GLASGOW UNIVERSITY RADIOCARBON MEASUREMENTS II

M. ERGIN, D. D. HARKNESS, and A. WALTON

Chemistry Department, The University, Glasgow, W.2

A third radiocarbon counting system has been established in the Chemistry Department, University of Glasgow, since April, 1968. Operating conditions for the previous systems have remained essentially as described by Baxter *et al.* (1969).

The counting assembly was supplied by Johnston Laboratories, Inc., Baltimore and consists of 2.6L internal gas counter and a concentric multiple anode anticoincidence meson detector. The counters are encased in a 4-in.-thick shield manufactured from aged lead by J. Girdler and Co., London.

 $\rm CO_2$ is employed as the counting gas at a constant filling pressure of 760 mm. Hg at 15°C. Operational parameters are as follows: (1) anticoincidence plateau: greater than 800 v long with slope less than 0.5% per 100 v; (2) detector operating voltage: 3.48 ± 0.05 Kv. Adjustment is made within this range to ensure identical gas gain for all gases counted; (3) detector background count rate: 5.53 ± 0.12 ($\pm 2\sigma$) counts/ min. at 1013 mbar. A linear variation of background count rate with barometric pressure, amounts to -0.01 count/min./mbar; (4) net activity of NBS oxalic acid modern standard: 14.37 ± 0.08 ($\pm 2\sigma$) counts/min., after correction for fractionation and decay.

 CO_2 samples are normally stored for 14 days prior to counting to allow for radon decay. The presence of radon, however, is monitored via energy discrimination during each counting sequence. When necessary, a correction is applied to the total count rate to allow for the contribution of radon and its beta active daughter products.

Samples are counted at least twice and several days apart to give a minimum total of 60,000 counts. Modern standard and background activities are monitored weekly to check counter performance.

Mass spectrometric analysis for fractionation correction have been performed at The National Physical Laboratory, Teddington.

Calculations are based on the Lamont VIII formulae (Radiocarbon 1961, v. 3, p. 176-204) and errors arising from uncertainties in C^{14} measurement are quoted to one standard deviation (1_{σ}) .

ACKNOWLEDGMENTS

Financial support for different aspects of this research has been provided by the Medical Research Council and the Natural Environment Research Council. Our gratitude is again extended to those persons and organizations throughout the world who have assisted us in the supply of suitable samples. The National Physical Laboratory has again cooperated in providing facilities for C^{13}/C^{12} measurement. Mrs. M. Currie provided excellent technical assistance in the laboratory.

SAMPLE DESCRIPTIONS

I. INTERCALIBRATION SAMPLES

Prior to routine measurement of C^{14} activities with the new system intercalibration was performed in conjunction with the established radiocarbon counting facilities at Glasgow (Baxter *et al.*, 1969).

 1922 ± 60

GU-67. Kilphedir hut circles, Sutherland, Scotland A.D. 28

Charcoal. Comment: sample previously described and reported under GU-10, 1908 \pm 60, GU-11, 2064 \pm 55 and L-1061, 2100 \pm 80.

Snowdon, Wales 1968

Atmospheric CO₂ samples, counted as CO₂ and then converted to CH₄ for measurement on alternative counting systems. Coll. by Central Electricity Generating Board at Cwm Dyli, Mt. Snowdon, Wales, alt 300 ft (53° 03' N Lat, 04° 00' W Long).

	$\delta C^{14}\%$	δC ¹³ ‰	$\Delta\%$
GU-83.	60.0 ± 0.9	-21.3	$58.9~\pm~0.9$
CO_2 coll. April 1968.	Counted as CO ₂ o	n new system.	
GU-68.	$59.8~\pm~0.7$		$58.7~\pm~0.8$
CO_2 coll. April 1968.	Counted as CH4	on system 1.	
GU-69.	$60.5~\pm~1.1$		$59.4~\pm~1.2$
CO_2 coll. April 1968.	Counted as CH ₄	on system 2.	
GU-70.	$61.6~\pm~0.9$	-20.5	$60.2~\pm~0.9$
CO_2 coll. June 1968. (Counted as CO ₂ o	n new system.	
GU-71.	$60.0~\pm~0.7$	-20.5	$58.7~\pm~0.8$
CO_2 coll. June 1968.	Counted as CH ₄	on system 1.	

