρ and 2l2+1 ∈ Jordρ. Then δ⋊σ reduces if and only

if ǫ(2l2 +1, ρ)·ǫ(2l1 +1, ρ)−1
= 1. Moreover, assume that ǫ(2l2 +1, ρ)·ǫ(2l1 +1, ρ)−1

=

1, and define a discrete series σ ′ ′ by removing (2l1 + 1, ρ) and (2l2 + 1, ρ) from the triple

of σ and restricting ǫ to that set of Jordan blocks. (See Theorem 1.1(iii).) Then in the

appropriate Grothendieck group

δ ⋊ σ = Lang(δ ⋊ σ) + σtemp ,

where σtemp is the common irreducible subquotient of

{
δ ⋊ σ

δ([ν−l1ρ, ν l1ρ]) × δ([ν−l2ρ, ν l2ρ]) ⋊ σ ′ ′.

Proof If δ ⋊ σ reduces then it must have a tempered irreducible subquotient. (See

Lemma 2.1.) For any such tempered irreducible subquotient π, Lemma 2.1 implies

that there must exist a discrete series π ′ such that

π →֒ δ([ν−l1ρ, ν l1ρ]) × δ([ν−l2ρ, ν l2ρ]) ⋊ π ′.

In particular, Frobenius reciprocity implies that we have µ∗(π) ≥ δ([ν−l1ρ, ν l1ρ]) ×
δ([ν−l2ρ, ν l2ρ]) ⊗ π ′. Hence

µ∗(δ ⋊ σ) ≥ δ([ν−l1ρ, ν l1ρ]) × δ([ν−l2ρ, ν l2ρ]) ⊗ π ′.
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This can be analyzed using Theorem 1.2. Thus, for some irreducible constituents

µ∗(σ) ≥ δ ′ ⊗ σ ′
1, and indices 0 ≤ j ≤ i ≤ l1 + l2 + 1, we must have

(5.1)

δ([ν−l1ρ, ν l1ρ]) × δ([ν−l2ρ, ν l2ρ]) ≤ δ([ν i−l2ρ, ν l1ρ])

× δ([ν l2+1− jρ, ν l2ρ]) × δ ′

π ′ ≤ δ([ν l2+1−iρ, ν l2− jρ]) ⋊ σ ′
1.

The first formula implies that δ ′ must be non-degenerate, and, by [Ze], induced

from the product of essentially-square integrable representations. Any such essen-

tially-square integrable representation (say δ1) must have members in its segment

between ν−l2ρ and ν l2ρ. On the other hand, the square-integrability criterion applied

to σ shows that the sum over all exponents α, where ναρ ranges over a segment

attached to δ1 must be strictly positive. This implies α > −l2. Now the first formula

in (5.1) shows i = 0. Since 0 ≤ j ≤ i, we obtain j = 0. Now, δ ′ ∼= δ([ν−l1ρ, ν l2ρ]).

Since µ∗(σ) ≥ δ ′ ⊗ σ ′
1, there exists an irreducible representation σ ′′

1 such that

σ →֒ ν l2ρ × ν l2−1ρ × · · · × ν−l1ρ ⋊ σ ′′
1.

Using ]2l1 + 1, 2l2 + 1[ ∩ Jordρ = ∅ and arguing as in the proof of [M4, Lemma

4.1], we see that

σ →֒ δ([ν−l1ρ, ν l2ρ]) ⋊ σ ′′
1.

This, using [Mœ, Remark 3.1], implies that ǫ(2l1 + 1, ρ) · ǫ(2l2 + 1, ρ)−1
= 1 , proving

the necessary condition for reducibility.

