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Abstract

We prove two main results on Denjoy–Carleman classes: (1) a composite function
theorem which asserts that a function f(x) in a quasianalytic Denjoy–Carleman class
QM , which is formally composite with a generically submersive mapping y = ϕ(x) of
class QM , at a single given point in the source (or in the target) of ϕ can be written
locally as f = g ◦ ϕ, where g(y) belongs to a shifted Denjoy–Carleman class QM(p) ;
(2) a statement on a similar loss of regularity for functions definable in the o-minimal
structure given by expansion of the real field by restricted functions of quasianalytic
class QM . Both results depend on an estimate for the regularity of a C∞ solution g of
the equation f = g ◦ ϕ, with f and ϕ as above. The composite function result depends
also on a quasianalytic continuation theorem, which shows that the formal assumption
at a given point in (1) propagates to a formal composition condition at every point in
a neighbourhood.

1. Introduction

This article contains two main results on Denjoy–Carleman classes:

(1) a composite function theorem which asserts that a function f(x) in a quasianalytic Denjoy–
Carleman classQM , which is formally composite with a generically submersive mapping y = ϕ(x)
of class QM , at a given point x = a (or at a given point y = b) can be written locally as f = g ◦ϕ,
where g(y) belongs to a shifted Denjoy–Carleman class QM(p) (see Theorems 1.1 and 1.2 for
precise versions of this assertion that are local at a or b, respectively);

(2) a statement on a similar loss of regularity for functions definable in the o-minimal structure
RQM given by expansion of the real field by restricted functions of quasianalytic class QM
(Theorem 1.6).

Both results depend on an estimate for the regularity of a C∞ solution g of the equation
f = g ◦ ϕ, with f and ϕ as above (Theorem 1.4). The composite function result depends also
on a quasianalytic continuation theorem (Theorem 1.3 below), which shows that the formal
assumption at a given point in (1) propagates to a formal composition condition at every point
in a neighbourhood.

Quasianalytic Denjoy–Carleman classes go back to E. Borel [Bor00] and were characterized
(following questions of Hadamard in studies of linear partial differential equations [Had23])
by the Denjoy–Carleman theorem [Den21, Car26]. Quasianalytic classes arise in model theory
as the classes of C∞ functions that are definable in a given polynomially-bounded o-minimal
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structure [Mil95, RSW03]. Relevant background on Denjoy–Carleman and quasianalytic classes
is presented in § 2 below.

Given a C∞ function f(x) or a C∞ mapping y = ϕ(x) defined on an open subset of Rn, we
write f̂a or ϕ̂a for the formal Taylor expansions at a point x = a.

Theorem 1.1. Let QM denote a quasianalytic Denjoy–Carleman class, and let ϕ : V → W be a
mapping of class QM between open sets V ⊂ Rm and W ⊂ Rn, which is generically a submersion
(i.e. generically of rank n). Given a ∈ V , there exists p ∈ N depending only on ϕ and a (see § 1.2),
so that the following holds. Let f ∈ QM (V ). If f̂a = G ◦ ϕ̂a, where G is a formal power series
centred at ϕ(a), then there is a relatively compact neighbourhood U of a in V and a function
g ∈ QM(p)(ϕ(U)), such that f = g ◦ ϕ on U .

Theorem 1.2. Let QM denote a quasianalytic Denjoy–Carleman class, and let ϕ : V → W be
a QM -mapping of QM -manifolds which is proper and generically submersive. Let f ∈ QM (V )
and let b ∈ ϕ(V ). Suppose that f̂a = G ◦ ϕ̂a, for all a ∈ ϕ−1(b), where G is a formal power series
centred at b. Then, after perhaps shrinking W to an appropriate neighbourhood of b, there exists
g ∈ QM(p)(ϕ(V )), for some p (depending only on ϕ and b, as in § 1.2), such that f = g ◦ ϕ.

The formal expansions in Theorem 1.2 can be defined using local coordinate systems, and
the condition f̂a = G ◦ ϕ̂a is independent of the choice of local coordinates at a and b. The
shifted Denjoy–Carleman class QM(p) in Theorems 1.1 and 1.2 need not be quasianalytic (see
§ 2.2), but, in each case, g belongs to a quasianalytic class Q′, where QM ⊆ Q′ ⊆ QM(p) ; we can
take Q′ = QM(p) ∩ C∞M , where C∞M (W ) is defined as the subring of C∞(W ) of functions locally
definable in RQM (see §§ 1.3 and 2).

We recall that in Glaeser’s C∞ composition theorem [Gla63], where ϕ is real-analytic, f is
C∞ and we seek a C∞ solution g, it is necessary to assume the existence of a formal solution
at every point of the target. It is striking that, as a result of quasianalytic continuation, it is
sufficient to assume there is a formal solution at a single point in Theorems 1.1 and 1.2. In
particular, Theorem 1.1 reduces to the classical statement in the real-analytic case (cf. [BM88,
Lemma 7.8], [Mal77]), even though it seems unlikely that the ring of formal power series at a
point is flat over the local ring of germs of functions of class QM , in general.