Agreement between systems is satisfactory; no further designation of counting system is deemed necessary.

II. ATMOSPHERIC CO2 SAMPLES

A. Ground level

Data reported here are derived from atmospheric CO_2 samples coll. at various sites in the U.K. and throughout the world. Measurements were made as part of 2 continuing research programs, viz., (a) C¹⁴ concentrations in humans in relationship to those of their immediate environment (Harkness and Walton, 1969) and (b) transport of C¹⁴ within the "dynamic" carbon reservoir (Walton *et al.*, 1969).

 CO_2 coll. by exposure of carbonate free 8N KOH solution to atmosphere for each calendar month.

Snowdon series

 CO_2 coll. by the Central Electricity Generating Board in a ventilated cabinet at Cwm Dyli Power Sta. on E slope of Mt. Snowdon (53° 03' N Lat, 04° 00' W Long).

Snowdon series, 1967

Sample	Coll.			
no.	date	δC ¹⁴ %	δC^{13} %0	$\Delta\%$
GU-72	May	64.4 ± 0.8	-19.9	$62.7~\pm~0.8$
GU-73	June	$54.0~\pm~0.9$	-18.1	$51.8~\pm~1.0$
GU-74	July	$64.8~\pm~1.5$	-17.4	$62.2~\pm~1.6$
GU-75	Aug.	$60.0~\pm~0.6$	-22.8	$59.3~\pm~0.7$
GU-76	Sept.	$62.1~\pm~0.8$	-17.8	$59.8~\pm~0.8$
GU-77	Oct.	$59.8~\pm~0.6$	-18.0	$57.6~\pm~0.7$
GU-78	Nov.	$59.1~\pm~0.8$	-20.2	$57.6~\pm~0.8$
GU-79	Dec.	54.3 ± 1.4	-18.3	$52.2~\pm~1.5$
Snowdon a	series, 1968			
GU-80	Jan.	58.5 ± 1.4	-21.4	$57.3~\pm~1.5$
GU-81	Feb.	52.9 ± 1.3	-21.6	51.9 ± 1.4
GU-82	March	$57.1~\pm~1.4$	-20.7	55.8 ± 1.5
GU-83	April	$60.0~\pm~0.9$	-21.3	58.9 ± 0.9
GU-84	May	$60.3~\pm~0.8$	-20.5	$58.8~\pm~0.9$
GU-85	June	$61.6~\pm~0.8$	-20.5	$60.2~\pm~1.0$
GU-86	July	$61.9~\pm~0.9$	-20.6	$60.5~\pm~1.0$
GU-87	Aug.	$56.0~\pm~1.0$	-20.0	$54.4~\pm~1.1$
GU-88	Sept.	$59.3~\pm~1.0$	-20.4	$57.8~\pm~1.1$
GU-89	Oct.	$55.8~\pm~1.4$	-19.9	$54.9~\pm~1.4$
GU-90	Nov.	$54.9~\pm~1.2$	-21.5	$54.0~\pm~1.3$
GU-91	Dec.	$50.7~\pm~0.9$	-22.9	$50.0~\pm~1.0$
Snowdon a	series, 1969			
GU-92	Jan.	$57.5~\pm~1.3$	-21.6	$56.5~\pm~1.4$
GU-93	, Feb.	55.1 ± 0.8	-24.5	55.0 ± 0.9
GU-95	April	57.4 ± 0.7	-21.2	56.2 ± 0.8
GU-96	May	57.9 ± 0.8	-20.3	56.4 ± 0.9
GU-97	June	52.4 ± 0.8	-19.2	50.7 ± 0.9
GU-98	July	56.8 ± 0.8	-21.4	55.7 ± 0.8
GU-99	Aug.	$54.9~\pm~0.8$	-19.5	53.2 ± 0.9
	0			

Comment: sampling station is remote from any source of fossil fuel CO_2 or possible contamination by $C^{14}O_2$ from nuclear establishments. A seasonal variation in the tropospheric C^{14} concentration is evident, and is in agreement with present theories of stratospheric/tropospheric mixing patterns.

Chilton, England series

 CO_2 coll. by the United Kingdom Atomic Energy Comm. at a site adjacent to A.E.R.E. Harwell (51° 31' N Lat, 01° 20' W Long).

