
22

Interacting bosonic fields

The usual formalism of interacting relativistic quantum field theory is purely per-
turbative and leads to formal, typically divergent expansions. It is natural to ask
whether behind these expansions there exists a non-perturbative theory acting
on a Hilbert space and satisfying some natural axioms (such as the Wightman or
Haag–Kastler axioms). It is not difficult to give a whole list of models of increas-
ing difficulty, well defined perturbatively, whose non-perturbative construction
seems conceivable. There were times when it was hoped that by constructing
them one by one we would eventually reach models in dimension 4 relevant for
particle physics. The branch of mathematical physics devoted to constructing
these models is called constructive quantum field theory.

The simplest class of non-trivial models of constructive quantum field theory is
the bosonic theory in 1 + 1 dimensions with an interaction given by an arbitrary
bounded from below polynomial. It is called the P (ϕ)2 model, where P is a
polynomial, ϕ denotes the neutral bosonic field and 2 = 1 + 1 stands for the
space-time dimension. To our knowledge, it has no direct relevance for realistic
physical systems, so its main motivation was as an intermediate step in the
program of constructive quantum field theory.

The work on the P (ϕ)2 model was successful and led to the development of a
number of interesting and deep mathematical tools. The constructive program
continued, with the construction of more difficult models, such as the Yukawa2

and λϕ4
3 , as well as a deep analysis of Yang–Mills4 . Unfortunately, it seems that

no models of direct physical relevance have so far been constructed within this
program.

In this chapter we would like to describe some elements of the construction
of the P (ϕ)2 model. We will restrict ourselves to space-cutoff models and the
net of local algebras associated with this model. We will not discuss the construc-
tion of the translation invariant model, which can be found in the literature. We
believe that even such a limited treatment of this theory is a good illustration
of many concepts of quantum field theory.

22.1 Free bosonic fields

22.1.1 Klein–Gordon equation

The simplest non-interacting relativistic model of quantum field theory describes
neutral scalar bosons. It has already been discussed in Sect. 19.2. Let us recall
the basic elements of its theory.
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642 Interacting bosonic fields

The dual phase space can be taken to be the space of real space-compact
solutions of the Klein–Gordon equation(

∂2
t −Δx + m2) ζ(t, x) = 0, (t, x) ∈ R1,d . (22.1)

The model is called massive, resp. massless if m > 0, resp. m = 0. Introducing
the operator ε = (−Δx + m2)

1
2 , we can rewrite (22.1) as

(∂2
t + ε2)ζ = 0.

We are in the framework of Subsect. 18.3.2 (and hence also of Subsect. 9.3.1,
with c = (2ε)−1). We parametrize the dual phase space by the time-zero initial
conditions

ϑ(x) := ζ̇(0, x), ς(x) = ζ(0, x). (22.2)

It is natural to enlarge the dual phase space so that, in terms of the initial
conditions, it is

ε
1
2 L2(Rd , R)⊕ ε−

1
2 L2(Rd , R). (22.3)

(This is a special case of the space Ydyn defined in Subsect. 18.3.2.) The vector
ς ∈ ε−

1
2 L2(Rd , R) describes the “position” and ϑ ∈ ε

1
2 L2(Rd , R) describes the

“momentum”.
The dual phase space can be treated as a Kähler space with the symplectic

form

(ϑ1 , ς1)ω(ϑ2 , ς2) =
ˆ

Rd

(ϑ1(x)ς2(x)− ϑ2(x)ς1(x)) dx,

the conjugation τ and the Kähler anti-involution j:

τ =
[

1l 0
0 −1l

]
, j =

[
0 −ε

ε−1 0

]
. (22.4)

The dynamics is generated by the classical Hamiltonian

h0(ς, ϑ) =
1
2

ˆ
Rd

(
ϑ2(x) + |∇xς(x)|2 + m2ς2(x)

)
dx.