Now, assume that this necessary condition for reducibility holds. Then the dis-

cussion above shows that π ′ ∼= σ ′
1 (since i = j = 0 applying the second formula

in (5.1)). We remind the reader that δ ′ ∼= δ([ν−l1ρ, ν l2ρ]). Now, [M3, Theorem

2.3], applied to µ∗(σ) ≥ δ([ν−l1ρ, ν l2ρ]) ⊗ σ ′
1 shows that σ ′ ′ ∼= σ ′

1. Moreover, [M3,

Theorem 2.3] shows that µ∗(σ) contains δ([ν−l1ρ, ν l2ρ]) ⊗ σ ′
1 with multiplicity one.

This implies that µ∗(δ ⋊ σ) contains δ([ν−l1ρ, ν l1ρ]) × δ([ν−l2ρ, ν l2ρ]) ⊗ σ ′ ′ with

multiplicity one.

To prove the existence of the unique tempered subquotient mentioned in the state-

ment of the lemma, we simply show that the multiplicity of

δ([ν−l1ρ, ν l2ρ]) × δ([ν−l1ρ, ν l2ρ]) ⊗ σ ′′

in the appropriate Jacquet modules of the induced representations on the right-hand

and left-hand sides of

(5.2) δ([ν−l1ρ, ν l1ρ]) × δ([ν l1+1ρ, ν l2ρ]) × δ([ν−l1ρ, ν l2ρ]) ⋊ σ ′′ ≥
{

δ ⋊ σ

δ([ν−l1ρ, ν l1ρ]) × δ([ν−l2ρ, ν l2ρ]) ⋊ σ ′ ′

is exactly two, at least one, and exactly two, respectively.
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Since Theorem 1.1(iii) implies σ →֒ δ([ν−l1ρ, ν l2ρ]) ⋊ σ ′′, we see that

δ ⋊ σ →֒ δ([ν−l1ρ, ν l2ρ]) × δ([ν−l1ρ, ν l2ρ]) ⋊ σ ′′,

and hence the claim for δ ⋊ σ.

Next, we apply Theorem 1.2, three times to compute

µ∗
(
δ([ν−l1ρ, ν l1ρ]) × δ([ν l1+1ρ, ν l2ρ]) × δ([ν−l1ρ, ν l2ρ]) ⋊ σ ′ ′

)
.

Thus, for some irreducible constituent µ∗(σ ′ ′) ≥ δ ′ ⊗ σ ′
1, and indices 0 ≤ j ≤ i ≤

2l1 + 1, 0 ≤ j1 ≤ i1 ≤ l2 − l1, and 0 ≤ j2 ≤ i2 ≤ l1 + l2 + 1, we must have

(5.3) δ([ν−l1ρ,ν l2ρ]) × δ([ν−l1ρ, ν l2ρ])

≤ δ([ν i−l1ρ, ν l1ρ]) × δ([ν l1+1− jρ, ν l1ρ])

× δ([ν i1−l2ρ, ν−l1−1ρ]) × δ([ν l2+1− j1ρ, ν l2ρ])

× δ([ν i2−l2ρ, ν l1ρ]) × δ([ν l2+1− j2ρ, ν l2ρ]) × δ ′,

and

(5.4) σ ′ ′ ≤ δ([ν l1+1−iρ, ν l1− jρ]) × δ([ν l2+1−i1ρ, ν l2− j1ρ])

× δ([ν l2+1−i2ρ, ν l2− j2ρ]) ⋊ σ ′
1.

Now the third term on the right-hand side of inequality of (5.3) must not ex-

ist. Thus, i1 = l2 − l1. Also, there are no terms in Jord(σ ′ ′) that are between

2l1 + 1 and 2l2 + 1, by the construction. Hence the fourth term on the right-hand

side of inequality of (5.3) shows us j1 = l2 − l1. Similarly, we conclude j2 ≥
l2 − l1. As we just remarked, none of the segments can start with ν l1ρ, since otherwise

(2l1 + 1, ρ) ∈ Jord(σ ′′) [Mœ]. Also, all possible terms in the supercuspidal sup-

port of σ ′
1 are between (perhaps including) ν−l1ρ and ν l1ρ. This violates the square-

integrability criterion for σ ′ ′. Thus δ ′ must be trivial, and consequently σ ′
1
∼= σ ′′.