488

Sample no.	Coll. date	$\delta C^{14}\%$	δC^{13} %0	$\Delta\%$
GU-100	May	$78.2~\pm~0.9$	-24.0	$77.2~\pm~1.0$
GU-101	June	$70.8~\pm~0.8$	-22.1	$69.8~\pm~0.9$
GU-102	July	$67.3~\pm~0.4$	-20.3	$65.8~\pm~0.6$
GU-103	Aug.	$60.3~\pm~1.6$	-24.7	$59.3~\pm~1.7$
GU-104	Sept.	$68.0~\pm~0.8$	-21.1	$66.8~\pm~0.8$
GU-105	Oct.	$61.0~\pm~0.8$	-25.3	$61.1~\pm~1.0$
GU-106	Nov.	$58.2~\pm~1.0$	-22.9	57.5 ± 1.2
GU-107	Dec.	$62.8~\pm~1.2$	-22.5	$61.8~\pm~1.2$
Chilton se	ries, 1968			
GU-108	Jan.	$54.8~\pm~1.4$	-25.1	$54.9~\pm~1.4$
GU-109	Feb.	$49.6~\pm~0.5$	-24.9	$48.7~\pm~0.6$
GU-110	March	$57.3~\pm~1.0$	-22.0	$56.3~\pm~1.0$
GU-111	April	$62.5~\pm~0.9$	-25.5	$62.6~\pm~1.0$
GU-112	May	$63.0~\pm~0.9$	-21.3	$61.8~\pm~1.0$
GU-113	June	$63.5~\pm~0.9$	-21.0	$62.2~\pm~1.0$
GU-114	July	$61.0~\pm~1.3$	-24.6	60.9 ± 1.4
GU-115	Aug.	$60.3~\pm~1.3$	-23.4	59.7 ± 1.4
GU-116	Sept.	63.4 ± 1.1	-24.1	63.1 ± 1.2
GU-117	Oct.	$79.9~\pm~1.4$	-25.6	80.1 ± 1.5
GU-118	Nov.	52.3 ± 1.2	-26.4	52.8 ± 1.3
GU-119	Dec.	49.2 ± 1.1	-22.4	48.5 ± 1.2
Chilton se	ries, 1969			
GU-120	Jan.	$65.7~\pm~0.8$	-25.6	$65.9~\pm~0.9$
GU-121	Feb.	$55.1~\pm~0.8$	-29.4	$56.5~\pm~0.9$
GU-122	March	$55.1~\pm~0.9$	-25.5	$55.3~\pm~1.0$
GU-123	April	$64.8~\pm~0.8$	-24.7	64.7 ± 0.8
GU-124	May	$56.9~\pm~0.7$	-24.5	$56.8~\pm~0.7$
GU-125	June	$73.6~\pm~0.8$	-22.8	$72.6~\pm~0.9$
GU-126	July	$59.2~\pm~0.8$	-22.9	58.5 ± 0.9
GU-127	Aug.	$71.0~\pm~0.8$	-23.6	$70.6~\pm~0.9$

Comment: occasional high C^{14} concentrations would appear to indicate localized atmospheric contamination from adjacent nuclear establishment (ca. 2 km away). A study of the above data relative to prevailing wind direction at sampling site is being made to clarify this possibility.

Lerwick, Scotland series

Samples coll. by Meteorologic Office in their ventilated East hut, Lerwick (60° 08' N Lat, 01° 11' W Long).

Lerwick series, 1967

Sample no.	Coll. date	δC ¹⁴ %	δC ¹³⁰ //00	$\Delta\%$
GU-128	Nov.	65.0 ± 1.1	-22.6	64.2 ± 1.2
Lerwick se	ries, 1968			
GU-129	Jan.	$62.4~\pm~1.2$	-21.2	$61.1~\pm~1.2$
GU-130	April	$68.1~\pm~1.2$	-22.7	$67.3~\pm~1.3$
GU-131 GU-132	July Oct.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-18.4 \\ -19.9$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
00104	0.00	JUIU 1.0	10.0	01.4 1.0

Victoria, B.C. series

Samples coll. by Defence Research Establishment Pacific, Canada, in covered box with gauze sides to allow free circulation of air (48° 25' N Lat, 123° 19' W Long).