One can show that the linear Klein–Gordon equation with initial conditions
(22.2) possesses a unique solution, which for the Cauchy data (ϑ, ς) will be
denoted eta(ϑ, ς). These solutions satisfy the following basic requirements of a
(classical) relativistic field theory:

Theorem 22.1 (1) Locality. If χ ∈ C∞
c (R1,d), χ ≡ 1 on an open set O ⊂ R1,d

and ζ is a solution in R1,d , then χζ is a solution in O.
(2) Causality. If the Cauchy data (ϑ, ς) are supported in a set K ⊂ Rd , then

eta(ϑ, ς) is supported in J({0} ×K) =
{
(t, x) ∈ R1,d : dist(x,K) ≤ |t|}.

(3) Covariance. The Poincaré group acting as in Subsect. 19.2.10 preserves the
space of solutions with Cauchy data in (22.3).
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22.1 Free bosonic fields 643

22.1.2 Quantization of linear Klein–Gordon equation

Let us first briefly recall the results of Sect. 18.3 about the quantization of the
linear Klein–Gordon equation. Consider the complexified dual phase space

ε−
1
2 L2(Rd)⊕ ε

1
2 L2(Rd). (22.5)

The positive frequency subspace of (22.5) is taken as the one-particle space, as
usual denoted by Z. As in (8.32), and then (18.31), we parametrize it by the time-
zero momenta, identifying it with (2ε)

1
2 L2(Rd). The time reversal becomes the

usual complex conjugation. One can introduce position and momentum operators
for the Fock CCR representation on Γs(Z) as in Subsect. 8.2.7. Let us recall their
definition in the present context:

Definition 22.2 The time-zero position and momentum operators, often called
the ϕ and π fields, are defined as

ϕ(ϑ) := a∗(ϑ) + a(ϑ), ϑ ∈ ε
1
2 L2(Rd , R),

π(ς) := i
2 (a∗(ες)− a(ες)), ς ∈ ε−

1
2 L2(Rd , R).

Definition 22.3 The time-zero ϕ and π fields at x ∈ Rd are defined as

ϕ(x) := ϕ(δx),

π(x) := π(δx),

where δx is the Dirac mass at point x.

Remark 22.4 Comparing Defs. 22.2 and 22.3, we see that the notation ϕ(·)
and π(·) is somewhat ambiguous. We use this convention, however, and make
no attempt to improve on it.

Note that δx does not belong to the one-particle space. We treat the fields
ϕ(x) and π(x) as “operator-valued distributions” that become well-defined closed
operators only after smearing with appropriate test functions:ˆ

Rd

ϕ(x)ϑ(x)dx = ϕ(ϑ),
ˆ

Rd

π(x)ς(x)dx = π(ς);

see Remark 3.54. Formally, ϕ(x) and π(x) satisfy the following form of the CCR:

[ϕ(x), ϕ(y)] = [π(x), π(y)] = 0,
[ϕ(y), π(x)] = iδ(x− y)1l.

(22.6)

Definition 22.5 Free fields are defined as

ϕ0(t, ϑ) := eitdΓ(ε)ϕ(ϑ)e−itdΓ(ε) , ϑ ∈ ε
1
2 L2(Rd , R),

ϕ0(t, x) := eitdΓ(ε)ϕ(x)e−itdΓ(ε) , x ∈ Rd .
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644 Interacting bosonic fields

(The subscript 0 indicates that we are dealing with free or, in other words,
non-interacting fields.) The equations satisfied by the free fields can be expressed
as an operator identity on Γfin

s (Z)

∂2
t ϕ0(t, ϑ) + ϕ0(t, ε2ϑ) = 0, (22.7)

or, equivalently, as a distributional identity(
∂2

t −Δx + m2)ϕ0(t, x) = 0.

Definition 22.6 For (ϑ, ς) ∈ ε−
1
2 L2(Rd , R)⊕ ε

1
2 L2(Rd , R), we also introduce the

corresponding phase space fields and Weyl operators

φ(ϑ, ς) := ϕ(ϑ) + π(ς), W (ϑ, ς) := eiφ(ϑ,ς ) . (22.8)

If ζ is the solution with the Cauchy data (ϑ, ς), we will also write φ(ζ) and W (ζ)
instead of (22.8).