The main ingredients in our proofs of Theorems 1.1 and 1.2 are Theorems 1.3 and 1.4, and
a quasianalytic version [Now11] of Glaeser’s theorem [Gla63]. It follows from Theorem 1.3 that
Theorems 1.1 and 1.2 are equivalent (see Remark 4.1) and also that, in Theorem 1.2, we can
weaken the assumption to f̂a = G ◦ ϕ̂a, for a single point a in each connected component of
ϕ−1(b).

1.1 Quasianalytic continuation
The following theorem is a further development of quasianalytic continuation techniques
introduced in [BdSBB17, § 4].

Theorem 1.3. Let Q denote a quasianalytic class (see Definition 2.1). Let ϕ : V → W denote a
Q-mapping, where V is a Q-manifold and W is an open neighbourhood of 0 ∈ Rn. Let f ∈ Q(V )
and let H denote a formal power series at 0 ∈ Rn. Then:

(1) {a ∈ ϕ−1(0) : f̂a = H ◦ ϕ̂a} is open and closed in ϕ−1(0).

(2) Suppose that ϕ is proper and generically of rank n. Assume f̂a = H ◦ ϕ̂a, for all a ∈ ϕ−1(0).
Then, after perhaps shrinking W , f is formally composite with ϕ; i.e. for all b ∈ W , there
exists a power series Hb centred at b such that f̂a = Hb ◦ ϕ̂a, for all a ∈ ϕ−1(b).
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The composite function Theorem 1.2 was proved by Chaumat and Chollet [CC99] in the
special case that ϕ is a real-analytic mapping, under the stronger assumption that f is formally
composite with ϕ as in the conclusion of Theorem 1.3(2) (i.e. throughout the image of ϕ, as
in Glaeser’s theorem). Theorem 1.4 below is a generalization to a mapping in a given Denjoy–
Carleman class of an estimate for a real-analytic mapping in [CC99, § III, Proposition 8].

1.2 Regularity estimates
Theorem 1.4 and Corollary 1.5 following will be proved in § 5. Our proof of Theorem 1.4 follows
the reasoning used in [BdSBB17, Lemmas 3.1 and 3.4], which give more precise estimates in the
special cases that σ is a power substitution or a blowing-up. See § 2 for the notation used in the
theorem.

Theorem 1.4. Let QM denote a Denjoy–Carleman class (see Definition 2.3). Let σ : V → W
denote a mapping of class QM between open subsets of Rn, such that the Jacobian determinant
det(∂σ/∂x) is a monomial xγ = xγ11 · · ·x

γn
n times a nowhere vanishing factor. Let g ∈ C∞(W )

and assume that f := g ◦ σ ∈ QM (V ). Then, for every compact K ⊂ V , g is of class QM(p) on
σ(K), where

p := 2|γ|+ 1; (1.1)

i.e. there exist constants A,B > 0 such that∣∣∣∣∂|β|g∂yβ

∣∣∣∣ 6 AB|β|β!Mp|β| on σ(K), for every β ∈ Nn.

Moreover, if QM is closed under differentiation (in particular, if QM is a quasianalytic Denjoy–
Carleman class; see § 2), then we can take

p = |γ|+ 1. (1.2)

Corollary 1.5. Let QM denote a quasianalytic Denjoy–Carleman class, and let ϕ : V → W
be a proper (or semiproper), generically submersive mapping of class QM , where V and W are
QM -manifolds. Let g ∈ C∞(W ). If f := g ◦ ϕ ∈ QM (V ), then, for every relatively compact open
U ⊂W , there exists p ∈ N (depending only on ϕ and U) such that g ∈ QM(p)(ϕ(V ) ∩ U).

1.3 Model theory
Let QM denote a quasianalytic Denjoy–Carleman class, and let RQM denote the expansion
of the real field by restricted functions of class QM (i.e. restrictions to closed cubes of QM -
functions, extended by 0 outside the cube). Then RQM is an o-minimal structure, and RQM is
both polynomially bounded and model-complete [RSW03].

By [Mil95], the class of C∞ functions that are definable in any given polynomially bounded
o-minimal structure satisfy the quasianalyticity property (Definition 2.1(3)). The following will
be proved in § 4, using the regularity estimate above.

Theorem 1.6. Let QM denote a quasianalytic Denjoy–Carleman class. If f ∈ C∞(W ), where W
is open in Rn, and f is definable in RQM , then there exists p ∈ N such that f ∈ QM(p)(W ).

The graph of a function definable in RQM is sub-quasianalytic in the obvious sense
generalizing subanalytic. If f ∈ C∞(W ) has sub-quasianalytic graph, then f ∈ QM(p)(U), for
some p = pU , for every relatively compact open U ⊂ W ; in general, however, {pU} need not be
bounded.
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2. Quasianalytic classes

We consider a class of functions Q given by the association, to every open subset U ⊂ Rn, of a

subalgebra Q(U) of C∞(U) containing the restrictions to U of polynomial functions on Rn, and

closed under composition with a Q-mapping (i.e. a mapping whose components belong to Q).

We assume that Q determines a sheaf of local R-algebras of C∞ functions on Rn, for each n,

which we also denote Q.