Since the first two terms on the right-hand side of (5.3) can not produce ν−l1ρ simul-

taneously, we conclude that i2 − l2 = −l1. Now, l2 − l1 ≤ j2 ≤ i2 = l2 − l1 and hence

j2 = l2 − l1. It is now easy to see that i = j = 0 or i = j = 2l + 1. Now, (5.4) trivially

holds. Thus, we have produced the desired term exactly twice. It remains to check

the claim for δ([ν−l1ρ, ν l1ρ]) × δ([ν−l2ρ, ν l2ρ]) ⋊ σ ′ ′. This computation is similar

to the one we have just completed. We leave the straightforward verification to the

reader.

6 The Case l1 ≤ −1/2

In this section we investigate the reducibility in the case l1 ≤ −1/2. The main result

of this section is the following theorem:

Theorem 6.1 Assume l1 ≤ −1/2 and (2.3) holds. Then we have the following:
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(i) Suppose [−2l1 − 1, 2l2 + 1[ ∩ Jordρ = ∅. Then δ ⋊ σ is reducible if and only if

{
l1 = −1/2

if 2l2 + 1 ∈ Jordρ , then ǫ(2l2 + 1, ρ) = 1.

(ii) Assume [−2l1 − 1, 2l2 + 1[∩ Jordρ 6= ∅. Then δ ⋊σ is reducible unless there ex-

ists an alternated triple (Jordalt , σ
′, ǫalt) dominated by (Jord, σ ′, ǫ) that contains

[−2l1 − 1, 2l2 + 1[ ∩ Jordρ and 2l2 + 1. Moreover, if such an alternated triple

exists, the induced representation δ ⋊ σ is reducible if and only if l1 = −1/2 and

ǫ(min(Jordalt )ρ, ρ) = 1

The next few lemmas will complete the proof of this theorem.

Lemma 6.1 Suppose [−2l1 − 1, 2l2 + 1[∩ Jordρ = ∅. Then δ ⋊ σ is reducible if and

only if {
l1 = −1/2

if 2l2 + 1 ∈ Jordρ , then ǫ(2l2 + 1, ρ) = 1.

Proof Assume l1 ≤ −1. Then Lemmas 2.1 and 2.2 show that there are no non-

discrete series subquotients of δ ⋊ σ. Also, a consideration of Jordan blocks as in

[MT, Section 8] shows that there are also no discrete series subquotients if l1 ≤ −1.

Thus, δ ⋊ σ is irreducible in this case.

Similarly, if l = −1/2, we see that only possible irreducible subquotients are tem-

pered if 2l2 + 1 ∈ Jordρ, and in the discrete series if 2l2 + 1 /∈ Jordρ.

We first consider 2l2 + 1 /∈ Jordρ. In this case a discrete series subquotient must

have Jord ∪{(2l2 + 1, ρ)} as its set of Jordan blocks.

Let (Jordalt , σ
′, ǫalt ) be any alternated triple dominated by (Jord, σ ′, ǫ) obtained

removing a set of disjoint pairs (2a−j + 1, ρ j), (2a j + 1, ρ j), 1 ≤ j ≤ k, such that

a−j < a j , ǫ(2a j +1, ρ)ǫ(2a−j +1, ρ)−1
= 1 and we can have neither a−j < a−i < a j < ai

nor a−i < a−j < ai < a j , for i 6= j and ρi
∼= ρ j . In particular, by Theorem 1.1, there

exists a unique sequence of discrete series σ j , 1 ≤ j ≤ k − 1, such that

σ j →֒ δ([ν−a−j ρ j , ν
a j ρ j]) ⋊ σ j−1,

1 ≤ j ≤ k, where σ0 = σalt , σk = σ.

We write 2l0 + 1 = min(Jordalt)ρ. We have two cases.