22.1.3 Free dynamics and free local algebras

For concreteness, until the end of the chapter we assume that d = 1.
For A ∈ B

(
Γs(Z)

)
, we define

αt
0(A) := eitdΓ(ε)Ae−itdΓ(ε) ,

αx
0 (A) := eixdΓ(D )Ae−ixdΓ(D ) ,

αx
0 (A) := αt

0 ◦ αx
0 (A), x = (t, x) ∈ R1,1 ,

where D = Dx is the momentum operator. Clearly, R1,1 � x �→ αx
0 is a strongly

continuous group of ∗-automorphisms of B
(
Γs(Z)

)
.

In the following definition, all the algebras are concrete and are contained in
B
(
Γs(Z)

)
.

Definition 22.7 (1) For a bounded open interval I ⊂ R, the corresponding
time-zero local algebra is defined as

R(I) :=
{
W (ϑ, ς) : ϑ, ς ∈ C∞

c (I, R)
}′′

.

(2) The following algebra plays the role of the algebra of all observables:

O :=
(⋃

I⊂R

R(I)
)cpl

.

(3) For a bounded open set O ⊂ R1,1 , the corresponding free local algebra is
defined as

M0(O) :=
{
αt

0(A) : A ∈ R(I), {t} × I ⊂ O}′′.
As described in Subsect. 19.2.7, one can also quantize the free dynamics by

abstract CCR algebras. Recall that if O ⊂ R1,1 is an open set, then A(O) is then
the Weyl CCR C∗-algebra generated by elements W (Gf) satisfying the Weyl

https://doi.org/10.1017/9781009290876.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.023


22.1 Free bosonic fields 645

commutation relations, with f ∈ C∞
c (O), where Gf(x) =

´
G(x− y)f(y)dy and

G is the Pauli–Jordan function. These algebras possess a distinguished represen-
tation called the Fock representation,

πF : A(O) → B
(
Γs(Z)

)
.

Proposition 22.8 The following hold:

(1) M0(O) = πF(A(O))′′.
(2) αx

0 (M0(O)) = M0(O + x), x ∈ R1,1 .

(3) O =
( ⋃
O⊂R1 , 1

M0(O)
)cpl

.

Proof Recall first that the Klein–Gordon equation satisfies the causality prop-
erty, i.e.

supp
(
ϑ(t), ς(t)

) ⊂ J
({0} × supp(ϑ, ς)

)
, t ∈ R. (22.9)

To prove (1), we first note that

M0(O) =
{
W
(
eat(ϑ, ς)

)
: {t} × (supp(ϑ, ς)

) ⊂ O}′′ .
We then use Thm. 19.15 and the fact that the Green’s function G(t, s)
is sin((t−s)ε)

ε . Statement (2) is obvious. Statement (3) follows from the fact
that

R(I) ⊂ M
(
]− ε0 , ε0 [×I

) ⊂ R
(
I+]− ε0 , ε0 [

)
, ε0 > 0. (22.10)

The first inclusion in (22.10) is obvious; the second follows from causality. �

22.1.4 Q-space representation

Let τ be the canonical conjugation on Z = (2ε)
1
2 L2(R) defined as τΨ(x) = Ψ(x).

Recall from Subsect. 18.3.2 that τ corresponds to time reversal.
Let T rw : Γs(Z) → L2(Q,dμ) be the real-wave (or Q-space) representation

associated with τ , as in Subsect. 9.3.5. In the sequel we will freely identify
objects on Γs(Z) and on L2(Q,dμ), using T rw . We will also use the same sym-
bol to denote a measurable function V on Q and the operator of multiplication
by V acting on L2(Q,dμ). We are in the framework of Subsect. 9.3.1 with c =
(2ε)−1 .

