Areal coordinate proof of Theorems 2 and 3

The area of triangle DEF is worked out using areal coordinates by evaluating the 3×3 determinant whose entries in rows 1, 2, 3 are the coordinates of D, E, F respectively, and then the result is $[DEF]/[ABC]$, the ratios of the areas of triangles DEF and the fundamental triangle ABC. Using a computer algebra package, we obtain

$$[DEF] = [ABC] \frac{a^2 b^2 + j(a^2 + b^2 - c^2 + j)}{a^2 + b^2 + j}.$$

Repeating the calculation using the coordinates of D', E', F' we find that $[D'E'F']$ has the same area as $[DEF]$. It is also interesting to work out the sides of these triangles. In areal coordinates, if a displacement $ST = (x, y, z)$, a displacement being the difference in the normalised coordinates of T and S, then $ST^2 = -a^2yz - b^2zx - c^2xy$, see Bradley [2]. Using this formula we obtain $DE^2 = F'D'^2 = pa^2$, $EF^2 = D'E'^2 = pb^2$, $FD^2 = E'F'^2 = pc^2$, where

$$p = \frac{a^2(b^2 + j) + j(b^2 - c^2 + j)}{(a^2 + b^2 + j)^2}.$$

This proves that triangles DEF and $D'E'F'$ are in fact congruent and that DEF is similar to BCA and $D'E'F'$ is similar to CAB (order of letters being indicative).

Finally, if the Brocard points of ABC are $\Omega\left(\frac{1}{b^2}, \frac{1}{c^2}, \frac{1}{a^2}\right)$ and $\Omega'\left(\frac{1}{c^2}, \frac{1}{a^2}, \frac{1}{b^2}\right)$, then Ω is one of the Brocard points of DEF and Ω' is the other Brocard point of $D'E'F'$. The proof of these results is left for the reader.

References

C. J. BRADLEY

Flat 4, Terrill Court, 12-14 Apsley Road, Bristol BS8 2SP

95.17 The golden ratio in conic sections

Inspired by Domenico [1, p. 261], I identify two examples of the golden ratio which are presented below.

Example 1: Suppose that P_1P_2 is a focal chord of a parabola with focus $S(a, 0)$. If a, SP_1, SP_2 form a geometric progression, then $\cot^2 \theta$ equals the golden ratio, where θ is the angle between the tangent at P_2 and the axis of the parabola.
Proof: Let the equation of the parabola be \(y^2 = 4ax \) and the coordinates of \(P_1 \) and \(P_2 \) be \((at_1^2, 2at_1)\) and \((at_2^2, 2at_2)\) respectively. Then
\[
t_1t_2 = -1. \tag{1}
\]
Let the lengths of the segments \(SP_1 \) and \(SP_2 \) be \(l_1 \) and \(l_2 \) respectively.
\[
l_1 = a(t_1^2 + 1) \tag{2}
\]
and
\[
l_2 = a(t_2^2 + 1). \tag{3}
\]
But \(a, l_1, l_2 \) are in G.P.
\[
l_1^2 = al_2
\]
and we have
\[
\cot \theta = t_2.
\]
From (2) and (3), we get
\[
a^2(t_1^2 + 1)^2 = a^2(t_2^2 + 1).
\]
From (1), we have
\[
\left(\frac{1}{t_2^2} + 1 \right)^2 = t_2^2 + 1
\]
or
\[
\frac{t_2^2 + 1}{t_2^2} = 1 \quad \text{since} \quad t_2^2 + 1 > 0
\]
or
\[
u^2 - u - 1 = 0, \quad \text{where} \quad u = t_2^2 = \cot^2 \theta.
\]
\[
u = \left(\frac{1 \pm \sqrt{1 + 4}}{2} \right) = \frac{1 \pm \sqrt{5}}{2}.
\]
But being a perfect square, \(u \) cannot be negative.
\[
u = \frac{\sqrt{5} + 1}{2}, \text{ which is the golden ratio.}
\]

Example 2: Suppose that a hyperbola has semi-major and semi-minor axes of length \(a \) and \(b \) respectively. If the radius of the director circle of the hyperbola is the geometric mean of \(a \) and \(b \), then \(\frac{a}{b} \) equals the golden ratio.

Proof: Since the equation of the hyperbola is \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \), the equation of the director circle is \(x^2 + y^2 = a^2 - b^2 \). Hence its radius is \(\sqrt{a^2 - b^2} \).

According to the given condition
\[
a^2 - b^2 = ab
\]
or \(\left(\frac{a}{b} \right)^2 - 1 = \frac{a}{b} \).

\[
\therefore \quad v^2 - v - 1 = 0, \text{ where } v = \frac{a}{b}.
\]

Hence \(v \) equals golden ratio.

Reference

CHINMOY KUMAR GHOSH

National Centre for Innovations in Distance Education, Indira Gandhi National Open University, New Delhi-110068, India

e-mail: ckgosh@ignou.ac.in

95.18 Normals to the Euler line

In both Cartesian and areal coordinates, the parallelism of lines is simply expressed by means of a null determinant but perpendicularity is rather more problematical in the latter framework.

In this note we will first use areal coordinates to obtain the set \(S \) of normals to the Euler line of the triangle of reference \(ABC \). We will then consider the set \(T \) of circles whose centres lie on the Euler line (with radical axes of pairs of circles in \(T \) thus belonging to \(S \)).

The normals

Denoting the triangle area by \(\Delta \), we first find the length of the Euler line segment \(GH \) (for centroid \(G \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right] \) and orthocentre \(H \left[\alpha\beta, \gamma\alpha, \alpha\beta \gamma \right] \) in actual areal coordinates).

Thus, with angle cotangents \(\alpha, \beta, \gamma \) (\(\beta\gamma + \gamma\alpha + \alpha\beta = 1, \alpha + \beta + \gamma = \Sigma, \alpha\beta\gamma = \Pi \)), the expression

\[
\frac{GH^2}{2\Delta} = \alpha \left(\frac{1}{3} - \beta\gamma \right)^2 + \beta \left(\frac{1}{3} - \gamma\alpha \right)^2 + \gamma \left(\frac{1}{3} - \alpha\beta \right)^2 = \frac{(\Sigma - 9\Pi)}{9}
\]

follows easily.

Then by considering the point \(P \left[0, \frac{(\Sigma - \gamma)}{(\beta - \gamma)}, \frac{(\Sigma - \beta)}{(\gamma - \beta)} \right] \) on \(BC \), we will show that \(GP \) is perpendicular to the Euler line.

Now

\[
\frac{GP^2}{2\Delta} = \alpha \left(\frac{1}{3} - 0 \right)^2 + \beta \left(\frac{1}{3} - \frac{(\Sigma - \gamma)}{(\beta - \gamma)} \right)^2 + \gamma \left(\frac{1}{3} - \frac{(\Sigma - \beta)}{(\gamma - \beta)} \right)^2
\]

leading to \(\frac{GP^2}{2\Delta} = \frac{(\Sigma - 9\Pi)}{9(\beta - \gamma)^2} \) after some algebra.