• ǫ(2l0 + 1, ρ) = −1, then we write σalt,new for the discrete series whose triple is

alternated and is obtained from that of σalt by adding (2l2 + 1, ρ) and extending

ǫ so that ǫ(2l2 + 1, ρ) = 1. It is clear from Theorem 1.1(ii) that σalt,new is a sub-

representation of δ ⋊ σalt and it appears with multiplicity one as an irreducible

subquotient [MT, Lemma 4.1]. We put τ0 = σalt,new .
• ǫ(2l0 + 1, ρ) = 1, then we write σalt,new for the discrete series whose triple is alter-

nated and is obtained from that of σalt by removing (2l0 + 1, ρ) from Jordalt and

restricting ǫ. Then δ ⋊ σalt has a unique irreducible subquotient that is different

from its Langlands quotient, appears in the composition series with multiplicity

one and it is a discrete series subrepresentation of
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δ([ν−l0ρ, ν l2ρ]) ⋊ σalt,new .

(See ([M4, Theorem 5.1(ii)].) We denote that representation by τ0.

Now, as in the proof of Lemma 4.1, there exists a unique sequence of discrete series

τ j , 1 ≤ j ≤ k, such that

{
τ j →֒ δ([ν−a−j ρ j , ν

a j ρ j]) ⋊ τ j−1,

τ j ≤ δ ⋊ σ j (appears with multiplicity one).

We omit the details since they are entirely analogous to these of Lemma 4.1. This

completes the proof in the case 2l2 + 1 /∈ Jordρ.

Next, we consider the case 2l2 + 1 ∈ Jordρ.

Claim 1 Assume that there exists a discrete series σ1 such that

(6.1) µ∗(σ) ≥ δ([ν1/2ρ, ν l2ρ]) ⊗ σ1.

Then

(6.2) σ →֒ δ([ν1/2ρ, ν l2ρ]) ⋊ σ1.

Proof First, arguing as in [M4, Lemma 4.1] we see that there exists an irreducible

representation σ ′
1 such that

(6.3) σ →֒ δ([ν1/2ρ, ν l2ρ]) ⋊ σ ′
1.

Now, we show σ ′
1 is in discrete series. If not, we can find an irreducible represen-

tation σ ′ ′
1 and a segment [ναρ ′, νβρ ′] (ρ ′ unitarizable, α, β ∈ R, −α + β ∈ Z≥0)

such that α + β ≤ 0 and

(6.4) σ ′
1 →֒ δ([ναρ ′, νβρ ′]) ⋊ σ ′′

1.

Combining this with (6.3), we obtain the following sequence of intertwining maps

σ →֒δ([ν1/2ρ, ν l2ρ]) × δ([ναρ ′, νβρ ′]) ⋊ σ ′′
1

→ δ([ναρ ′, νβρ ′]) × δ([ν1/2ρ, ν l2ρ]) ⋊ σ ′′
1.

Their composition must be zero, since otherwise the assumption α + β ≤ 0 violates

the square-integrability criterion for σ. In particular, the segments [ν1/2ρ, ν l2ρ] and

[ναρ ′, νβρ ′] are linked. Therefore, ρ ∼= ρ ′, and since −α + β ≥ 0 and α + β ≤ 0

implies α ≤ 0, we obtain

σ →֒ δ([ναρ, ν l2ρ]) × δ([ν1/2ρ, νβρ]) ⋊ σ ′′
1.

This implies

σ →֒ δ([ναρ, ν l2ρ]) ⋊ σ ′′
2,
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for some irreducible representation σ ′′
2. Now, [Mœ, Remark 3.1] implies that

[−2l1 − 1, 2l2 + 1[ ∩ Jordρ 6= ∅. This is a contradiction. Thus, σ ′
1 is in discrete

series.