Operators ϕ(ϑ), ϑ ∈ ε
1
2 L2(R) commute with one another. In particular, poly-

nomials in the variable ϕ, that is, functions of the form

V (ϕ) =
n∑

j=0

ˆ
Vj (x1 , . . . , xj )ϕ(x1) · · ·ϕ(xj )dx1 · · · xj ,

can be interpreted as functions on Q, and as (usually unbounded) operators on
L2(Q,dμ) � Γs(Z).
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646 Interacting bosonic fields

We can also consider the Wick quantization of the polynomial V . We will use
the following alternative notation:

Opa∗,a(V ) = :V (ϕ):. (22.11)

The notation on the r.h.s. of (22.11) is explained in Prop. 9.53. Clearly, :V (ϕ):
is a polynomial in the variable ϕ.

22.2 P (ϕ) interaction

22.2.1 Nonlinear Klein–Gordon equation

Now let P be a real polynomial and g : R → R a real function. Let us consider
the perturbed classical Hamiltonian

h(ϑ, ς) = h0(ϑ, ς) +
ˆ

R

g(x)P
(
ς(x)
)
dx. (22.12)

For stability reasons, we require that g be positive and that the polynomial P ,
and hence the Hamiltonian h, be bounded from below.

Formally, the associated field equation is the following non-linear Klein–
Gordon equation:{

∂2
t ϕ(t, x)−Δxϕ(t, x) + m2ϕ(t, x) + g(x)P ′(ϕ(t, x)) = 0,

ς(x) = ζ(0, x), ϑ(x) := ζ̇(0, x).
(22.13)

22.2.2 Formal quantization of non-linear Klein–Gordon equation

Let us try to quantize the classical Hamiltonian (22.12). Let us assume that we
can give a meaning to the formal expression

H = dΓ(ε) +
ˆ

R

g(x)P
(
ϕ(x)
)
dx. (22.14)

Set

ϕ(t, x) := eitH ϕ(x)e−itH .

Then formally we have

∂2
t ϕ(t, x)−Δxϕ(t, x) + m2ϕ(t, x) + g(x)P ′(ϕ(t, x)

)
= 0,

which can be rephrased as saying that we have quantized the non-linear Klein–
Gordon equation (22.13).

There are two deep difficulties with the formal expression (22.14):

(1) First, ϕ(x) does not make sense as a self-adjoint operator, so expressions like
ϕ(x)p do not make sense (even after integration against test functions). This
problem is called the ultraviolet divergence, and is caused by the requirement
that the associated field theory should be local. For classical field equations
it corresponds to the well-known difficulty with multiplying distributions.
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(2) If g(x) ≡ 1, one encounters the second problem: the integral over R in (22.14)
may not converge. This is called the infinite-volume divergence and is caused
by the requirement that the field theory should be translation invariant.

One can try to tackle these problems as follows. First one modifies the Hamil-
tonian, introducing ultraviolet and space cutoffs. This leads to the (still formal)
expression

Hκ(g) = dΓ(ε) +
ˆ

R

g(x)P
(
ϕκ(x)

)
dx.

Here, g ∈ C∞
c (R) is a space cutoff and ϕκ(x) is the ultraviolet cutoff field

ϕκ(x) :=
ˆ

R

ϕ(y)ρκ(y − x)dy, (22.15)

where ρ ∈ C∞
c (R) is a cutoff function with

´
R

ρ(y)dy = 1, ρκ(y) = κρ(κy) and
κ + 1 is an ultraviolet cutoff parameter.

Now, ρκ ∈ Z = (2ε)
1
2 L2(R), except if m = 0. The case m = 0 is exceptional,

because then

‖ε− 1
2 ρκ‖2 = (2π)−1

ˆ
R

|k|−1 |ρ̂|2(κ−1k)dk < ∞

iff ρ̂(0) =
´

R
ρ(y)dy = 0. In the rest of this chapter we will always assume that

m > 0.
Note that the interaction termˆ

R

g(x)P
(
ϕκ(x)

)
dx

now makes sense as a self-adjoint operator on the Fock space Γs(Z).
Next one tries to remove the ultraviolet cutoff, letting κ →∞ and trying to

prove the existence of a (non-trivial) limit

H∞(g) = lim
κ→∞

(
Hκ(g)−Rκ(g)

)
(22.16)

in some appropriate sense, where Rκ(g) are the so-called counterterms related
to the well-known need to renormalize various physical constants of the model.