Victoria series, 1967

Sample no.	Coll. date	$\delta C^{14}\%$	δC ¹³⁰ //00	$\Delta\%$
GU-133	Jan.	60.4 ± 0.8	-18.4	58.3 ± 0.9
GU-134	April	$63.9~\pm~0.9$	-17.6	$61.5~\pm~0.9$
GU-135	July	$65.1~\pm~0.9$	-18.3	$62.9~\pm~1.0$
GU-136	Öct.	$59.4~\pm~0.8$	-18.0	$57.1~\pm~0.9$
Victoria s	eries, 1968			
GU-137	Jan.	$58.4~\pm~0.9$	-20.7	$57.0~\pm~1.0$
GU-138	April	$68.4~\pm~1.0$	-21.9	$67.4~\pm~1.1$
GU-139	May	$66.0~\pm~1.0$	-20.2	$64.4~\pm~1.1$
GU-140	Sept.	$53.5~\pm~0.9$	-21.8	$52.6~\pm~1.0$
GU-141	Dec.	$53.0~\pm~1.0$	-21.5	$51.9~\pm~1.0$

Gibraltar series

Samples coll. by Meteorologic Office, R.A.F. Gilbraltar, in well-ventilated room, adjacent to open window (36° 09' N Lat, 05° 21' W Long).

Gibraltar series, 1967

Sample no.	Coll. date	$\delta C^{14}\%$	δC ¹³ %0	$\Delta\%$
GU-142	Sept.	64.9 ± 1.1	-19.0	62.9 ± 1.2
GU-143	Nov.	$69.1~\pm~1.6$	-21.6	$68.0~\pm~1.7$
Gibraltar	series, 1968			
GU-144	Jan.	$67.8~\pm~0.8$	-20.1	$66.2~\pm~0.9$
GU-145	April	$57.4~\pm~1.1$	-20.4	$56.0~\pm~1.2$
GU-146	July	$52.6~\pm~0.9$	-23.2	$52.0~\pm~1.0$
GU-147	Oct.	$67.0~\pm~1.1$	-22.3	$66.1~\pm~1.2$
GU-148	Nov.	$54.0~\pm~1.2$	-21.2	$52.9~\pm~1.3$

490

Hong Kong series

Samples coll. by Meteorologic Office at Tates Cairn radar sta. in Stevenson screen which shelters samples from both rain and dry deposition (22° 18' N Lat, 14° 10' E Long).

Hong Kong series, 1967

Sample no.	Coll. date	$\delta C^{14}\%$	δC ¹³ ‰	$\Delta\%$
GU-149 GU-150 GU-151 GU-152	Jan. April July Nov.	$\begin{array}{c} 60.4\ \pm\ 0.9\\ 61.2\ \pm\ 0.9\\ 55.2\ \pm\ 0.8\\ 51.1\ \pm\ 1.0\end{array}$	-26.3 -25.5 -26.2 -27.0	$\begin{array}{c} 60.8\ \pm\ 1.0\\ 61.3\ \pm\ 0.9\\ 55.6\ \pm\ 0.9\\ 51.7\ \pm\ 1.1\end{array}$
GU-153	g series, 1968 Jan.	54.0 ± 1.1	-28.1	55.0 ± 1.2
GU-154 GU-155 GU-156	April July Nov.	$56.6 \ \pm \ 1.0 \ 52.6 \ \pm \ 1.1 \ 54.7 \ \pm \ 1.0$	-26.2 -21.4 -24.4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Singapore series

Samples coll. by Meteorologic Office, R.A.F. Changi, Singapore, at airport (01° 22' N Lat, 103° 59' E Long).

Singapore series, 1968

Sample no.	Coll. date	$\delta C^{14}\%$	δC^{13} %00	$\Delta \%$
GU-157 GU-158 GU-159 GU-160	Jan. April July Oct.	$59.0 \pm 0.8 \ 57.4 \pm 0.8 \ 53.2 \pm 1.1 \ 51.1 \pm 1.1$	$-22.0 \\ -23.8 \\ -25.5 \\ -23.6$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Suva, Fiji Island series

Samples coll. by Meteorologic Office in instrument hut (18° 09' S Lat, 178° 27' E Long).