Now, we show σ1
∼= σ ′

1. First, if l2 > 1/2 we may apply [M3, Theorem 2.3] to

show that σ ′
1
∼= σ1. If l1 = 1/2, then we will show the same. First, (6.1) and (6.3)

imply

ν1/2ρ ⊗ σ1 ≤ µ∗(ν1/2ρ ⋊ σ ′
1).

This can be easily analyzed using Theorem 1.2. In particular, there are indices

0 ≤ j ≤ i ≤ 1, and an irreducible constituent δ ′ ⊗ σ ′
2 of µ∗(σ ′

1) such that

(6.5)
ν1/2ρ ≤ δ([ν i−1/2ρ, ν−1/2ρ]) × δ([ν3/2− jρ, ν1/2ρ]) × δ ′

σ1 ≤ δ([ν3/2−iρ, ν1/2− jρ]) ⋊ σ ′
2.

Since (6.3) implies 2 /∈ Jordρ(σ ′
1), we see that δ ′ must be trivial. Hence σ ′

1
∼= σ ′

2.

Now, the first inequality in (6.5) shows i = j = 1. The second implies σ1
∼= σ ′

1.

Now, we show the following claim:

Claim 2 Keeping the assumptions of Claim 1, there exists an alternated triple

(Jordalt , σ
′, ǫalt)

dominated by (Jord(σ1), σ ′, ǫσ1
) such that the triple (Jord2, σ

′, ǫ2), where Jord2 =

Jord2 ∪{(2l2 + 1, ρ)} and ǫ2 extends ǫalt such that

{
ǫ2(2l2 + 1, ρ)ǫ2(min Jordalt , ρ)−1

= −1, if ǫ2(min Jordalt , ρ) = −1

ǫ2(2l2 + 1, ρ)ǫ2(min Jordalt , ρ)−1
= 1, if ǫ2(min Jordalt , ρ) = 1,

is an admissible triple and subordinated to (Jord, σ ′, ǫ).

Proof To accomplish this, let (2a + 1, ρ ′) ∈ Jord(σ1) such that (2a + 1)− := 2a− + 1

is defined and ǫ(2a + 1, ρ ′)ǫ(2a− + 1, ρ ′)−1
= 1. Let σ ′′

1 be the discrete series

obtained from σ1 removing pairs (2a + 1, ρ ′) and (2a− + 1, ρ ′) from Jord(σ1) and

restricting ǫσ1
. Then Theorem 1.1 implies

(6.6) σ1 →֒ δ([ν−a−ρ ′, νaρ ′]) ⋊ σ ′ ′
1.

Now, by Claim 1, we obtain

(6.7) σ →֒ δ([ν1/2ρ, ν l2ρ]) × δ([ν−a−ρ ′, νaρ ′]) ⋊ σ ′′
1
∼=

δ([ν−a−ρ ′, νaρ ′]) × δ([ν1/2ρ, ν l2ρ]) ⋊ σ ′ ′
1.

The last isomorphism follows from 2l2 + 1 6∈ Jord(σ1).
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Next, (6.7) implies that there exists an irreducible representation σ ′ ′ such that

σ →֒ δ([ν−a−ρ ′, νaρ ′]) ⋊ σ ′ ′.

Theorem 1.1(iii) and [M3, Theorem 2.3] imply σ ′′
1 is in the discrete series and is

obtained from σ by removing pairs (2a + 1, ρ ′) and (2a− + 1, ρ ′) from Jord and

restricting ǫ. Now, we show that an analogue of (6.1) holds for σ ′′:

µ∗(σ ′ ′) ≥ δ([ν1/2ρ, ν l2ρ]) ⊗ σ ′ ′
1.

First, (6.1) implies that

δ([ν1/2ρ, ν l2ρ]) ⊗ σ1 ≤ µ∗
(
δ([ν−a−ρ ′, νaρ ′]) ⋊ σ ′ ′

)
.