In dimension 1 + 1 one can use the counterterms

Rκ(g) :=
ˆ

R

g(x)
(
P
(
ϕκ(x)

)− :P
(
ϕκ(x)

)
:
)
dx

obtained by the Wick ordering of the interaction term. It is then possible to give
a meaning to the expression

H∞(g) := dΓ(ε) +
ˆ

R

g(x) :P
(
ϕ(x)
)
: dx

as a bounded below self-adjoint operator on Γs(Z), as we will see in Subsect.
22.2.5.
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648 Interacting bosonic fields

Then one tries to take the infinite-volume limit, which means putting g = 1.
This requires a change of the representation of the CCR – it cannot be done
on the original Fock space. This is related to a general argument called Haag’s
theorem.

In higher space dimensions it is no longer possible to give meaning to H∞(g)
as a self-adjoint operator on the Fock space Γs(Z). In dimension 1 + 2 one can
quantize the classical non-linear Klein–Gordon equation if the degree of P is not
greater than 4. However, even with a spatial cut-off the resulting Hamiltonian
acts on a Hilbert space supporting a representation of the CCR not equivalent
to the Fock representation. This is related to the so-called wave function renor-
malization.

In dimensions 1 + 3 or higher it is believed that interacting scalar bosonic
quantum fields do not exist.

22.2.3 P (ϕ)2 interaction as a Wick polynomial

Until the end of this chapter we assume that d = 1 and m > 0.
Recall that

ϕ(x) = ϕ(δx) = a∗(δx) + a(δx),

ϕκ(x) = ϕ
(
ρκ(· − x)

)
= a∗(ρκ(· − x)

)
+ a
(
ρκ(· − x)

)
= a∗(χ(κ−1Dx)δx

)
+ a
(
χ(κ−1Dx)δx

)
,

where χ = ρ̂ ∈ S(R) satisfies χ(0) = 1.
Let us fix a real bounded below polynomial

P (λ) =
2n∑

p=0

apλ
p . (22.17)

Clearly, degP = 2n has to be even and a2n > 0. We also fix a space cutoff function
g ∈ L2(R).

As explained in Subsect. 22.2.2, instead of the operator P
(
ϕκ(x)

)
, we prefer

to use its Wick-ordered version

:P
(
ϕκ(x)

)
:=

2n∑
p=0

ap :ϕκ(x)p :.

We refer to Prop. 9.53, where this notation is explained. In particular, we recall
from (9.60) that

:ϕκ(x)p : =
p∑

r=0

(
p

r

)
a∗(ρκ(· − x)

)r
a
(
ρκ(· − x)

)p−r
. (22.18)

Definition 22.9 The operator

Vκ :=
ˆ

R

g(x) :P
(
ϕκ(x)

)
: dx

is called an ultraviolet cutoff Wick-ordered interaction.
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In this subsection we investigate Vκ as a Wick polynomial.

Definition 22.10 Let us set

a(k) := (2π)−
1
2 a(eik·x), a∗(k) := (2π)−

1
2 a∗(eik·x).

Using the notation of Sect. 9.4, we obtain that

Mp,κ :=
ˆ

R

g(x) :ϕκ(x)p : dx

=
p∑

r=0

(
p

r

)ˆ
Rp

wp,κ(k1 , . . . , kr , kr+1 , . . . , kp)

×a∗(k1) · · · a∗(kr )a(−kr+1) · · · a(−kp)dk1 · · · dkp ,

for

wp,κ(k1 , . . . , kp) = (2π)1−2p ĝ
( p∑

i=1

ki

) p

Π
j=1

χ(κ−1kj ). (22.19)

We denote by wp,∞ the function on Rp obtained by setting κ = ∞ in (22.19),
i.e.

wp,∞(k1 , . . . , kp) = (2π)1−2p ĝ
( p∑

i=1

ki

)
, (22.20)

which allows us to define Mp,∞.

Lemma 22.11 The kernels wp,κ are in ⊗pε
1
2 L2(R) for 0 < κ ≤ ∞ and, for any

δ > 0,

‖wp,κ − wp,∞‖⊗p ε
1
2 L2 (R)

≤ Cδ‖g‖L2 (R)κ
−δ .