Definition 2.1 (Quasianalytic classes). We say that Q is quasianalytic if it satisfies the

following three axioms.

(1) Closure under division by a coordinate. If f ∈ Q(U) and

f(x1, . . . , xi−1, a, xi+1, . . . , xn) = 0,

where a ∈ R, then f(x) = (xi − a)h(x), where h ∈ Q(U).

(2) Closure under inverse. Let ϕ : U → V denote a Q-mapping between open subsets U , V

of Rn. Let a ∈ U and suppose that the Jacobian matrix (∂ϕ/∂x)(a) is invertible. Then there are

neighbourhoods U ′ of a and V ′ of b := ϕ(a), and a Q-mapping ψ : V ′ → U ′ such that ψ(b) = a

and ψ ◦ ϕ is the identity mapping of U ′.

(3) Quasianalyticity. If f ∈ Q(U) has Taylor expansion zero at a ∈ U , then f is identically

zero near a.

Remarks 2.2. (1) Axiom 2.1(1) implies that, if f ∈ Q(U), then all partial derivatives of f belong

to Q(U).

(2) Axiom 2.1(2) is equivalent to the property that the implicit function theorem holds for

functions of class Q. It implies that the reciprocal of a non-vanishing function of class Q is also

of class Q.

(3) Our two main examples of quasianalytic classes are quasianalytic Denjoy–Carleman

classes (see § 2.1), and the class of C∞ functions definable in a given polynomially bounded

o-minimal structure (§ 1.3). In the latter case, we can define a quasianalytic class Q in the

axiomatic framework above by taking Q(U) as the subring of C∞(U) of functions f such that f

is definable in some neighbourhood of any point of U (or, equivalently, such that f |V is definable,

for every relatively compact definable open V ⊂ U); the division and inverse properties are

immediate from definability and the corresponding C∞ assertions.

The elements of a quasianalytic class Q will be called quasianalytic functions. A category of

manifolds and mappings of classQ can be defined in a standard way. The category ofQ-manifolds

is closed under blowing up with centre a Q-submanifold [BM04].

Resolution of singularities holds in a quasianalytic class [BM97, BM04]. Resolution of

singularities of an ideal does not require that the ideal be finitely generated; see [BMV15,

Theorem 3.1].

2.1 Quasianalytic Denjoy–Carleman classes

We use standard multi-index notation. Let N denote the non-negative integers. If α= (α1, . . . , αn)

∈ Nn, we write |α| := α1 + · · · + αn, α! := α1! · · ·αn!, xα := xα1
1 · · ·xαnn , and ∂|α|/∂xα :=

∂α1+···+αn/∂xα1
1 · · · ∂xαnn . We write (i) for the multi-index with 1 in the ith place and 0 elsewhere.
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Definition 2.3 (Denjoy–Carleman classes). Let M = (Mk)k∈N denote a sequence of positive
real numbers such that M0 6M1 and M is logarithmically convex ; i.e. the sequence (Mk+1/Mk)
is non-decreasing. A Denjoy–Carleman class Q = QM is a class of C∞ functions determined by
the following condition: a function f ∈ C∞(U) (where U is open in Rn) is of class QM if, for
every compact subset K of U , there exist constants A, B > 0 such that∣∣∣∣∂|α|f∂xα

∣∣∣∣ 6 AB|α|α!M|α| (2.1)

on K, for every α ∈ Nn.

Remark 2.4. The logarithmic convexity assumption implies that MjMk 6M0Mj+k, for all j, k,
and that the sequence ((Mk/M0)

1/k) is non-decreasing. The first of these conditions guarantees
that QM (U) is a ring, and the second that QM (U) contains the ring O(U) of real-analytic
functions on U , for every open U ⊂ Rn. (If Mk = 1, for all k, then QM = O.)

If X is a closed subset of U , then QM (X) will denote the ring of restrictions to X of C∞
functions which satisfy estimates of the form (2.1), for every compact K ⊂ X.

A Denjoy–Carleman class QM is a quasianalytic class in the sense of Definition 2.1 if and
only if the sequence M = (Mk)k∈N satisfies the following two assumptions in addition to those
of Definition 2.3:

(a) sup(Mk+1/Mk)
1/k <∞;

(b)
∑∞

k=0 (Mk/(k + 1)Mk+1) =∞.

It is easy to see that the assumption (a) implies that QM is closed under differentiation.
The converse of this statement is due to S. Mandelbrojt [Man52]. In a Denjoy–Carleman class
QM , closure under differentiation is equivalent to the axiom 2.1(1) of closure under division by
a coordinate—the converse of Remark 2.2(1) is a consequence of the fundamental theorem of
calculus:

f(x1, . . . , xn)− f(x1, . . . , 0, . . . , xn) = xi

∫ 1

0

∂f

∂xi
(x1, . . . , txi, . . . , xn) dt (2.2)

(where 0 in the left-hand side is in the ith place).
According to the Denjoy–Carleman theorem, the class QM is quasianalytic (axiom 2.1(3)) if

and only if the assumption (b) holds [Hör83, Theorem 1.3.8].
Closure of a Denjoy–Carleman class QM under composition is due to Roumieu [Rou62/63]

and closure under inverse to Komatsu [Kom79]; see [BM04] for simple proofs. A Denjoy–Carleman
class QM satisfying the assumptions (a) and (b) above is thus a quasianalytic class, in the sense
of Definition 2.1.

