
42

Chiral perturbation theory

42.1 Introduction

In the general introduction of this book, we have discussed that, below the vector meson
resonances region (E ≤ Mρ), the hadronic spectrum of light flavours only consists of an
octet of quasi-Goldstone pseudoscalar mesons (π, K , η), whose interactions can be easily
understood using the global symmetry of the QCD Lagrangian. In the limit of massless
quarks, the QCD Lagrangian is invariant under the rotations of the left and right quark
fields triplets:

ψL ≡ 1

2
(1 − γ5)ψ , ψR ≡ 1

2
(1 + γ5)ψ , ψ ≡ u, d, s . (42.1)

These rotations generate the chiral group SU (3)L × SU (3)R , which at the level of
hadronic spectrum is broken down to the diagonal flavour SU (3)V (V ≡ L + R) group
of the eightfoldway [7]. The Goldstone bosons are associated to the spontaneous break-
down of chiral symmetry and obey low-energy theorems which are the basis of successful
predictions of current algebra and pion PCAC [13]. Since there is a mass gap separating the
Goldstone bosons from the rest of the hadronic spectrum, one can build an effective field
theory including the symmetry of QCD where the Goldstone bosons are the only dynamic
degrees of freedom [497]. This allows to a systematic analysis of the low-energy implica-
tions of the QCD symmetries which simplifies current algebra calculations and allows an
investigation of higher-order corrections in the sense of perturbative field theory [498]. This
approach is known as chiral perturbation theory (ChPT), which is a low-energy effective
field theory of QCD, where many excellent reviews and lectures have been devoted to the
subject [500–502]. Our presentation has been mainly inspired from the reviews in [500,501]
and the works of Gasser–Leutwyler [499].

A well-known example of effective theories is the low-energy limit of QED (Eγ � me).
In this limit the γ γ scattering process can be described by the effective Euler–Heisenberg
Lagrangian:

Leff = −1

4
Fµν(x)Fµν(x) + A

m4
e

(Fµν(x)Fµν(x))2 + B

m4
e

Fµν(x)Fνσ (x)Fσρ(x)Fρµ(x) + · · ·
(42.2)
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410 IX QCD non-perturbative methods

which is only based on the gauge, Lorentz and parity invariance conditions. The coefficients
A and B are known and can be computed by integrating out the electron field from the
original QED generating functional, or equivalently by computing the corresponding γ γ

box diagram. They read [503]:

A = −α2

36
, B = 7

90
α2 . (42.3)

However, this QED example is academic since perturbation theory in terms of the QED
coupling α is known to work at high accuracy. In QCD, due to confinement which induces
that quark and gluon are not asymptotic states, the effective approach is more useful as we
know the symmetry properties of QCD, from which we can write the effective theory in
terms of hadronic asymptotic states, and parametrize the unknown dynamics of the theory
in terms of some few couplings.

In the following discussions, we shall limit ourselves to the presentation of the main idea
behind the method and illustrate its applications for the estimate of the light quark mass
ratios.

42.2 PCAC relation from ChPT

One can also derive the previous PCAC relation ontained in Part I of this book using ChPT.
In this approach, it is convenient to formulate the strong interactions of the pseudoscalar
mesons in terms of an effective low-energy QCD Lagrangian described by the octet of
Goldstone fields:

φ(x) = 1√
2

�λ.�ϕ(x) =

⎛
⎜⎝

π0√
2

+ η√
6

π+ K +

π− − π0√
2

+ η√
6

K 0

K − K̄ 0 − 2√
6
η

⎞
⎟⎠ , (42.4)

instead of in terms of the usual quark and gluon fields. The associated 3 × 3 unitary matrix:

U (φ) = exp(i
√

2φ/ fπ ) , (42.5)

transforms linearly under the global chiral rotations, although �ϕ transforms non-linearly.
The unique lowest order (in derivative) effective Lagrangian, satisfying chiral symmetry
and generating non-trivial interaction is:

L = f 2

4
Tr{∂µU †∂µU } , (42.6)

where f is a constant which cannot be fixed by symmetry requirements alone. Expanding
U (φ) in a power series of φ, the Lagrangian reads:

L = 1

2
Tr{∂µφ∂µφ} + 1

12 f 2
Tr{(φ∂µφ)(φ∂µφ)} + O

(
φ6

f 4

)
, (42.7)
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42 Chiral perturbation theory 411

where one should note that the φ4 interaction fixes the π–π scattering amplitude [504]:

T (π+π0 → π+π0) = t

f 2
(42.8)

where t ≡ (p′
+ − p+)2 is the usual kinematic variable. Now, one can go to a step further by

introducing the couplings of external sources to the usual massless QCD Lagrangian:

LQCD(x) = Lmassless
QCD (x) + ψ̄γ µ(vµ + γ5aµ)ψψ̄γ µ (s − iγ5) ψ , (42.9)

where vµ, aµ, s and p are Hermitian 3 × 3 matrices in flavour and colour singlets. The
Lagrangian L is now invariant under the local SU (3)L × SU (3)R gauge transformations.
The generalized effective Lagrangian satisfying the local invariance reads to lowest order:

L(2)
eff = f 2

4
Tr{DµU †DµU } + U †χ + χ †U , (42.10)

where Dµ is the covariant derivative:

DµU = ∂µU − i(vµ + aµ)U + iU (vµ − aµ) (42.11)

and:

χ = 2B(s + i p) . (42.12)

B is a constant which, like f , cannot be fixed by symmetry requirements alone. With the
choice of directions:

s + i p = M + · · ·
rµ = vµ + aµ = eQ Aµ + · · ·
lµ = vµ − aµ = eQ Aµ + e√

2 sin θW

(W †
µT+ + h.c.) + · · · , (42.13)

where Aµ and Wµ are the photon and W − bosons,

M = diag(mu, md , ms), Q = 1

3
diag(2, −1, −1) , (42.14)

and:

T+ =
⎛
⎝ 0 Vud Vus

0 0 0
0 0 0

⎞
⎠ , (42.15)

one can break chiral symmetry explicitly and select the electroweak standard model cou-
plings. The Green functions are obtained as functional derivatives of the generating func-
tional:

exp{i Z} =
∫

DψDψ̄DAµ exp

{
i
∫

d4x LQCD

}
=

∫
D exp

{
i
∫

d4x Leff

}
. (42.16)

https://doi.org/10.1017/9781009290296.055 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.055


412 IX QCD non-perturbative methods

At lowest order in momenta, the generating functional reduces to the classical action:

S2 =
∫

d4x L(2)
eff (x) . (42.17)

The Noether currents can be derived by taking appropriate derivatives with respect to the
external fields:

Jµ

L = δS2

δlµ
= i

2
f 2 DµU †U = f√

2
Dµφ − i

2
(φ �Dµφ) + · · ·

Jµ

R = δS2

δrµ

= i

2
f 2 DµUU † = − f√

2
Dµφ − i

2
(φ �Dµφ) + · · · , (42.18)

which shows the indentification of the coupling f with the decay constant fπ = 92.4 MeV
to order p2:

〈0|Jµ

A |π〉 ≡ i
√

2 fπ pµ . (42.19)

In a similar way:

ψ̄ i
Lψ

j
R = − δS2

δ(s − i p)i j
= − f 2

2
B U i j

ψ̄ i
Rψ

j
L = − δS2

δ(s + i p)i j
= − f 2

2
B(U i j )† , (42.20)

which implies:

〈0|ψ̄ jψ i |0〉 = − f 2 Bδi j , (42.21)

By taking s = M and p = 0, the χ term in Eq. (42.10) gives a quadratic pseudoscalar
mass plus additional interactions proportional to the quark mass. Expanding in powers of
φ, one obtains:

f 2

4
2BTr{M(U + U †)} = B

{
−Tr (Mφ2) + 1

6 f 2
Tr (Mφ4) + · · ·

}
. (42.22)

An explicit evaluation of the trace in the quadratic mass term provides:

M2
π± = (mu + md )B + O(

m2
q

)
,

M2
π0 = (mu + md )B − ε + O(

ε2, m2
q

)
,

M2
K + = (mu + ms)B + O(

m2
q

)
,

M2
K 0 = (md + ms)B + O(

m2
q

)
,

M2
η8

= 1

3
(mu + md + 4ms) B + ε + O(

ε2, m2
q

)
, (42.23)

where:

ε = B

4

(mu − md )2

(ms − m̂)
, m̂ = 1

2
(mu + md ), (42.24)
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42 Chiral perturbation theory 413

originates from the small mixing between the π0 and η8 fields. Previous relations explain
why the masses of the multiplet break strongly explicitly the eightfoldway symmetry be-
cause ms 
 md > mu . Using also these results in Eqs. (42.21) and (42.23), one can deduce
the pion PCAC relation given in Part I of this book, namely:

(mu + md )〈ūu + d̄d〉 = −2 f 2
π m2

π . (42.25)

However, there is no rigorous evidence on the dominance of this linear quark mass
term over the quadratic one in the previous relation in Eq. (42.23) leading to the previous
PCAC relation where the quark mass is a quadratic function of the pseudoscalar mass. Some
alternative scenario (so-called Generalized ChPT ), where the value of the 〈ψ̄ψ〉 condensate
is smaller than the ‘standard’ value, is discussed in the literature [505]. We might expect
that lattice calculations will clarify this issue in the near future, and at present, there are
some lattice indications that M2

P behaves like mq [506]. We shall see in the next section
that direct extractions of the light quark masses from QCD spectral sum rules also favour
the result that mq ∼ M2

P .

42.3 Current algebra quark mass ratios

The ratios of the expressions in Eq. (42.23) imply the old current algebra mass ratios
[21],[55–57]:

M2
π±

(mu + md )
= M2

K +

(mu + ms)
= M2

K 0

(md + ms)
≈ 3M2

η8

(mu + md + 4ms)
, (42.26)

while the estimate of their absolute values needs more QCD theoretical inputs (renormal-
ization and scale dependence). Neglecting the m2 1 and small O(ε) corrections, one can
deduce the mass ratios [55]:

mu

md
≈ M2

π+ − M2
K 0 + M2

K +

M2
π+ + M2

K 0 − M2
K +

≈ 0.66

ms

md
≈ −M2

π+ + M2
K 0 + M2

K +

M2
π+ + M2

K 0 − M2
K +

≈ 20 , (42.27)

where the electromagnetic part of the K + − K 0 squared mass-difference has been subtracted
by using the fact that it is the same for the K + and π+ [507]:

(
M2

K 0 − M2
K +

)
QCD  (

M2
K 0 − M2

K +
) − (

M2
π0 − M2

π+
)
. (42.28)

Up to order (md − mu), one can also derive the quadratic Gell-Mann–Okubo mass relation
[11]:2

3M2
η8

≈ 4M2
K − M2

π . (42.29)

1 This is not justified in the approach of [505].
2 Analogous GMO mass formula for vector mesons might be affected by large perturbative m2

s corrections [32].
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414 IX QCD non-perturbative methods

One should also note that the φ4 interaction in Eq. (42.22) gives a mass correction to the
π–π scattering amplitude given in Eq. (42.8):

T (π+π0 → π+π0) = t − M2
π

f 2
π

, (42.30)

in good agreement with the current algebra result [504].

42.4 Chiral perturbation theory to order p4

Improvements of this lowest order effective Lagrangian with the inclusion of p4- and
p6-terms are actively discussed in the literature [502]. To order p4, three different sources
contribute to the generating functional:

� The most general effective Lagrangian L(4)
eff to order p4 to be considered at the tree level.

� The one-loop graphs generated from the lowest order L(2)
eff Lagrangian.

� The Wess–Zumino–Witten functional [508,509] induced by the non-Abelian chiral anomaly [510].

42.4.1 The chiral Lagrangian to order (p4)

The most general expression of the O(p4) Lagrangian is:

L(4)
eff = L1 Tr (DµU †DµU )2 + L2 TrDµU †DνUTrDµU †DνU

+ L3 TrDµU †DµU DνU †DνU

+ L4 TrDµU †DµUTr (χ †U + U †χ ) + L5 TrDµU †DµU (χ †U + U †χ )

+ L6 [Tr (χ †U + U †χ )]2 + L7 [Tr (χ †U − U †χ )]2

+ L8 Tr(Uχ †Uχ † + U †χU †χ )

+ i L9 Tr
(
Fµν

R DµU DνU † + Fµν

L DµU †DνU
) + L10 TrU †Fµν

R U FLµν

+ H1 Tr
(
Fµν

R FRµν + Fµν

L FLµν

) + H2 Trχ †χ . (42.31)

In this Lagrangian the parameters Li , i = 1, 2, 3, . . . , 10 are dimensionless coupling
constants, which like fπ and B in the lowest order effective Lagrangian, are not fixed by
chiral symmetry requirements alone. The terms proportional to the coupling constants H1

and H2 involve only the external fields. As a result these coupling constants cannot be fixed
from low-energy observables alone. By contrast, most of the other couplings can be fixed
from low-energy observables. The Li constants, like fπ and B, are in principle calculable
parameters in terms of the intrinsic �QCD scale only.