Remark 22.12 Lemma 22.11 still holds if g ∈ L1+δ (R) for some δ > 0.

Proof It clearly suffices to prove the corresponding statements with wp,κ

replaced by wp,κ

p

Π
i=1

ε(ki)−
1
2 , and ⊗pε

1
2 L2(R) replaced by L2(Rp). We use the

bound

p

Π
j=1

aj ≤
p∑

i=1

(
Π

j �=i
aj

)p/(p−1)
, (22.21)

which follows from the inequality( p

Π
i=1

λi

)1/p

≤
p∑

j=1

λj

applied to λi = Π
j �=i

a
p/(p−1)
j . Applying (22.21) to ai = ω(ki)−

1
2 , we obtain that

wp,∞, and hence wp,κ for κ <∞, belong to L2(Rp). The bound on ‖wp,κ − wp,∞‖
is a direct computation, using (22.21). �
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From Prop. 9.50 we see that

Vκ =
2n∑

p=0

apMp,κ

is well defined as a Hermitian operator on Dom Nn for κ ≤ ∞. We will use the
notation

V := V∞ =
ˆ

R

g(x) :P
(
ϕ(x)
)
: dx.

Lemma 22.13 (1) Vκ and V with domain Dom Nn are densely defined Hermi-
tian operators.

(2) There exists δ > 0 such that

‖(V − Vκ)(N + 1)−n‖ ≤ C‖g‖L2 (R)κ
−δ .

Proof It suffices to apply the Nτ estimates of Prop. 9.50. �

22.2.4 P (ϕ)2 interaction as a multiplication operator

In this subsection we study the operators Vκ as multiplication operators in the
Q-space representation.

Proposition 22.14 Assume that g ∈ L2(R). Then the following are true:

(1) Vκ and V are multiplication operators by functions in
⋂

1≤p<∞
Lp(Q,dμ).

(2) For any δ > 0, there exists a constant Cδ > 0 such that

‖Vκ − V ‖Lp (Q,dμ) ≤ Cδ (p− 1)nκ−δ , p > 2.

(3) Assume in addition that g ∈ L1(R) and g ≥ 0. Then there exist constants
C > 0, κ0 such that, for κ ≥ κ0 ,

Vκ ≥ −C(log κ)n .

Proof Note that ε = (D2
x + m2)

1
2 is a real operator and that ε−

1
2 ρκ(· − x) is real.

It follows that ϕκ(x) is a multiplication operator in the Q-space representation.
Hence, by Prop. 9.53, the same is true of the operators

´
R

g(x):ϕκ(x)p :dx for
p ∈ N.

For 2 ≤ p < ∞, let us now consider the map a = (p− 1)−
1
2 1l on (2ε)

1
2 L2(R).

By Thm. 9.30, we know that Γ(a) = (p− 1)−N/2 is a contraction from L2(Q)
into Lp(Q). It follows that

‖Ψ‖Lp (Q) ≤ (p− 1)n/2‖Ψ‖L2 (Q) , Ψ ∈ n⊕
p=0

Γp
s
(
(2ε)

1
2 L2(R)

)
. (22.22)

From Lemma 22.13 we know that (V − Vκ)Ω → 0. So Vκ is Cauchy in L2(Q).
Hence, by (22.22), it is Cauchy also in

⋂
1≤p<∞

Lp(Q). It follows that Vκ converges
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to a function W in
⋂

1≤p<∞
Lp(Q). Now set

S = Span
{
eiϕ(ϑ) : ϑ ∈ C∞

c (R, R)
}
.

Clearly, S is dense in L2(Q) and S ⊂ L∞(Q) ∩Dom Np for all p ∈ N. Using that
Vκ → V on Dom Nn , we see that V Ψ = WΨ for all Ψ ∈ S. Hence, V = W . This
completes the proof of (1).