Fiji Island series, 1967

Sample no.	Coll. date	δC^{140} %	$\delta C^{130}\!/\!oo$	$\Delta\%$
GU-161	Jan.	61.8 ± 0.8	-18.5	59.7 ± 0.9
GU-162	April	$58.1~\pm~0.8$	-18.9	$56.2~\pm~0.9$
GU-163	July	$58.5~\pm~0.9$	-18.1	$56.3~\pm~1.0$
GU-164	Oct.	$64.5~\pm~1.2$	-18.0	$62.2~\pm~1.3$

Fiji Island series, 1968

G U-165	Jan.	$54.9~\pm~1.1$	-20.8	53.6 ± 1.2
GU-166	April	$55.4~\pm~0.9$	-21.2	$54.3~\pm~1.0$
GU-167	July	$56.1~\pm~0.9$	-21.9	$55.2~\pm~1.0$
G U-168	Oct.	$54.6~\pm~1.0$	-21.7	$53.5~\pm~1.0$

Pretoria series

492

Samples coll. by Atomic Energy Board, Pelindaba, Pretoria, in Stephenson screen housing a variety of meteorologic instruments (25° 45' S Lat, 28° 16' E Long).

Pretoria series, 1968

Sample no.	Coll. date	δC^{140}	$\delta C^{130\prime}_{~\prime co}$	$\Delta \%$
GU-169	Jan.	59.0 ± 1.1	-23.3	58.4 + 1.1
GU-170	April	$54.2~\pm~0.9$	-24.8	54.2 ± 1.0
GU-171	July	51.9 ± 1.2	-21.6	$50.9~\pm~1.3$
GU-172	Oct.	$63.2~\pm~1.0$	-24.3	$63.0~\pm~1.1$
GU-173	Dec.	$52.5~\pm~0.8$	-23.6	$52.1~\pm~0.9$

Melbourne series

Samples coll. by Meteorologic Office, in thermometer screen fitted with perspex hood for protection against dry deposition (37° 49' S Lat, 144° 58' E Long).

Melbourne series, 1967

Sample no.	Coll. date	$\delta C^{14}\%$	δC^{13} %0	$\Delta\%$
GU-174 GU-175 GU-176 GU-177	Jan. April July Oct.	$\begin{array}{c} 55.6\ \pm\ 0.9\\ 56.3\ \pm\ 0.8\\ 51.2\ \pm\ 1.0\\ 52.3\ \pm\ 0.9\end{array}$	$-25.0 \\ -26.7 \\ -20.1 \\ -21.4$	55.6 ± 1.0 56.9 ± 0.9 49.8 ± 1.0 51.2 ± 0.9
Melbourne s GU-178 GU-179 GU-180	Jan. April/May	52.9 ± 0.8 50.4 ± 1.1	-19.1 -20.6	51.1 ± 0.9 49.0 ± 1.2
GU-180 GU-181	July Oct.	$\begin{array}{rrrr} 47.2 \ \pm \ 1.1 \\ 49.6 \ \pm \ 1.1 \end{array}$	-21.7 -22.1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Comment: C¹⁴ activities in Melbourne samples are generally low. The reason for this may be a "local" Suess effect, because there are some smoke-producing stacks within 1 mi of sampling site and the harbour is ca. 3 mi away.

Stanley, Falkland Islands series

Samples coll. outdoors by Meteorologic Office, Stanley, Falkland Is., in meteorologic thermometer screen (51° 42′ S Lat, 57° 52′ W Long).

Stanley series, 1968

Sample no.	Coll. date	δC^{140} %	$\delta \mathrm{C}^{\scriptscriptstyle 130}\!/_{\! oo}$	$\Delta\%$	
GU-182	Jan.	55.1 ± 1.0	-21.9	54.2 ± 1.0	
GU-183	April	$56.3~\pm~0.8$	-24.2	56.1 ± 0.8	
GU-184	July	$52.4~\pm~0.8$	-24.8	$52.3~\pm~0.9$	
GU-185	Oct.	$49.0~\pm~1.0$	-24.7	$49.0~\pm~1.0$	

Argentine Islands series

Samples coll. by British Antarctic Survey in magnetic observatory (65° 15' S Lat, 64° 16' W Long).