42.4.2 Chiral loops

Here, we consider that ChPT is an effective field theory for low energies despite the fact
that a simple power counting shows that loops generated by the lowest order Lagrangian
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42 Chiral perturbation theory 415

are highly divergent as a consequence of the fact that the non-linear sigma model in four-
dimensions is not renormalizable and then needs an infinite number of local counterterms.
In order to define the loop integrals it is necessary to fix a regularization that preserves the
symmetries of the Lagrangian, which can be done by using the well-known dimensional
regularization technique. Since by construction, the O(p4) Lagrangian L(4)

eff contains all
possible terms which are allowed by chiral invariance, all the one-loop divergences from
L(2)

eff can be absorbed by suitable renormalizations of the Li and H1,2 constants. This feature
can be understood by power counting where one-loop divergences can only give rise to
local O(p4) terms. This program has been explicitly realized by Gasser and Leutwyler in
[498], and leads to the renormalized low-energy couplings:

Li = LR
i (ν) + γi λloop, i = 1, 2, 3, . . . 10; Hi = H R

i (ν) + γ̃ j λloop, j = 1, 2,

(42.32)
where for n = 4 − ε space-time dimension:

λloop = ν−ε

16π2

{
−1

ε
− 1

2
[log(4π ) + �

′
(1) + 1]

}
, j = 1, 2; (42.33)

and γi , x γ̃ j have the following rational values:

γ1 = 3

32
, γ2 = 3

16
, γ3 = 0 , γ4 = 1

8
,

γ5 = 3

8
, γ6 = 11

144
, γ7 = 0 , γ8 = 5

48
,

γ9 = 1

4
, γ10 = −1

4
, γ̃1 = −1

8
, γ̃2 = 5

24
. (42.34)

The renormalized coupling constants depend as usual on the scale ν introduced by the
dimensional regularization. The running in ν is governed by the coefficients γi (and γ̃ j ),
which play the rôle of one–loop β–functions:

L r
i (ν) = L r

i (ν
′
) + γi

16π2
log

ν
′

ν
. (42.35)

The ν–scale dependence cancels however in the fullO(p4) calculation of a given physical
observable. The non-polynomial contribution to a specific physical process will in general
have a logarithmic ν–scale dependence (the so called chiral logarithms), which cancels
with the ν–dependence of the tree level contribution modulated by the Li (ν)–constants.
A typical O(p4) amplitude will then consist of a non-polynomial part, coming from the
loop computation, plus a polynomial in momenta and pseudoscalar masses, which depends
on the unknown constants Li . The non-polynomial part (the so-called chiral logarithms)
is completely predicted as a function of the lowest-order coupling f and the Goldstone
masses.

Finally, it is important to notice that ChPT is an expansion in powers of momenta over
some typical hadronic scale, usually called the scale of chiral symmetry breaking �χ .
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416 IX QCD non-perturbative methods

The variation of the loop contribution under a rescaling of µ provides a natural order-of-
magnitude estimate3 of �χ [498,512] :

�χ ∼ 4π fπ ∼ 1.2 GeV ≈ Mρ ≈ Mp . (42.36)

This result has been recovered from the analysis of the connection between the low- and
high-energy behaviours of the pion form factor [281].