To prove (2), we use (22.22), the fact that Vκ and V belong to
2n⊕

p=0
Γp

s
(
L2(R)

)
,

and Lemma 22.13.
It remains to prove (3). It follows from (9.26) that, for any f ∈ L2(R, R), one

has

:ϕ(f)p :=
[p/2]∑
m=0

p!
m!(p− 2m)!

ϕ(f)p−2m
(
− 1

4
(f |ε−1f)

)m

. (22.23)

Applying (22.23) to f = ε−
1
2 χ(κ−1Dx)δx , we obtain that

:ϕκ(x)p :=
[p/2]∑
m=0

p!
m!(p− 2m)!

c(κ)2m ϕκ(x)p−2m , (22.24)

for

c(κ) =
(
δx | 12 ε−1χ2(κ−1Dx)δx

) 1
2

= (4π)−
1
2
(´

R
(k2 + m2)−

1
2 χ2(κ−1k)dk

) 1
2 � C(log κ)

1
2 .

(22.25)

We will apply the bound

am bp−m ≤ δbp + Cδa
p , a, b ≥ 0, 0 ≤ m ≤ p, δ > 0, (22.26)

to the terms in the r.h.s. of (22.24), setting b = ϕκ(x), a = c(κ). For p = 2n, we
obtain, picking δ small enough,

:ϕκ(x)2n :≥ 1
2
ϕκ(x)2n − C(log κ)n .

For p < 2n, we take δ = 1 and obtain

| :ϕκ(x)p : | ≤ C
(|ϕκ(x)p |+ (log κ)p/2).

Both inequalities should be understood as inequalities between functions on the
Q-space.

Since a2n > 0, we obtain finally that

:P
(
ϕκ(x)

)
:≥ −C(log κ)n , for κ ≥ κ0 . (22.27)

Integrating (22.27), using that g ≥ 0 and g ∈ L1(R), we obtain (3). �

Although the operators Vκ are bounded from below, this is not the case for
the operator V . Nevertheless, the measure of the set

{
q ∈ Q : V (q) < 0

}
is very

small, as shown in the next proposition.
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Proposition 22.15 Assume that g ∈ L2(R) ∩ L1(R) and g ≥ 0. Then e−T V ∈
L1(Q,dμ) for all T ≥ 0.

Proof Let f be a positive measurable function on Q and t ≥ 0. Set

mf (t) := μ
({f(q) > t}).

Clearly, for any p ≥ 1,

mf (t) ≤ ‖f‖p
Lp (Q)t

−p . (22.28)

Moreover, if F : R+ → R+ is C1 with F ′ ≥ 0, one has
ˆ

Q

F (f)dμ =
ˆ +∞

0
mf (t)F ′(t)dt. (22.29)

Let C be the constant in Prop. 22.14. We claim that there exist c1 , c2 , δ > 0 such
that

μ
({

q ∈ Q : V (q) ≤ −2C(log κ)n
}) ≤ c1e−c2 κδ

. (22.30)

Applying (22.29) to F (λ) = eT λ and f = −V 1l{V ≤0}, and using (22.30), we
obtain that e−T V ∈ L1(Q).

It remains to prove (22.30). Since Vκ ≥ −C(log κ)n , it follows that{
V (q) ≤ −2C(log κ)n

} ⊂ {|V − Vκ |(q) ≥ C(log κ)n
}
.

Hence,

μ
({

V (q) ≤ −2C(log κ)n
}) ≤ m|V −Vκ |

(
C(log κ)n

) ≤ (p− 1)npκ−δp(log κ)−np ,

by (22.28). Choosing p = κδ/n + 1 yields (22.30). �

22.2.5 Space-cutoff P (ϕ)2 Hamiltonian

Theorem 22.16 Assume that g ∈ L2(R) ∩ L1(R) and g ≥ 0. Then,

(1) dΓ(ε) + V is essentially self-adjoint on Dom dΓ(ε) ∩Dom V;
(2) The operator H =

(
dΓ(ε) + V

)cl is bounded from below.

Definition 22.17 The operator H is called a space-cutoff P (ϕ)2 Hamiltonian.