If QM , QN are Denjoy–Carleman classes, then QM (U) ⊆ QN (U), for all U , if and only
if sup(Mk/Nk)

1/k < ∞ (see [Thi08, § 1.4]); in this case, we write QM ⊆ QN . For any given
Denjoy–Carleman class QM , there is a function in QM ((0, 1)) which is nowhere in any given
smaller class [Jaf16, Theorem 1.1].

2.2 Shifted Denjoy–Carleman classes

Given M = (Mj)j∈N and a positive integer p, let M (p) denote the sequence M
(p)
j := Mpj .

If M is logarithmically convex, then M (p) is logarithmically convex:

Mkp

M(k−1)p
=

Mkp

Mkp−1
· · ·

Mkp−p+1

Mkp−p
6

Mkp+p

Mkp+p−1
· · ·

Mkp+1

Mkp
=
M(k+1)p

Mkp
.
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Therefore, if QM is a Denjoy–Carleman class, then so is QM(p) . Clearly, QM j QM(p) . Moreover,

the assumption (a) above for QM immediately implies the same condition for QM(p) . In general,

however, it is not true that assumption (b) (i.e. the quasianalyticity axiom (3)) for QM implies

(b) for QM(p) [Now15, Example 6.6].

In particular, in general, QM(p) ) QM . Moreover, QM(2) is the smallest Denjoy–Carleman

class containing all g ∈ C∞(R) such that g(t2) ∈ QM (R) [Now15, Remark 6.2].

3. Quasianalytic continuation

The goal of this section is to prove Theorem 1.3. We begin with three lemmas that strengthen

results in [BdSBB17, § 4].

Let Fa denote the ring of formal power series centred at a point a ∈ Rm; thus Fa ∼= RJx1, . . . ,
xmK. If U is open in Rm and f ∈ C∞(U), then f̂a ∈ Fa denotes the formal Taylor expansion of f

at a point a ∈ U ; i.e. f̂a(x) =
∑

α∈Nm(∂|α|f/∂xα)(a)xα/α! (likewise for a C∞ mapping U → Rn).

Let Q denote a quasianalytic class (Definition 2.1).

Lemma 3.1. Let V, W denote open neighbourhoods of the origin in Rm, with coordinate systems

x = (x1, . . . , xm), y = (y1, . . . , ym), respectively. (Assume V is chosen so that every coordinate

hyperplane (xi = 0) is connected.) Let ψ : V → W denote a Q-mapping such that the Jacobian

determinant det(∂ψ/∂x) is a monomial times an invertible factor in Q(V ). Let f ∈ Q(V ) and let

H ∈ F0 be a formal power series centred at 0 ∈W , such that f̂0 = H ◦ ψ̂0. Then, for all β ∈ Nm,

there exists fβ ∈ Q(V ) such that f0 = f and:

(1) for all a ∈ ψ−1(0) and all β ∈ Nm,

f̂β,a =
∂|β|H

∂yβ
◦ ψ̂a; (3.1)

(2) for all a ∈ V , f̂a = Ha ◦ ψ̂a, where Ha ∈ Fψ(a) denotes the formal power series

Ha :=
∑
β∈Nm

fβ(a)

β!
yβ; (3.2)

(3) each fβ, β ∈ Nm, and therefore also Ha ∈ Fψ(a) (as a function of a) is constant on connected

components of the fibres of ψ;

(4) if H is independent of some variable yj , then Ha is independent of yj , for all a ∈ V .

Proof. The lemma with items (2) and (3) is a restatement of [BdSBB17, Theorem 4.1] (the proof

of (3) in the latter, in fact, uses a simpler version [BdSBB17, Lemma 4.2] of Lemma 3.2 below)

and item (1) is contained in the proof of [BdSBB17, Theorem 4.1].

To prove (4): H is independent of some variable yj if and only if ∂|β|H/∂yβ = 0 whenever

β = (β1, . . . , βm) with βj 6= 0. By (3.1), the latter condition implies that f̂β,0 = 0 whenever

βj 6= 0; i.e. that fβ = 0 whenever βj 6= 0 (by quasianalyticity). Therefore, if H is independent of

yj , then, for every a, fβ(a) = 0 whenever βj 6= 0; i.e. Ha is independent of yj , by (3.2). 2

Lemma 3.2. Let ϕ : V → W denote a Q-mapping, where W is a neighbourhood of 0 in Rn and

V is a Q-manifold. Let fβ ∈ Q(V ), for all β ∈ Nn. Assume that:
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(1) all fβ are constant on the fibre ϕ−1(0); i.e.

Ha :=
∑
β∈Nn

fβ(a)

β!
yβ, a ∈ ϕ−1(0),

is a formal power series Ha = H independent of a;

(2) for all a ∈ ϕ−1(0) and β ∈ Nm,

f̂β,a =
∂|β|H

∂yβ
◦ ϕ̂a.