42.4.3 The non-Abelian chiral anomaly

Although the QCD Lagrangian with external sources is formally invariant under local
chiral transformations, this is no longer true for the associated generating functional. The
anomalies of the fermionic determinant break chiral symmetry at the quantum level. The
anomalous change of the generating functional under an infinitesimal chiral transformation:

gL ,R = 1 + iα ∓ iβ + · · · (42.37)

is given by [510]:

δZ [v, a, s, p] = − Nc

16π2

∫
d4x trβ(x) �(x), (42.38)

where:

�(x) = εµνσρ

[
vµνvσρ + 4

3
∇µaν∇σ aρ + 2

3
i {vµν, aσ aρ}

+ 8

3
i aσ vµνaρ + 4

3
aµaνaσ aρ

]
, ε0123 = 1; (42.39)

and:

vµν = ∂µvν − ∂νvµ − i [vµ, vν], ∇µaν = ∂µaν − i [vµ, aν] (42.40)

This anomalous variation of Z is an O(p4) effect in the chiral counting. Chiral symmetry
is the basic requirement to construct the effective χPT Lagrangian. Since chiral symmetry
is explicitly violated by the anomaly at the fundamental QCD level, one is forced to add
an effective functional with the property that its change under chiral gauge transformations
reproduces Eq. (42.38). Such a functional was first constructed by Wess and Zumino [508].
An interesting topological interpretation was later found by Witten [509]. The functional
in question, has the following explicit form:

�[U, �, r ]W Z W = − i Nc

240π2

∫
dσ i jklm Tr

{
�L

i �L
j �L

k �L
l �L

m

}

− i Nc

48π2

∫
d4x εµναβ(W (U, �, r )µναβ − W (1, �, r )µναβ) , (42.41)

3 Since the loop amplitude increases with the number of possible Goldstone mesons in the internal lines, this estimate results in a
slight dependence of �χ on the number of light-quark flavours N f [511]: �χ ∼ 4π fπ /

√
N f .
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42 Chiral perturbation theory 417

with:

W (U, �, r )µναβ = Tr
{

U�µ�ν�αU †rβ + 1

4
U�µU †rνU�αU †rβ + iU∂µ�ν�αU †rβ

+ i∂µrνU�αU †rβ − i�L
µ�νU †rαU�β + �L

µU †∂νrαU�β

− �L
µ�L

ν U †rαU�β + �L
µ�ν∂α�β + �L

µ∂ν�α�β

− i �L
µ�ν�α�β + 1

2
�L

µ�ν�
L
α �β − i�L

µ�L
ν �L

α �β

}

− (L ↔ R) , (42.42)

where:

�L
µ = U †∂µU , �R

µ = U∂µU † , (42.43)

and (L ↔ R) stands for the interchanges U ↔ U †, �µ ↔ rµ and �L
µ ↔ �R

µ . The integration
in the first term of Eq. (42.41) is over a five-dimensional manifold whose boundary is four-
dimensional Minkowski space. The integrand is a surface term; therefore both the first and
the second terms of �W Z W are O(p4) according to the chiral counting rules.

Since the effect of anomalies is perturbatively calculable, their translation from the fun-
damental quark-gluon level to the effective chiral level is unaffected by hadronization
problems. Despite its apparent complexity, the anomalous action [Eq. (42.41)] has no free
parameters. It is responsible for the π0 → 2γ , η → 2γ decays, and the γ 3π , γπ+π−η

interactions among others. The five-dimensional surface term generates interactions among
five or more Goldstone bosons.

42.5 Some low-energy phenomenology to order p4

At lowest order in momenta, the predictive power of the chiral Lagrangian was quite impres-
sive; with only two low-energy couplings, it was possible to describe all Green functions
associated with the pseudoscalar-meson interactions, and to reproduce all old current algebra
results [13]. The symmetry constraints become less powerful at higher orders. Ten additional
constants appear in the L4 Lagrangian, and many more would be needed at O(p6).

Higher-order terms in the chiral expansion are much more sensitive to the non-trivial
aspects of the underlying QCD dynamics. With p � MK (Mπ ), we expectO(p4) corrections
to the lowest-order amplitudes at the level of p2/�2

χ ≤ 20% (2%). We need to include those
corrections if we aim to increase the accuracy of the ChPT predictions beyond this level.
Although the number of free constants in L4 looks quite big, only a few of them contribute
to a given observable. In the absence of external fields, for instance, the Lagrangian reduces
to the first three terms; elastic ππ and π K scatterings are then sensitive to L1,2,3. The
two-derivative couplings L4,5 generate mass corrections to the meson decay constants (and
mass-dependent wave-function renormalizations). Pseudoscalar masses are affected by the
non-derivative terms L6,7,8; L9 is mainly responsible for the charged-meson electromagnetic
radius and L10, finally, only contributes to amplitudes with at least two external vector or
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Table 42.1. Phenomenological values of the renormalized
couplings Lr

i (Mρ).

