DUAL PROBLEMS OF QUASICONVEX MAXIMISATION.

Alexander M. Rubinov and Belgin Şimşek

A conjugacy operation is introduced on the set $Q(X)$ of all quasiconvex lower semicontinuous nonnegative functions vanishing at zero. This operation is used in order to introduce and study a dual problem with respect to a maximisation problem where both constraint and objective functions belong to $Q(X)$.

1. Let X be a locally convex Hausdorff topological vector space and $\bar{R}_{+}=R_{+} \cup\{+\infty\}$ where R_{+}is the set of all nonnegative real numbers. Let us consider the set $Q(X)$ of all quasiconvex lower semicontinuous functions q defined on X and mapping into \bar{R}_{+} with the property $q(0)=0$. Recall that a function q defined on X is called quasiconvex if the sets $S_{c}(q)=\{x \in X: q(x) \leqslant c\}$ are convex for all c. Clearly, $q \in Q(X)$ if and only if the set $S_{c}(q)$ is convex and closed and $0 \in S_{c}(q)$ for all $c \geqslant 0$.

The purpose of this paper is to present a new concept of the dual problem with respect to a maximisation problem where both constraint and objective functions belong to $Q(X)$. Duality for convex extremal problems is constructed as a rule by the following scheme: if the primal problem is a maximisation then the dual problem is a minimisation. As it turns out the scheme: maximisation in the primal problem and maximisation in the dual problem is more suitable for our nonconvex case. First we introduce a conjugacy operation on the set $Q(X)$.
2. Let us consider the level sets:

$$
S_{c}(q)=\{x \in X: q(x) \leqslant c\} \text { and } T_{c}(q)=\{x: q(x)<c\}
$$

of the given function $q \in Q(X)$. Now we determine a conjugate function q^{*} which is defined on the space X^{\prime}, dual with respect to X and such that a level set $S_{1 / c}\left(q^{*}\right)$ is equal to the polar of the level set $S_{c}(q)$ for all $0 \leqslant c \leqslant+\infty$. Recall that the polar with respect to a nonempty subset S of X is the set $S^{\circ}=\left\{\ell \in X^{\prime}: \ell(x) \leqslant 1, \quad \forall x \in S\right\}$. By definition the polar of the empty set coincides with X^{\prime}.

Definition 2.1: Let $q \in Q(X)$. The function q^{*} defined on the space X^{\prime} by the formula

$$
q^{*}(\ell)=\sup \left\{\frac{1}{q(x)}: \ell(x)>1\right\}
$$

Received 21st April, 1994

The authors wish to thank Dr. B.M. Glover for helpful discussions.
is called the conjugate function with respect to q. Let us note that this definition is close to the definition which is given by Thach $[1,2]$.

Proposition 2.2. Let $q \in Q(X)$ and $0 \leqslant c \leqslant+\infty$. Then
(i) $S_{1 / c}\left(q^{*}\right)=T_{c}^{\circ}(q)$
(ii) $T_{1 / c}\left(q^{*}\right)=\bigcup_{c^{\prime}>c}\left(S_{c^{\prime}}(q)\right)^{0}$

Proof: We consider only the case where $0<c<+\infty$.
(i) By definition of the conjugate function we have $\ell \in S_{1 / c}\left(q^{*}\right)$ if and only if the inequality $\ell(x)>1$ implies $q(x) \geqslant c$. Let $\ell \in S_{1 / c}\left(q^{*}\right)$ and $x \in T_{c}(q)$. Since $q(x)<c$ it follows that $\ell(x) \leqslant 1$ and $\ell \in T_{c}^{\circ}(q)$. We have $S_{1 / c}\left(q^{*}\right) \subset T_{c}^{\circ}(q)$. Similar reasoning shows that $T_{c}^{\circ}(q) \subset S_{1 / c}\left(q^{*}\right)$.
ii) If $\ell \in T_{1 / c}\left(q^{*}\right)$ and $c^{\prime}>c$ then the inequality $\ell(x)>1$ implies $q(x)>c^{\prime}>c$. Let $x \in S_{c^{\prime}}(q)$. By definition, $q(x) \leqslant c^{\prime}$ so $\ell(x) \leqslant 1$. Thus $\ell \in S_{c^{\prime}}^{\circ}(q)$. Hence $\ell \in \bigcup_{c^{\prime}>c}\left(S_{c^{\prime}}(q)\right)^{\circ}$ and $T_{1 / c}\left(q^{*}\right) \subset \bigcup_{c^{\prime}>c}\left(S_{c^{\prime}}(q)\right)^{\circ}$. It is easy to check that the reverse inclusion holds.