If K is a compact subset of ϕ−1(0), then all fβ are constant on all fibres of ϕ in some
neighbourhood of K.

Proof (cf. proofs of [BdSBB17, Lemma 4.2, Corollary 4.5]). For every k ∈ N, let

Pk := {(ξ, η, ζ) ∈ V × V ×W : ϕ(ξ) = ζ = ϕ(η), fβ(ξ) = fβ(η), |β| 6 k}.

Then the decreasing sequence of closed quasianalytic sets P0 ⊃ P1 ⊃ P2 ⊃ · · · stabilizes in some
neighbourhood of K, by topological noetherianity [BM04, Theorem 6.1]; say, Pk = Pk0 , k > k0, in
such a neighbourhood. It follows that, if fβ is constant on the fibres of ϕ in a given neighbourhood
of K, for all β 6 k0, then fβ is constant on the fibres of ϕ in some neighbourhood of K, for all β.

Therefore, it is enough to prove the following assertion: given β ∈ Nn, fβ is constant
on the fibres of ϕ over W , in some neighbourhood of K. The following argument is due to
Nowak [Now13]. Define

P := {(ξ, η, ζ) ∈ V × V ×W : ϕ(ξ) = ζ = ϕ(η), fβ(ξ) 6= fβ(η)}.

Suppose the assertion is false. Then there is a point (a1, a2, 0) ∈ P and, by the quasianalytic
curve selection lemma (see [BM04, Theorem 6.2]), a quasianalytic arc (ξ(t), η(t), ζ(t)) ∈ V×V×W
such that (ξ(0), η(0), ζ(0)) = (a1, a2, 0) and (ξ(t), η(t), ζ(t)) ∈ P if t 6= 0. Then

(fβ ◦ ξ)∧0 = f̂β,a1 ◦ ξ̂0 =
∂|β|H

∂yβ
◦ ϕ̂a1 ◦ ξ̂0 =

∂|β|H

∂yβ
◦ (ϕ ◦ ξ)∧0 =

∂|β|H

∂yβ
◦ ζ̂0.

Likewise, (fβ ◦ η)∧0 = (∂|β|H/∂yβ) ◦ ζ̂0, so that (fβ ◦ ξ)∧0 = (fβ ◦ η)∧0 . Since fβ ◦ ξ, fβ ◦ η are
quasianalytic functions of t, fβ ◦ ξ = fβ ◦ η; a contradiction. 2

Lemma 3.3. Let ϕ : V → W denote a Q-mapping, where W is a neighbourhood of 0 in Rn
and V is a Q-manifold. Let K be a compact subset of V and let {U} be an open covering of
ϕ−1(0)

⋂
K. Let H ∈ F0 be a power series centred at 0 ∈ W . Suppose there exists fU ∈ Q(U),

for each U , such that f̂U,a = ϕ̂∗a(H), for all a ∈ ϕ−1(0) ∩ U . Then there exists f ∈ Q(V ′), where

V ′ is a neighbourhood of ϕ−1(0)
⋂
K, such that f̂a = ϕ̂∗a(H), for all a ∈ ϕ−1(0)

⋂
K.

Proof. Lemma 3.3 generalizes [BdSBB17, Lemma 4.4] and the proof is the same. 2

Proof of Theorem 1.3. (1) is a restatement of [BdSBB17, Proposition 4.6], so we only prove (2)
here.

Write ϕ = (ϕ1, . . . , ϕn). Every point of ϕ−1(0) has a neighbourhood U in V with a coordinate
system (x1, . . . , xm), m > n, in which the Jacobian submatrix

∂(ϕ1, . . . , ϕn)

∂(x1, . . . , xn)

is generically of rank n.
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Fix such U and define ψU : U → Rm by

ψU (x1, . . . , xm) = (ϕ(x), xn+1, . . . , xm). (3.3)

Then, for all a ∈ ϕ−1(0),

f̂a = H ◦ ϕ̂a = HU ◦ ψ̂U,a,

where HU (y1, . . . , ym) = H(y1, . . . , yn); in particular, the formal power series HU (y) is
independent of yn+1, . . . , ym.

We claim there is a proper surjective mapping σU : ZU → U , where ZU is a Q-manifold of
dimension m (σU is a composite of finitely many blowings-up if U is small enough) such that every
point of ZU has a neighbourhood with coordinates (z1, . . . , zm) in which the Jacobian determinant
det(∂(ψU ◦ σU )/∂z) is a monomial in z times an invertible factor. In fact, by resolution of
singularities [BM04, Theorem 5.9], there exists σU : ZU → U such that every point of ZU has a
neighbourhood with coordinates (z1, . . . , zm) in which (det(∂ψU/∂x)) ◦ σU and det(∂σU/∂z) are
both monomials times invertible factors, so the claim follows from the chain rule.