i Lr
i (Mρ) × 103 Source

1 0.7 ± 0.5 Ke4, ππ → ππ

2 1.2 ± 0.4 Ke4, ππ → ππ

3 −3.6 ± 1.3 Ke4, ππ → ππ

4 −0.3 ± 0.5 Zweig rule
5 1.4 ± 0.5 FK : Fπ

6 −0.2 ± 0.3 Zweig rule
7 −0.4 ± 0.2 Gell-Mann–Okubo, L5, L8, sum rules
8 0.9 ± 0.3 MK 0 − MK + , L5, (ms − m̂) : (md − mu)
9 6.9 ± 0.7 〈r 2〉π

em

10 −5.5 ± 0.7 π → eνγ

axial-vector fields, like the radiative semi-leptonic decay π → eνγ . Table 42.1 summarizes
the present status of the phenomenological determination of the renormalized constants
Li [499,502], evaluated at a scale µ = Mρ . The values of these couplings at any other
renormalization scale can be trivially obtained, through the logarithmic running given in
Eq. (42.35).

42.5.1 Decay constants

In the isospin limit (mu = md = m̂), the O(p4) calculation of the meson-decay constants
gives [499]:

fπ = f

{
1 − 2µπ − µK + 4M2

π

f 2
Lr

5(µ) + 8M2
K + 4M2

π

f 2
Lr

4(µ)

}
,

fK = f

{
1 − 3

4
µπ − 3

2
µK − 3

4
µη8 + 4M2

K

f 2
Lr

5(µ) + 8M2
K + 4M2

π

f 2
Lr

4(µ)

}
,

fη8 = f

{
1 − 3µK + 4M2

η8

f 2
Lr

5(µ) + 8M2
K + 4M2

π

f 2
Lr

4(µ)

}
, (42.44)

where:

µP ≡ M2
P

32π2 f 2
log

(
M2

P

µ2

)
. (42.45)

The result depends on twoO(p4) couplings, L4 and L5. The L4 term generates a universal
shift of all meson-decay constants, δ f 2 = 16L4 BTrM, which can be eliminated taking
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ratios. From the experimental value [513]:

fK

fπ
= 1.22 ± 0.01 , (42.46)

one can then fix L5(µ); this gives the result quoted in Table 42.1. Moreover, one gets the
absolute prediction [499]:

fη8

fπ
= 1.3 ± 0.05 . (42.47)

Taking into account isospin violations, one can also predict [499] a tiny difference between
fK ± and fK 0 , proportional to md − mu .

42.5.2 Electromagnetic form factors

At O(p2) the electromagnetic coupling of the Goldstone bosons is just the minimal one,
obtained through the covariant derivative. The next-order corrections generate a momentum-
dependent form factor:

Fφ±
V (p2) = 1 + 1

6
〈r2〉φ±

V p2 + · · · ; Fφ0

V (p2) = 1

6
〈r2〉φ0

V p2 + · · · (42.48)

The pion electromagnetic radius 〈r2〉φV gets local contributions from the L9 term, plus
logarithmic loop corrections [499]:

〈r2〉π±
V = 12Lr

9(µ)

f 2
− 1

32π2 f 2

{
2 log

(
M2

π

µ2

)
+ log

(
M2

K

µ2

)
+ 3

}
(42.49)

The measured electromagnetic pion radius, 〈r2〉π±
V = 0.439 ± 0.008 fm2 [514], is used

as input to estimate the coupling L9.

� The factor 1/(16π2 f 2) is a characterisitc factor of a loop-expansion, where chiral logs are expected
to contribute as p2/(16π 2 f 2) log in physical processes.

� The form factor provides a good example of the importance of higher-order local terms in the chiral
expansion [515]. If one tries to ignore the L9 contribution, using instead some physical cut-off
pmax to regularize the loops, one needs an unrealistic value pmax ∼ 60 GeV, in order to reproduce
the experimental value. This fact shows that the pion charge radius is dominated by the Lr

9(µ)
contribution, for any reasonable value of µ, which can be better understood from a 1/Nc (number
of colour) counting rules, where for large Nc, L9 and f 2

π are order Nc, implying that the chiral loops
are 1/Nc suppressed compared to the tree level contributions.