Argentine Islands series, 1967

Sample no.	Coll. date	$\delta C^{14}\%$	δC^{130} %00	$\Delta\%$
GU-186	April	$55.4~\pm~0.9$	-20.4	54.0 ± 1.0
GU-187	July	$53.9~\pm~0.8$	-20.9	52.6 ± 0.9
GU-188	Oct.	$54.7~\pm~0.9$	-21.4	$53.6~\pm~0.9$

Argentine Islands series, 1968

GU-189	April	53.2 ± 0.9	(-20.9)	$52.0 \pm 1.0*$
GU-190	Oct.	$52.8~\pm~0.9$	(-20.9)	$51.5 \ \pm \ 0.9*$
Comment: *	indicates th	at no mass spectrom	etric measure:	ment was avail-
able for sam	ple; a value	of $-20.9 \pm 1\%$ was	s assumed.	

Halley Bay series

Samples coll. by British Antarctic Survey in magnetic hut during summer and in ozone hut during winter (75° 31' S Lat, 26° 45' W Long).

Halley Bay series, 1967

Sample no.	Coll. date	$\delta C^{14} \%$	$\delta \mathrm{C}^{130}\!/_{\!oo}$	$\Delta \%$
GU-191	Dec.	$55.8~\pm~0.9$	-20.0	54.2 ± 0.9
Halley Ba	ay series, 1968			
GU-192 GU-193 GU-194	May July Oct.	$55.3 \pm 0.9 \\ 55.1 \pm 1.0 \\ 52.2 \pm 1.0$	-28.3 -22.0 -22.9	56.4 ± 1.0 54.2 ± 1.1 51.6 ± 1.1

B. Upper atmospheric samples

The following C^{14} activities were measured for CO_2 coll. from the upper troposphere and lower stratosphere during the period June 1967 to December 1968.

Sampling was confined to flight paths within the region 50° to 60° N Lat, and 1° E to 8° W Long.

Atmospheric CO₂ was adsorbed on $\frac{1}{8}$ in. pellets of molecular sieve, Linde Type 4A, using the techniques described by Godwin and Willis (Radiocarbon, 1964, v. 6, p. 134). Sampling time was 20 min. and this proved sufficient for the collection of ca. 4.0L – atm. CO₂, using 2 kg sieve per sample. Adsorbed CO₂ was recovered from the sieve material with steam displacement and coll. as BaCO₃ by absorption in Ba(OH)₂/ KOH solution (Harkness, 1970).

Upper	atmospheric	CO_2
-------	-------------	-----------------

Sample no.	Coll date		Alt. (ft)	Trop o- pause ht. (ft)	$\delta C^{14}\%$	δC ¹³ ‰	$\Delta\%$
GU-195	30 June	1967	41,000	39,000	87.7 ± 1.4	-20.2	85.9 ± 1.6
GU-196	20 Dec.	1967	41,000	39,000	87.0 ± 1.9	-19.6	85.0 ± 2.1
GU-197	15 Jan.	1968	43,000	41,000	79.9 ± 0.9	-18.3	77.5 ± 1.0
GU-198	15 Feb.	1968	39,000	35,000	74.5 ± 0.8	-17.8	72.0 ± 0.8
GU-199	15 Feb.	1968	31,000	35,000	58.3 ± 0.7	-17.1	55.8 ± 0.7
GU-200	15 Mar.	1968	43,000	41,000	62.8 ± 2.1	-20.5	61.4 ± 2.1
GU-201	19 Mar.	1968	31,000	28,000	62.8 ± 0.9	-19.8	61.1 ± 0.9
GU-202	19 Mar.	1968	25,000	28,000	64.6 ± 0.9	-20.3	63.0 ± 1.0
GU-203	26 Mar.	1968	41,000	38,000	72.3 ± 0.8	-20.2	70.6 ± 0.8
GU-204	26 Apr.	1968	41,000	39,000	73.6 ± 0.9	-16.9	70.7 ± 0.7
GU-205	30 Apr.	1968	39,000	29,000	63.7 ± 2.2	-22.4	62.8 ± 2.2
GU-206	30 Apr.	1968	27,000	29,000	62.1 ± 0.8	-19.7	60.4 ± 0.9
GU-207	21 May	1968	39,000	34,000	79.5 ± 1.6	-21.8	78.3 ± 1.6
GU-208	4 Nov.	1968	45,000	41,000	74.8 ± 0.8	-18.9	72.7 ± 0.9
GU-209	6 Dec.	1968	41,000	39,000	72.5 ± 0.6	-20.3	70.8 ± 0.7