Corollary 2.3. $q^{*} \in Q\left(X^{\prime}\right)$ for all $q \in Q(X)$.
3. Let $f, g \in Q\left(X^{\prime}\right)$. We consider an extremal problem $\left(P_{c}\right)$:

$$
f(x) \rightarrow \text { sup under condition } g(x)<c
$$

where $c \in(0,+\infty)$. Clearly, this problem is not convex even if f and g are convex functions. Let us remark that the problem

$$
f(x) \rightarrow \text { sup } \quad \text { under condition } \quad g_{i}(x)<c_{i}(i=1, \cdots, m)
$$

can be rewritten as the following problem which is of type $\left(P_{c}\right)$:

$$
f(x) \rightarrow \text { sup under condition } g(x)<1
$$

where $g=\sup _{i}\left(1 / c_{i}\right) g_{i}$. A point \bar{x} is called a solution of the problem $\left(P_{c}\right)$ if $g(\bar{x})=c$ and $f(\bar{x})=\sup \{f(x): g(x)<c\}$. Therefore the solution is not an admissible element. If f is continuous and $S_{c}(g)=c \ell T_{c}(g)$ then

$$
\sup _{g(x)<c} f(x)=\sup _{g(x) \leqslant c} f(x)
$$

and the vector \bar{x} is a solution of the problem

$$
f(x) \rightarrow \max \quad \text { under condition } \quad g(x) \leqslant c
$$

and \bar{x} is an admissible element for this problem.
Let $\sup _{g(x)<c} f(x)=d<+\infty$ and consider the problem

$$
g^{*}(\ell) \rightarrow \sup \quad \text { under condition } \quad f^{*}(\ell)<\frac{1}{d}
$$

This problem is called the dual with respect to the problem $\left(P_{c}\right)$. We denote this problem by $\left(D_{1 / d}\right)$. It is not usual for the value of the primal problem to be used in the formulation of a dual problem but we believe this approach is suitable for the theoretical investigation of the problem (P_{c}). Now we consider a function $\varphi(c)$ which coincides with value of problem (P_{c}),

$$
\begin{equation*}
\varphi(c)=\sup \{f(x): g(x)<c\} \quad c \in(0,+\infty) \tag{1}
\end{equation*}
$$

Theorem 2.4. If φ is a strictly increasing function then the value of the dual problem ($D_{1 / d}$) coincides with $1 / c$, that is, if

$$
\sup _{g(x)<c} f(x)=d \quad \text { then } \quad \sup _{f^{*}(\ell)<\frac{1}{d}} g^{*}(\ell)=\frac{1}{c} .
$$

Proof: Let $d^{\prime}>d$. Since $\sup _{g(x)<c} f(x)<d^{\prime}$ we have $T_{c}(g) \subset T_{d^{\prime}}(f)$ and therefore by Proposition 2.2:

$$
\left(T_{c}(g)\right)^{\circ}=S_{1 / \mathrm{c}}\left(g^{*}\right) \supset S_{1 / d^{\prime}}\left(f^{*}\right)=\left(T_{d^{\prime}}(f)\right)^{\circ}
$$

If $\ell \in T_{1 / d}\left(f^{*}\right)$ then there exists $d^{\prime}>d$ such that $\ell \in S_{1 / d^{\prime}}\left(f^{*}\right)$ and thus $g^{*}(\ell) \leqslant 1 / c$. Hence

$$
\sup _{f^{*}(\ell)<1 / d} g^{*}(\ell) \leqslant \frac{1}{c} .
$$

Let $\sup _{f^{*}(\ell)<1 / d} g^{*}(\ell)<1 / c$ and number $c^{\prime}>c$ such that

$$
\sup _{f^{*}(\ell)<1 / d} g^{*}(\ell)<\frac{1}{c^{\prime}}<\frac{1}{c}
$$

So, we have $T_{1 / d}\left(f^{*}\right) \subset T_{1 / c^{\prime}}\left(g^{*}\right)$ and $S_{d}(f) \supset S_{c^{\prime}}(g)$. This inclusion shows that $\sup _{g(x) \leqslant c^{\prime}} f(x) \leqslant d$. Thus

$$
\varphi\left(c^{\prime}\right)=\sup _{g(x)<c^{\prime}} f(x) \leqslant \sup _{g(x) \leqslant c^{\prime}} f(x) \leqslant d=\varphi(c) .
$$