� The phenomenological value of dimensionless couplig L9 might be understood as originating from
the f 2

π /4 factor from L(4)
eff divided by the chiral symmetry breaking scale �2

χ , which leads to the
order of magnitude value of about 10−3; an expected value for all other Li couplings as found
experimentally in Table 42.1.
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The kaon electromagnetic radius reads:

〈r2〉K 0

V = − 1

16π2 f 2
log

(
MK

Mπ

)
, (42.50)

〈r2〉K ±
V = 〈r2〉π±

V + 〈r2〉K 0

V . (42.51)

Since neutral bosons do not couple to the photon at tree level, 〈r2〉K 0

V only gets a loop
contribution, which is moreover finite (there cannot be any divergence because there exists
no counterterm to renormalize it). The predicted value:

〈r2〉K 0

V = −0.04 ± 0.03 fm2 , (42.52)

is in perfect agreement with the experimental determination [516]

〈r2〉K 0

V = −0.054 ± 0.026 fm2 . (42.53)

The measured K + charge radius [517]:

〈r2〉K ±
V = 0.28 ± 0.07 fm2 , (42.54)

has a larger experimental uncertainty. Within present errors, it is in agreement with the
parameter-free relation in Eq. (42.51).

42.5.3 Kl3 decays

The semi-leptonic decays K + → π0l+νl and K 0 → π−l+νl are governed by the corre-
sponding hadronic matrix elements of the vector current [t ≡ (PK − Pπ )2]:

〈π |s̄γ µu|K 〉 = CKπ [(PK + Pπ )µ f Kπ
+ (t) + (PK − Pπ )µ f Kπ

− (t)] , (42.55)

where CK +π0 = 1/
√

2, CK 0π− = 1. At lowest order, the two form factors reduce to trivial
constants: f Kπ

+ (t) = 1 and f Kπ
− (t) = 0. There is however a sizeable correction to f K +π0

+ (t),
due to π0η mixing, which is proportional to (md − mu):

f K +π0

+ (0) = 1 + 3

4

md − mu

ms − m̂
= 1.017 . (42.56)

This number should be compared with the experimental ratio:

f K +π0

+ (0)

f K 0π−
+ (0)

= 1.028 ± 0.010 . (42.57)

TheO(p4) corrections to f Kπ
+ (0) can be expressed in a parameter-free manner in terms of

the physical meson masses [499]. Including those contributions, one gets the more precise
values:

f K 0π−
+ (0) = 0.977 ,

f K +π0

+ (0)

f K 0π−
+ (0)

= 1.022 , (42.58)

which are in perfect agreement with the experimental result of Eq. (42.57). The accurate
ChPT calculation of these quantities allows us to extract [513] the most precise determination
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of the Cabibbo–Kobayashi–Maskawa matrix element Vus :

|Vus | = 0.2196 ± 0.0023 . (42.59)

At O(p4), the form factors get momentum-dependent contributions. Since L9 is the only
unknown chiral coupling occurring in f Kπ

+ (t) at this order, the slope λ+ of this form factor
can be fully predicted:

λ+ ≡ 1

6
〈r2〉Kπ

V M2
π = 0.031 ± 0.003 . (42.60)

This number is in excellent agreement with the experimental determinations [16],
λ+ = 0.0300 ± 0.0016 (K 0

e3) and λ+ = 0.0286 ± 0.0022 (K ±
e3). Contrary to this case, the

experimental determination of the slope of the form factor f Kπ
0 is still controversial. It is

predicted to be [499]:

λ0 ≡ 1

6
〈r2〉Kπ

S M2
π = 0.017 ± 0.004 , (42.61)

and is determined by the constant L5.