Now, ϕ−1(0) is covered by finitely many open sets U as above. Choose compact KU ⊂ U
so that ϕ−1(0) =

⋃
KU . Consider the mapping σ : Z → V from the disjoint union Z :=

∐
ZU ,

where σ is given by σU on each ZU . Set Φ := ϕ ◦ σ. By Lemmas 3.1, 3.2 and 3.3, after shrinking
W and the ZU to suitable neighbourhoods of 0 and the σ−1U (KU ) (respectively), σ(Z) = ϕ−1(W )
and there exist fβ ∈ Q(Z), β ∈ Nn, such that each fβ is constant on the fibres of Φ and, for all
U and a′ ∈ ZU ,

(f ◦ σU )∧a′ = Ha′ ◦ ϕ̂σU (a′) ◦ σ̂U,a′ , (3.4)

where

Ha′ =
∑
β∈Nn

fβ(a′)

β!
yβ

(σ̂U,a′ can be defined using local coordinates (z1, . . . , zm) in a neighbourhood of any point of ZU ).
So we can set Hb := Ha′ , where a′ ∈ Φ−1(b), for any b ∈W .

Finally, we note that the power series homomorphism Fϕ(a′) → Fa′ given by composition
with σ̂U,a′ is injective, for any a′ ∈ ZU as above. This is a consequence of the fact that, with
respect to local coordinates (z1, . . . , zm) at a′, the determinant of the Jacobian matrix of formal
derivatives ∂σ̂U,a′/∂z is a non-zero formal power series, by the quasianalyticity axiom and the

fact that σU is generically of rank m. We can therefore conclude from (3.4) that f̂a = Hb ◦ ϕ̂a,
for all b ∈W and a ∈ ϕ−1(b), as required. 2

4. Proofs of the main theorems

In this section, we prove Theorems 1.1, 1.2 and 1.6, using the regularity estimates of Theorem 1.4
and Corollary 1.5, which are proved in § 5. For the composite function theorems we also need
the quasianalytic continuation Theorem 1.3.

4.1 Composite function theorems
We can assume that W is an open neighbourhood of 0 ∈ Rn, in both Theorems 1.1 and 1.2.

Remark 4.1. Theorems 1.1 and 1.2 are equivalent (for given dimV > n). With the hypotheses
of Theorem 1.1, it follows from the quasianalytic continuation Theorem 1.3 that there is a
neighbourhood of a on which f is formally composite with ϕ. It is then easy to see that

1967

https://doi.org/10.1112/S0010437X18007339 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007339


A. Belotto da Silva, E. Bierstone and M. Chow

Theorem 1.2 implies 1.1. Conversely, assuming Theorem 1.1, it follows from the hypotheses of
Theorem 1.2 that each a ∈ ϕ−1(0) has a relatively compact neighbourhood U on which f = g◦ϕ,
where g ∈ QM(p)(ϕ(U)), for some p, and the conclusion of Theorem 1.2 is a simple consequence.

Proof of Theorem 1.2. It follows from Theorem 1.3 that, after shrinking W to a suitable
neighbourhood of b, f is formally composite with ϕ. By a quasianalytic version [Now11] of
Glaeser’s theorem [Gla63], f = g ◦ ϕ, where g ∈ C∞(W ). The theorem then follows from
Theorem 1.4 or Corollary 1.5. 2

Remark 4.2. Theorems 1.2 and 1.3(2) do not hold under the weaker assumption that ϕ is
semiproper and generically submersive, as in Glaeser’s theorem, unless we admit the possibility
of also shrinking V to a suitable neighbourhood of ϕ−1(0). (In general, the conclusion of
Theorem 1.3(2) holds for the restriction of ϕ to some neighbourhood of any compactK ⊂ ϕ−1(0).)
Corollary 1.5 nevertheless holds for ϕ semiproper because f is assumed to be a composite g ◦ϕ,
where g is C∞.

4.2 Model theory
Remark 4.3. To prove Theorem 1.6, we use the fact that, for a given quasianalytic class Q, any
closed sub-quasianalytic subset X of Rn (the analogue in class Q of a subanalytic set) is the
image of a proper Q-mapping σ : Z → Rn, where Z is a Q-manifold of dimension = dimX. This
can be proved in the same way as the proof in [BM88] for a subanalytic set: first, X is (at least
locally) the image by a proper Q-mapping of a semi-quasianalytic subset Y of Rq, for some q
(essentially by definition). Moreover, we can assume that dimY = dimX, by the fibre-cutting
lemma [BM88, Lemma 3.6]. It is easy to see that a closed semi-quasianalytic set is a proper image
of a closed quasianalytic set (the Q-analogue of an analytic set) of the same dimension [BM88,
Proposition 3.12], and the result then follows from resolution of singularities.

Proof of Theorem 1.6. Let Bn ⊂ Rn denote the closed unit ball, and define ρ : Rn → Bn by

ρ(x) :=
x√

1 + ‖x‖2
, x ∈ Rn,

where ‖x‖2 := x21 + · · · + x2n. Then ρ is an analytic isomorphism onto the open ball. Let g :=
f ◦ ρ−1 : ρ(W ) → R ⊂ S1 (where S1 is the compactification of R by adding a single point at
infinity), and let X denote the closure of the graph of g in Bn×S1 ⊂ Rn×S1. Since f is definable,
X is a compact sub-quasianalytic subset of Rn × S1 (of class QM ).