Thus, by Theorem 1.2, for some irreducible constituents δ ′ ⊗ σ ′
2 ≤ µ∗(σ ′ ′), and

indices 0 ≤ j ≤ i ≤ a− + a + 1, we must have

(6.8)
δ([ν1/2ρ, ν l2ρ]) ≤ δ([ν i−aρ ′, νa−ρ ′]) × δ([νa+1− jρ ′, νaρ ′]) × δ ′

σ1 ≤ δ([νa+1−iρ ′, νa− jρ ′]) ⋊ σ ′
2.

Since l2 < a− < a, by the definition of σ1, the first inequality in (6.8) implies i =

a− + a + 1 and j = 0. We also obtain δ ′ ∼= δ([ν1/2ρ, ν l2ρ]), and

µ∗(σ ′ ′) ≥ δ([ν1/2ρ, ν l2ρ]) ⊗ σ ′
2.

We must show σ ′
2
∼= σ ′′

1. First, Claim 1 applied to σ ′′ implies that σ ′
2 is in the

discrete series. Now, the second inequality in (6.8) and Theorem 2.1(iv) imply

σ1 →֒ δ([ν−a−ρ ′, νaρ ′]) ⋊ σ ′
2.

Then, [M3, Theorem 2.3] implies σ ′
2
∼= σ ′′

1.

We may now repeat this procedure (of removing the pairs) until we get that the

triple of σ ′ ′
1 is of alternated type. The corresponding σ ′′ has its triple as in the

statement of Claim 2 according to [M4, Theorem 5.1]. Thus, we have proved the

claim.

Now, if δ ⋊ σ reduces, it must have a tempered irreducible subquotient such

that Lemma 2.1(a) holds with l1 = −1/2. Therefore, the discrete series represen-

tation σ1 obtained there satisfies the conclusion of Claim 1. Now, Claim 2 implies

ǫ(2l2 + 1, ρ) = 1. This proves the necessary condition for reducibility. Going in the

opposite direction of Claim 2, we may use induction to construct a discrete series σ1

such that

(6.9) σ →֒ δ([ν1/2ρ, ν l2ρ]) ⋊ σ1,

when ǫ(2l2 + 1, ρ) = 1 holds. This follows by combining [M4, Theorem 5.1] and

Theorem 1.1 (as in Lemma 4.1). We omit the details. Now, we show that δ ⋊ σ has a

common irreducible subquotient with the induced representation

δ([ν−l2ρ, ν l2ρ]) ⋊ σ1.
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This will complete the proof of the lemma. First, we observe the following:

(6.10)
δ([ν1/2ρ, ν l2ρ]) ⋊ σ ≤ δ([ν1/2ρ, ν l2ρ]) × δ([ν1/2ρ, ν l2ρ]) ⋊ σ1,

δ([ν−l2ρ, ν l2ρ]) ⋊ σ1 ≤ δ([ν1/2ρ, ν l2ρ]) × δ([ν1/2ρ, ν l2ρ]) ⋊ σ1.

We show that δ([ν−l2ρ, ν l2ρ]) ⊗ σ1 appears in

(6.11) µ∗
(
δ([ν1/2ρ, ν l2ρ]) × δ([ν1/2ρ, ν l2ρ]) ⋊ σ1

)

with multiplicity exactly two. Then δ([ν−l2ρ, ν l2ρ]) ⋊ σ1 contains δ([ν−l2ρ, ν l2ρ]) ⊗
σ1 in its appropriate Jacquet module twice. (See [M3, Theorem 2.3]) Now, combin-

ing this with (6.11) and the fact (that easily follows from Theorem 1.2 and (6.9))

µ∗(δ([ν1/2ρ, ν l2ρ]) ⋊ σ) ≥ δ([ν−l2ρ, ν l2ρ]) ⊗ σ1,

we see that δ([ν−l2ρ, ν l2ρ]) ⋊ σ1 and δ([ν1/2ρ, ν l2ρ]) ⋊ σ must have a common irre-

ducible subquotient. This proves reducibility.