III. BLOOD PROTEIN SAMPLES

Data reported here are derived from the protein fraction separated from human blood plasma collected in S Scotland. Each sample represents a composite prepared from the whole blood of 10 donors. Collection date quoted is accurate to within \pm 5 days.

Sample no.	Sample date	$\delta C^{14}\%$	$\delta \mathrm{C}^{130}\!\!\%o$	$\Delta\%$
GU-210	26 Oct. 195	-3.6 ± 0.5	28.4	-2.9 ± 0.6
GU-211	20 Sept. 195	-8.1 ± 0.6	-26.4	$-7.9~\pm~0.6$
GU-212	1 Apr. 195	$4 -5.4 \pm 0.7$		$-5.1~\pm~0.8$
GU- 213	23 Mar. 195	$5 -1.6 \pm 0.5$	26.2	$-1.3~\pm~0.5$
G U-214	5 May 195	$6 - 7.8 \pm 0.6$	-29.5	$-7.0~\pm~0.7$
GU-215	26 Sept. 195	$7 - 5.0 \pm 0.7$	30.8	$-3.9~\pm~0.8$
GU-216	11 Feb. 196	$0 9.1 \pm 0.6$	-26.5	$9.4~\pm~0.7$
GU-217	23 May 196	$1 16.4 \pm 0.9$	27.2	$16.9~\pm~1.0$
GU-218	7 Apr. 196	9.9 ± 0.9	29.4	$10.8~\pm~0.9$
GU-219	15 July 196	332.0 ± 1.0		$33.9~\pm~1.1$
GU-220	9 Feb. 196	$4 44.4 \pm 1.0$		$45.6~\pm~1.0$
GU-221	5 Mar. 196	$5 60.1 \pm 0.8$		$61.5~\pm~0.8$
GU-222	17 Oct. 196	$6 65.4 \pm 0.8$	-27.2	$66.2~\pm~0.8$
GU-223	15 Nov. 196	$6 64.0 \pm 0.7$	30.0	$65.6~\pm~0.8$
GU-224	30 Dec. 196	$6 64.5 \pm 0.7$	27.9	$65.4~\pm~0.7$
GU-225	8 Apr. 196	$7 64.2 \pm 0.6$		$65.3~\pm~0.7$
GU-226	27 Oct. 196	$7 62.7 \pm 0.7$	33.2	$65.3~\pm~0.8$
GU-227	10 July 196	$8 63.2 \pm 1.0$	-26.3	$63.4~\pm~1.0$

Blood protein, S Scotland

Comment: C^{14} concentrations in blood protein indicate significant correlation with modifying influences on atmospheric C^{14} levels, viz. Suess effect and bomb effect. Blood protein C^{14} levels, however, did not reach peak concentrations attained in atmosphere, reflecting variations in source of carbon in diet and possibly tissue "turnover" time (Harkness and Walton, 1969).

References

- Baxter, M. S., Ergin, M., and Walton, A., 1969, Glasgow University radiocarbon measurements I: Radiocarbon, v. 11, p. 43-52.
- Broecker, W. S. and Olson, E. A., 1961, Lamont radiocarbon measurements VIII: Radiocarbon, v. 3, p. 176-204.
- Godwin, H. and Willis, E. H., 1964, Cambridge University natural radiocarbon measurements VI: Radiocarbon, v. 6, p. 116-137.
- Harkness, D. D., 1970, Artificial carbon-14 in the atmosphere and biosphere: Ph.D. thesis, Univ. of Glasgow.
- Walton, A., Ergin, M., and Harkness, D. D., 1969, Carbon-14 concentrations in the atmosphere and carbon dioxide exchange rates: Paper, C.A.C.R. symposium on atmospheric trace constituents and atmospheric circulation, Heidelberg, Germany, Sept. 8-13, 1969 (Jour. Geophys Research, 1970, in press).