By Remark 4.3, there is a compact QM -manifold Z, where dimZ = dimX = n, and a
QM -mapping σ : Z → Rn × S1 such that σ(Z) = X. Write σ = (σ1, σ2) with respect to the
projections to Rn and S1. Then g ◦σ1 = σ2 on σ−1(ρ(W )×S1) ⊂ Z, so that g ◦σ1 is of class QM
on σ−1(ρ(W )× S1). By Corollary 1.5, g ∈ QM(p)(ρ(W )), for some p. Therefore, f ∈ QM(p)(W ),
since f = g ◦ ρ and ρ is an analytic isomorphism from Rn to the open ball. 2

5. Regularity estimates

Proof of Theorem 1.4. We can assume that K = [−r, r]n ⊂ Rn for some r > 0. Let Jac σ denote
the Jacobian matrix (∂σ/∂x), and write det Jac σ = xγ∆(x), where ∆ is nowhere vanishing.
Let T = (Tji) := (Jac σ)∗/∆(x), where (Jac σ)∗ denotes the adjugate matrix of Jac σ. Let (∂xi)
denote the (column) vector with entries ∂xi := ∂/∂xi, i = 1, . . . , n. Thus,

(∂xi) = Jac σ · (∂yj ) or (∂yj ) =
1

xγ
· T · (∂xi). (5.1)
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Since f and σ are of class QM , there is a constant B > 1 such that

|f (α)| 6 B|α|α!M|α|,

|T (α)
ji | 6 B|α|α!M|α|+|γ|, i, j = 1, . . . , n,

(5.2)

on K, for all α ∈ Nn.

Set p := 2|γ|+ 1. We will show that∣∣∣∣∂|β|g∂yβ

∣∣∣∣ 6 (n2pξEp)|β|β!Mp|β| (5.3)

on σ(K), for all β ∈ Nn, where ξ is a fixed positive constant and E > max{1, B} is big enough

that ∑
λ∈Nn

(
B

E

)|λ|
< ξ.

The estimate (1.1) follows. In the argument below, all estimates are understood to mean ‘on K’

or ‘on σ(K)’, as the case may be, and we will not say this explicitly.

Claim 5.1. For each β ∈ Nn,∣∣∣∣∂|α|(g(β) ◦ σ)

∂xα

∣∣∣∣ 6 (nξ)|β|Ep|β|+|α|Γ(α, β)Mpβ(α), (5.4)

for all α ∈ Nn, where pβ(α) := p|β|+ |α| and

Γ(α, β) = α! ·
|β|∏
j=1

max
16i6n

{αi + j(γi + 1)}. (5.5)

Note that pβ(0) = p|β|, and that

Γ(0, β) =

|β|∏
j=1

max
16i6n

{j(γi + 1)} 6
|β|∏
j=1

pj = p|β||β|! 6 (np)|β|β!.

Therefore, (5.4) in the case that α = 0 implies (5.3); i.e. the estimate (1.1) follows from Claim 5.1.

We will prove the claim by induction on |β|. Note that Γ(α, 0) = α!. The claim is therefore

true when β = 0, because in this case (5.4) reduces to (5.2) (recall that E > B). Fix a multi-index

β̃, where |β̃| > 0. By induction, we assume the claim holds for all β such that |β| < |β̃|.
Without loss of generality, there exists β ∈ Nn such that β̃ = β + (1). By (5.1) and the

fundamental theorem of calculus (used |γ| times),

∂g(β)

∂y1
◦ σ =

∫
[0,1]|γ|

n∑
i=1

∂|γ|

∂xγ

(
T1i ·

∂g(β) ◦ σ
∂xi

)( γk∏
j=1

tk,jxk

)
Q0(t) dt,
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where t := (t1, . . . , tn), tk := (tk,1, . . . , tk,γk), and Q0(t) :=
∏n
k=1

∏γk
j=1 t

γk−j
k,j . It follows that, for

all α ∈ Nn,∣∣∣∣∂|α|(g(β̃) ◦ σ)

∂xα

∣∣∣∣ =

∣∣∣∣ ∂|α|∂xα

(
∂g(β)

∂y1
◦ σ
)∣∣∣∣

6
∫
[0,1]|γ|

n∑
i=1

∣∣∣∣∂|γ|+|α|∂xγ+α

(
T1i ·

∂g(β) ◦ σ
∂xi

)∣∣∣∣Qα(t) dt

6
∫
[0,1]|γ|

n∑
i=1

∑
λ+δ=α+γ

(
α+ γ

λ

)∣∣∣∣∂|λ|T1i∂xλ
· ∂
|δ|+1g(β) ◦ σ
∂xδ∂xi

∣∣∣∣Qα(t) dt,

where Qα(t) =
∏n
k=1

∏γk
j=1 t

γk+αk−j
k,j , so that∫

[0,1]|γ|
Qα(t) dt =

α!

(α+ γ)!
. (5.6)

Moreover, by (5.2) and (5.4),∣∣∣∣∂|λ|Tk,i∂xλ

∣∣∣∣ 6 B|λ|λ!M|λ|+|γ|,∣∣∣∣∂|δ|+1g(β) ◦ σ
∂xδ∂xi

∣∣∣∣ 6 (nξ)|β|Ep|β|+|δ|+1Γ(δ + (i), β)Mpβ(δ+(i)).