Let us now compute the multiplicity of δ([ν−l2ρ, ν l2ρ]) ⊗ σ1 in (6.11). We use

Theorem 1.2. So, let µ∗(σ1) ≥ δ ′ ⊗ σ ′
2 irreducible representation, and indices 0 ≤

j ≤ i ≤ l2 + 1/2, 0 ≤ j ′ ≤ i ′ ≤ l2 + 1/2. We have the following formulas

(6.12) δ([ν−l2ρ, ν l2ρ]) ≤ δ([ν i−l2ρ, ν−1/2ρ]) × δ([ν l2+1− jρ, ν l2ρ])

× δ([ν i ′−l2ρ, ν−1/2ρ]) × δ([ν l2+1− j ′ρ, ν l2ρ]) × δ ′

and

(6.13) σ1 ≤ δ([ν l2+1−i ′ρ, ν l2− j ′ρ]) × δ([ν l2+1−iρ, ν l2− jρ]) ⋊ σ ′
2.

As before, from the first formula in (6.12) we see that δ ′ must be non-degenerate,

and, thus by [Ze], fully induced from the tensor product of essentially square-inte-

grable representations. Since, l2 + 1 − j ≥ 1/2, l2 + 1 − j ′ ≥ 1/2. This implies i = 0

or i ′ = 0, since otherwise one of the segments attached to δ ′ would start at ν−l2ρ and

end at ναρ, α ≤ l2. This implies

σ1 →֒ ναρ × · · · × ν−l2ρ ⋊ σ ′
1,

for some irreducible representation σ ′
1. This contradicts the square-integrability cri-

terion for σ1.

First, assume i = 0. Then since i ≥ j ≥ 0 we also obtain j = 0. We also see from

(6.12) that i ′ = l2 + 1, or otherwise the left-hand side of (6.12) would contain ν−1/2ρ
in its supercuspidal support twice. Finally, l2 + 1 − j ′ = 1/2, that is, j ′ = l2 + 1/2 or

δ ′ ∼= δ([ν1/2ρ, ν l2− j ′ρ]). This implies 2(l2 − j ′) + 1 ∈ Jordρ, a contradiction. Thus,

δ ′ is trivial and σ ′ ∼= σ1. Obviously (6.13) holds. This produces δ([ν−l2ρ, ν l2ρ])⊗σ1

once. The case i ′ = 0 is similar.

Now, we analyze the case [−2l1 − 1, 2l2 + 1[ ∩ Jordρ 6= ∅. The remaining results

of this section are completely parallel to the ones in Section 4. The first result is an

analogue of Lemma 4.1.
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Lemma 6.2 Assume l1 ≤ −1/2, (2.3), and [−2l1 − 1, 2l2 + 1[ ∩ Jordρ 6= ∅. Let us

write 2a0 + 1 for the smallest element and 2b0 + 1 for the largest element in

[−2l1 − 1, 2l2 + 1[ ∩ Jordρ .

Then δ ⋊ σ reduces if one of the following holds:

(i) There exists 2a−0 +1 ∈ Jordρ such that a−0 < a0, ǫ(2a0 +1, ρ)ǫ(2a−0 +1, ρ)−1
= 1,

and ]2a−0 + 1, 2a0 + 1[ ∩ Jordρ is either empty or can be divided into disjoint sets

of pairs {2a−j + 1, 2a j + 1}, j = 1, . . . , k (this defines k), such that a−j < a j ,

ǫ(2a j + 1, ρ)ǫ(2a−j + 1, ρ)−1
= 1 and we can have neither a−j < a−i < a j < ai

nor a−i < a−j < ai < a j , for i 6= j.