But we assumed $c^{\prime}>c$ therefore $\varphi\left(c^{\prime}\right)>\varphi(c)$ and we have a contradiction.
Corollary 2.5. Let the function φ be defined by formula (1) if $c>0$ and $\varphi(c)=0$ if $c \leqslant 0$. Suppose that φ is strictly increasing and lower semicontinuous (that is, continuous from the left) on ($0,+\infty$). Let

$$
\psi(d)= \begin{cases}0 & \text { if } d \leqslant 0 \\ \sup \left\{g^{*}(\ell): f^{*}(\ell)<d\right\} & \text { if } d>0\end{cases}
$$

Then $\psi=\left(\varphi^{*}\right)^{-1}$ on $(0,+\infty)$. (Let us note that φ belongs to $Q(R)$ and therefore the conjugate to φ exists. At the same time $\psi(d)$ is the value of the dual problem (D_{d}) for positive d.)

Proof: Since φ is strictly increasing and continuous from the left we have

$$
\varphi^{*}(y)=\sup _{y x>1} \frac{1}{\varphi(x)}=\frac{1}{\inf _{x>1 / y} \varphi(x)}=\frac{1}{\varphi(1 / y)}
$$

Let $\psi(c)=d$. Then by Theorem 2.4 we have $\psi(1 / d)=1 / c$ and $\varphi^{*}(1 / c)=1 /(\varphi(c))=$ $1 / d$. Therefore $\varphi^{*}(\psi(1 / d))=\varphi^{*}(1 / c)=1 / d$ for all $0<d<+\infty$ and $\psi=\left(\varphi^{*}\right)^{-1}$.

Let $q \in Q(X)$ and q^{*} be its conjugate function. Let $q(x)>0$ and $q^{*}(\ell)>0$. Then, using the definition, we have that the inequality $\ell(x)>1$ implies the inequality $q^{*}(\ell) q(x) \leqslant 1$. A linear functional ℓ is called a subgradient of the function q at the point x° if $q^{*}(\ell) q\left(x^{\circ}\right)=1$ and $\ell\left(x^{\circ}\right)=1$. Let ℓ be a subgradient at the point x°. Then $q^{*}(\ell) q\left(x^{\circ}\right)=1$ shows that

$$
\sup _{\ell(x)>1} \frac{1}{q(x)}=\frac{1}{q\left(x^{\circ}\right)}
$$

Let $c<q\left(x^{\circ}\right)$. It is easy to check that $q(x)>c$ if $\ell(x)>1$. Hence the inequality $q(x) \leqslant c \quad$ implies $\quad \ell(x) \leqslant 1$. Since c is an arbitrary number with the property $c<q\left(x^{\circ}\right)$ we have that the inequality $q(x)<q\left(x^{\circ}\right)$ implies $\ell(x) \leqslant 1$ and $\sup _{q(x)<d} \ell(x) \leqslant 1$ for $\ell\left(x^{\circ}\right)=1$. So

$$
\begin{equation*}
\sup _{q(x)<d} \ell(x)=1 \quad \text { where } \quad d=q\left(x^{\circ}\right) . \tag{2}
\end{equation*}
$$

We see that x° is a solution in our sense of the extremal problem

$$
\ell(x) \rightarrow \text { sup under condition } \quad q(x)<d
$$

because $q\left(x^{\circ}\right)=d$ and $\ell\left(x^{\circ}\right)=1$. It is easy to check that the reverse assertion is true, that is, if functional $\ell \in X^{\prime}$ and x° is a solution of the problem (2) then ℓ is a subgradient at the point x°.

Let us give a geometrical interpretation of the subgradient. We consider the level set $T_{q\left(x^{\circ}\right)}(q)$ of function q, the hyperplane $H=\{x: \ell(x)=1\}$ and closed half space $H^{-}=S_{1}(\ell)=\{x: \ell(x) \leqslant 1\}$. The vector x° is a solution of problem (2) if and only if $T_{q\left(x^{\circ}\right)}(q)$ is a subset of H^{-}and $x^{\circ} \in H$. Let us assume that q is a continuous function and $q\left(x^{\circ}\right)>0$. Then the set $T_{q\left(x^{\circ}\right)}(q)$ is open and convex. If $x^{\circ} \in c \ell T_{q\left(x^{\circ}\right)}(q)$ then there exists a support hyperplane H with respect to $T_{q\left(z^{\circ}\right)}(q)$ at the point x^{0}. If $H=\{x: \ell(x)=1\}$ then ℓ is a subgradient of q at the point x^{0}. So if q is continuous and $c \ell T_{q\left(x^{\circ}\right)}(q)=S_{q\left(x^{\circ}\right)}(q)$ then a subgradient exists at every point x° with the property $q\left(x^{\circ}\right)>0$.