Since pβ(δ+(i))+ |λ|+ |γ| = p|β|+2|γ|+1+ |α| = pβ̃(α), the preceding inequalities imply (using
log-convexity) that∣∣∣∣∂|λ|Tk,i∂xλ

· ∂
|δ|+1g(β) ◦ σ
∂xδ∂xi

∣∣∣∣ 6 (nξ)|β|B|λ|Ep|β|+|δ|+1λ! Γ(δ + (i), β)Mpβ̃(α)

6 (nξ)|β|Ep|β̃|+|α|
(
B

E

)|λ|
λ! Γ(δ + (i), β)Mpβ̃(α)

. (5.7)

We conclude from (5.6) and (5.7) that∣∣∣∣∂|α|(g(β̃) ◦ σ)

∂xα

∣∣∣∣ 6 n∑
i=1

∑
λ+δ=α+γ

(
α+ γ

λ

)
α!λ! Γ(δ + (i), β)

(α+ γ)!
(nξ)|β|Ep|β̃|+|α|

(
B

E

)|λ|
Mpβ̃(α)

6 ξ|β|(nEp)|β̃|E|α|Mpβ̃(α)

∑
λ+δ=α+γ

α!

δ!
max
16i6n

{Γ(δ + (i), β)}
(
B

E

)|λ|
.

Now, from the definition of Γ(α, β) and the fact that δ 6 α+ γ, we obtain

α!

δ!
max
16i6n

{Γ(δ + (i), β)} = α! max
16i6n

{
(δ + (i))!

δ!

|β|∏
j=1

max
16k6n

{δk + (1) + j(γk + 1)}
}

6 α! max
16i6n

{
(δ + (i))!

δ!

|β|∏
j=1

max
16k6n

{αk + γk + 1 + j(γk + 1)}
}

6 α! max
16i6n

{
(δ + (i))!

δ!

} |β̃|∏
j=2

max
16i6n

{αi + j(γi + 1)}
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6 α! max
16i6n

{αi + γi + 1}
|β̃|∏
j=2

max
16i6n

{αi + j(γi + 1)}

= α!

|β̃|∏
j=1

max
16i6n

{αi + j(γi + 1)} = Γ(α, β̃).

We conclude, therefore, that∣∣∣∣∂|α|(g(β̃) ◦ σ)

∂xα

∣∣∣∣ 6 ξ|β|(nEp)|β̃|E|α|Γ(α, β̃)Mpβ̃(α)

∑
λ∈Nn

(
B

E

)|λ|
6 (nξEp)|β̃|E|α|Γ(α, β̃)Mpβ̃(α)

,

as required for the estimate (1.1).
It remains to show that we can get the estimate (1.2) if we make the stronger assumption

that QM is closed under differentiation (i.e. QM satisfies the assumption (a) of § 2.1). Under this
assumption, we can strengthen the second inequality of (5.2) to

|T (α)
ji | 6 B|α|α!M|α|, i, j = 1, . . . , n,

and the required estimate (1.2) can be obtained exactly as above. 2

Remark 5.2. It is possible to prove Theorem 1.4 also by an argument similar to that of Chaumat
and Chollet [CC99, § III]. Indeed, in the notation of [CC99] (for a reader familiar with the latter),
the estimate in [CC99, Lemma III.4] can be improved to∣∣∣∣ ∂∂xS (TK,L)(x)

∣∣∣∣ 6 C l−s+1
3

(s+ l)!

k!
Mps,

where p = 2|γ|+ 1, and this can be used in a calculation similar to that of [CC99].

Proof of Corollary 1.5. If dimV = dimW , then, by resolution of singularities, there is a proper
surjective mapping σ : Z → V of class QM (dimZ = dimV ) such that det(∂(ϕ◦σ)/∂x) is locally
a monomial times an invertible factor (as in the proof of Theorem 1.3), so the result follows from
Theorem 1.4.

In general, we can reduce to the preceding special case by using a mapping analogous to
(3.3), locally. 2
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Man52 S. Mandelbrojt, Séries Adhérentes, Régularisation des Suites, Applications, Collection Borel

(Gauthiers-Villars, Paris, 1952).

Mil95 C. Miller, Infinite differentiability in polynomially bounded o-minimal structures, Proc. Amer.

Math. Soc. 123 (1995), 2551–2555.

Now11 K. J. Nowak, A note on Bierstone-Milman-Paw lucki’s paper ‘Composite differentiable

functions’, Ann. Polon. Math. 102 (2011), 293–299.

Now13 K. J. Nowak, On division of quasianalytic function germs, Int. J. Math. 13 (2013), 1–5.

Now15 K. J. Nowak, Quantifier elimination in quasianalytic structures via non-standard analysis,

Ann. Polon. Math. 114 (2015), 235–267.

RSW03 J.-P. Rolin, P. Speissegger and A. J. Wilkie, Quasianalytic Denjoy–Carleman classes and

o-minimality, J. Amer. Math. Soc. 16 (2003), 751–777.
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