42.5.4 Ratios of light quark masses to order p4

Ratios of light quark masses to this order have been discussed in details in [57]. Here, we
outline the different derivations of the results obtained there. The relations in Eq. (42.23)
get modified at O(p4). The additional contributions depend on the low-energy constants
L4, L5, L6, L7 and L8. It is possible, however, to obtain one relation between the quark
and meson masses, which does not contain any of the O(p4) couplings. The dimensionless
ratios

Q1 ≡ M2
K

M2
π

, Q2 ≡
(
M2

K 0 − M2
K +

)
QCD

M2
K − M2

π

, (42.62)

get the same O(p4) correction [499]:

Q1 = ms + m̂

2m̂
{1 + �m} , Q2 = md − mu

ms − m̂
{1 + �m} , (42.63)

where

�m = −µπ + µη8 + 8

f 2

(
M2

K − M2
π

) [
2Lr

8(µ) − Lr
5(µ)

]
. (42.64)

Therefore, at this order, the ratio Q1/Q2 is just given by the corresponding ratio of quark
masses,

Q2 ≡ Q1

Q2
= m2

s − m̂2

m2
d − m2

u

. (42.65)

where Q2 = 22.7 ± 0.8 using the value of the η → π+π−π0 decay rate from the PDG
average [16], though this value can well be in the range 22–26, to be compared with the
Dashen’s formula [507] value of 24.2 including next-to-leading chiral corrections [518];
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Fig. 42.1. ms/md versus mu/md from [57].

m̂ ≡ (1/2)(mu + md ). To a good approximation, Eq. (42.65) constrains the quark-mass
ratios to be on the ellipse,

(
mu

md

)2

+ 1

Q2

(
ms

md

)2

= 1 , (42.66)

In Fig. 42.1, one shows the range spanned by the corrections to the GMO mass formula:

�M : M2
η8

= (1/3)
(
4M2

K − M2
π

)
(1 + �M ) , (42.67)

where to order p4, one has:

�M ≡
(

M2
8 − M2

π

4M2
K − M2

π

)
�GMO , (42.68)

with:

�GMO ≡ 4M2
K − 3M2

η8
− M2

π

M2
η8

− M2
π

. (42.69)

Neglecting the mass difference md − mu , one gets [499]

�GMO = −2
(
4M2

K µK − 3M2
η8

µη8 − M2
πµπ

)
M2

η8
− M2

π

− 6

f 2

(
M2

η8
− M2

π

) [
12Lr

7(µ) + 6Lr
8(µ) − Lr

5(µ)
]

. (42.70)

https://doi.org/10.1017/9781009290296.055 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.055


42 Chiral perturbation theory 423

Experimentally, correcting the masses for electromagnetic effects, one obtains:

�GMO = 0.21. (42.71)

Since L5 is already known, this allows the combination 2L7 + L8 to be fixed. However, in
order to determine the individual quark-mass ratios from Eqs. (42.63), we would need to fix
the constant L8. However, there is no way to find an observable that isolates this coupling.
The reason is an accidental symmetry of the Lagrangian L2 + L4, which remains invariant
under the following simultaneous change [519] of the quark-mass matrix and some of the
chiral couplings:

M′ = αM + β (M†)−1 detM , B ′
0 = B0/α ,

L ′
6 = L6 − ζ , L ′

7 = L7 − ζ , L ′
8 = L8 + 2ζ , (42.72)

where α and β are arbitrary constants, and ζ = β f 2/(32αB0). The only information on
the quark-mass matrix M that we used to construct the effective Lagrangian was that it
transforms as M → gRMg†

L .
The matrix M′ transforms in the same manner; therefore, symmetry alone does not

allow us to distinguish between M and M′. In order to resolve this ambiguity, additional
information outside the framework of the pseudoscalar meson chiral Lagrangian has been
used, by the introduction of the ratio:

R ≡ (ms − m̂)/(md − mu) . (42.73)

Its value comes from the analysis of isospin breaking in the ω − ρ mixing and from the
baryon spectrum [499]. At the intersection of different ranges, one deduces from Fig. 42.1:

mu

md
= 0.553 ± 0.043 ,

ms

md
= 18.9 ± 0.8 ,

2ms

(md + mu)
= 24.4 ± 1.5 . (42.74)

However, the possibility to have a mu = 0 advocated in [519], where chiral symmetry can be
still broken by, for example, instantons, appears to be unlikely as it implies too strong flavour
symmetry breaking and is not supported by the QSSR results from two-point correlators of
the divergences of the axial and vector currents, as will be shown in the following chapters.
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