(ii) There exists 2b+
0 + 1 ∈ Jordρ such that b0 < b+

0 , ǫ(2b0 + 1, ρ)ǫ(2b+
0 + 1, ρ)−1

= 1,

and ]2b0 + 1, 2b+
0 + 1[ ∩ Jordρ is either empty or can be divided into disjoint sets

of pairs {2b−j + 1, 2b j + 1}, j = 1, . . . , k (this defines k), such that b−j < b j ,

ǫ(2b j + 1, ρ)ǫ(2b−j + 1, ρ)−1
= 1 and we can have neither b−j < b−i < b j < bi

nor b−i < b−j < bi < b j , for i 6= j.

Proof As in Lemma 4.1.

Lemma 6.3 Assume that (2.3) holds and that there is a pair 2a ′ +1 < 2a+1, 2a+1 ∈
[−2l1 − 1, 2l2 + 1[ ∩ Jordρ or 2a ′+1 ∈ [−2l1 − 1, 2l2 + 1[ ∩ Jordρ, ǫ(2a+1, ρ)ǫ(2a ′+

1, ρ)−1
= 1, and ]2a ′ +1, 2a +1[ ∩ Jordρ is either empty or can be divided into disjoint

sets of pairs {2a−j + 1, 2a j + 1}, j = 1, . . . , k (this defines k), such that a−j < a j ,

ǫ(2a j + 1, ρ)ǫ(2a−j + 1, ρ)−1
= 1 and we can have neither a−j < a−i < a j < ai nor

a−i < a−j < ai < a j , for i 6= j. Then δ ⋊ σ is reducible.

Proof Exactly as in Lemma 4.2.

Lemma 6.4 Assume that (2.3) holds and that there exists a triple of alternated type

(Jordalt , σ
′, ǫalt ) subordinated to that of σ that contains all

[−2l1 − 1, 2l2 + 1[ ∩ Jordρ 6= ∅.

Then we have the following cases:

(i) If 2l2 + 1 /∈ (Jordalt )ρ, then δ ⋊ σ is reducible.

(ii) If 2l2 + 1 ∈ (Jordalt)ρ and l1 ≤ −1, or l1 = −1/2 and ǫ(min(Jordalt )ρ, ρ) = −1,

then is δ ⋊ σ is irreducible.

(iii) If 2l2 + 1 ∈ (Jordalt )ρ, l1 = −1/2, and ǫ(min(Jordalt )ρ, ρ) = 1, then is δ ⋊ σ is

reducible.

Proof Again, this proof is completely analogous to the proof of Lemma 4.3. We just

indicate necessary modifications.

We write σalt for a strongly positive discrete series attached to (Jordalt , σ
′, ǫalt ). We

also write 2a0 + 1 for the largest of

[−2l1 − 1, 2l2 + 1[ ∩ (Jordalt)ρ.

Instead of Lemma 4.4, here we use the next lemma to complete the proof.
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Lemma 6.5 Under the above assumptions, we have the following:

(i) If 2l2 + 1 /∈ (Jordalt )ρ, then we define a discrete series σ ′
alt by replacing 2a0 + 1 with

2l2 + 1 in all the formulas that define σalt , and we have

Lang(δ([ν1/2ρ, νa0ρ]) ⋊ σ ′
alt ) ≤ δ ⋊ σalt .

(ii) If 2l2 + 1 ∈ (Jordalt)ρ and l1 ≤ −1, or l1 = −1/2 and ǫ(min(Jordalt )ρ, ρ) = −1,

then is δ ⋊ σalt is irreducible.

(iii) If 2l2 + 1 ∈ (Jordalt )ρ, l1 = −1/2, and ǫ(min(Jordalt )ρ, ρ) = 1, then we define a

discrete series σ ′
alt by removing min(Jordalt )ρ from (Jordalt)ρ, and we have

Lang(δ([ν−(min(Jordalt )ρ−1)/2ρ, ν l2ρ]) ⋊ σ ′
alt ) ≤ δ ⋊ σalt .

Proof This follows from [M4, Proposition 3.1] and [M4, Theorem 5.1].
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