Theorem 2.6. Let $f, g \in Q(X)$. Assume that the function φ which is defined by formula (1) is strictly increasing on $(0,+\infty)$ and the function f is continuous. Let c be a positive number and $d \in(0,+\infty)$ be the value of the problem (P_{c}) and $c \ell T_{d}(f)=S_{d}(f)$. Then the vector \bar{x} is a solution of problem $\left(P_{c}\right)$ if and only if there is a common subgradient ℓ of the functions f and g at the point \bar{x} such that ℓ is a solution of the dual problem ($D_{1 / d}$).

Proof: 1. Let \bar{x} be a solution of the problem $\left(P_{c}\right)$. Then $g(\bar{x})=c, f(\bar{x})=d$. Since $\sup _{g(\bar{x})<g(\bar{x})} f(x)=d$ we have $T_{c}(g) \subset S_{d}(f)=c \ell T_{d}(f)$. Since the function f is continuous, the convex set $T_{d}(f)$ is open and \bar{x} is a boundary point of this set. Therefore there exists a support hyperplane $H=\{x: \ell(x)=1\}$ with respect to the set $T_{d}(f)$ at the point \bar{x}. Since $T_{c}(g) \subset c \ell T_{d}(f)$ and $\ell(\bar{x})=1$ we have that H is the support hyperplane with respect to $T_{c}(g)$ at the same point.

So ℓ is a subgradient of f at the point \bar{x} and a subgradient of g at this point. By definition,

$$
\begin{array}{lll}
f^{*}(\ell) f(\bar{x})=1, & \text { that is } & f^{*}(\ell)=\frac{1}{f(\bar{x})}=\frac{1}{d}, \\
g^{*}(\ell) g(\bar{x})=1, & \text { that is } & g^{*}(\ell)=\frac{1}{g(\bar{x})}=\frac{1}{c} .
\end{array}
$$

Let us consider the dual problem

$$
g^{*}(\ell) \rightarrow \sup \quad \text { under condition } \quad f^{*}(\ell) \leqslant \frac{1}{d} .
$$

If function $\varphi(c)$ is strictly increasing then by Theorem 2.4 the value of this problem coincides with $1 / c$. Since $f^{*}(\ell)=1 / d$ and $g^{*}(\ell)=1 / c$ the vector ℓ is a solution of this problem. So we have a necessary condition for a maximum.
2. Let a point x° be such that there is a common subgradient ℓ at the point x° of functions f and g which is a solution of the dual problem ($D_{1 / d}$). Equalities hold as follows:

$$
f^{*}(\ell) f\left(x^{\circ}\right)=1, \quad g^{*}(\ell) g\left(x^{\circ}\right)=1, \quad g^{*}(\ell)=\frac{1}{c}, \quad f^{*}(\ell)=\frac{1}{d} .
$$

Therefore $f\left(x^{\circ}\right)=d$ and $g\left(x^{\circ}\right)=c$, that is, x° is a solution of the problem (P_{c}). So we have a sufficient condition for a maximum.

A geometrical interpretation of duality for the minimisation of a convex function under convex constraints is the existence of a separating hyperplane for two convex sets. Theorem 2.6 shows that duality for the maximisation of a quasiconvex function can be interpreted geometrically through the existence of a common supporting hyperplane for two convex sets, one contained within the other. Note that Thach [1, 2] considers one of these sets and the complement of the other.

References

[1] R.T. Thach, 'Quasiconjugates of functions, duality relationships between quasiconvex minimization under a reverse convex constraint and application', J. Math. Anal. Appl. 159 (1991), 299-322.
[2] R.T. Thach, 'Global optimality criterion and a duality with zero gap in nonconvex optimization', SIAM J. Math. Anal. 24 (1993), 1537-1556.

Department of Mathematics and
Computer Science
Ben-Gurion University of the Negev
Beer-Sheva 84105
Israel

Mathematics Department Hacettepe University 06532 Beytepe-Ankara Turkey