Proof We use the formalism of Subsect. 21.2.4. As the real Hilbert space we
choose X = L2(R, R), so that L2(R, R)⊗X = L2(R2 , R). We choose the covari-
ance

C = (D2
t + ε2)−1 = (D2

t + D2
x + m2)−1 .

We consider the associated Gaussian path space introduced in Def. 21.24. By
Thm. 21.26, Γs(Z) is the physical Hilbert space and H0 = dΓ(ε) is the free
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Hamiltonian associated with this path space. By Props. 22.14 and 22.15, the mul-
tiplicative perturbation V satisfies the hypotheses of Prop. 21.35. By Prop. 9.29,
we also see that e−tdΓ(ε) = Γ(e−tε) is a contraction on Lp(Q) for all 1 ≤ p ≤ ∞.
Nelson’s hyper-contractivity theorem (Thm. 9.30) implies that it maps L2(Q)
into Lp(Q) if e−tm ≤ (p− 1)−

1
2 . Therefore, all the hypotheses of Thm. 21.38 are

satisfied. This completes the proof of the theorem. �

22.2.6 Interacting dynamics and local algebras

Definition 22.18 For l > 0, we set

Vl :=
ˆ

[−l,l]
:P
(
ϕ(x)
)
: dx,

Hl :=
(
dΓ(ε) + Vl

)cl
,

αt
l (A) := eitHl Ae−itHl , A ∈ B

(
Γs(Z)

)
,

which exist by Thm. 22.16.

Theorem 22.19 (Existence of interacting dynamics) The following hold:

(1) For all bounded open intervals I and A ∈ R(I), there exists the limit

αt(A) := lim
l→+∞

αt
l (A).

(2) αt uniquely extends to the algebra O.
(3) Set

αx := αt ◦ αx
0 , x = (t, x).

Then R1,1 � x �→ αx is a group of ∗-automorphisms of O.

Definition 22.20 For a bounded open set O ⊂ R1,1 , we set

M(O) :=
{
αt(A) : A ∈ R(I), {t} × I ⊂ O}′′,

called the interacting local W ∗-algebras.

Theorem 22.21 (Properties of interacting local algebras) The following hold:

(1) One has

αx
(
M(O)

)
= M(O + x), x ∈ R1,1 .

(2) The local interacting algebras are regular, i.e.

M(O) =
⋂

Oc l⊂O1

M(O1) =
∨

Oc l
1 ⊂O

M(O1).

(3) If O1 and O2 are causally separated, then

M(O1) ⊂ M(O2)′.
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(4) If O1 is causally dependent on O2 , then

M(O1) ⊂ M(O2).

(5)

O =
( ⋃
O⊂R1 , 1

M(O)
)cpl

.

Proof of Thm. 22.19. Applying Trotter’s product formula (Thm. 2.75), we
obtain

eitHl = s − lim
n→∞

(
eitdΓ(ε)/neitVl /n

)n
.

For A ∈ R(I), this implies

αt
l (A) = s − lim

n→∞
(
α

t/n
0 ◦ γ

t/n
l

)n (A), (22.31)

for

γt
l (A) := eitVl Ae−itVl .

For l′ > l, we have

Vl′ − Vl =
ˆ

[−l′,l′]\[−l,l]
:P
(
ϕ(x)
)
: dx,

hence Vl′ − Vl is affiliated to R
(
]− l′, l′[\[−l, l]

)
. This implies that γt

l′ = γt
l on

R(I) if l, l′ > |I|. Moreover, by the causality property, we know that

αt
0 : R(I)→ R

(
I + [−|t|, |t|]). (22.32)

Using (22.31) and (22.32), this implies that if l, l′ > |I|+ |T | and |t| ≤ T , then
αt

l = αt
l′ on R(I). This shows the existence of αt on R(I). Since t �→ αl

t is a group
of ∗-automorphisms, so is t �→ αt . This completes the proof of (1). By density,
αt uniquely extends to O, which proves (2).

To prove (3), we note that αx
0α

t
l α

−x
0 = αt

l+x, which implies (3), by letting
l →∞. �

Proof of Thm. 22.21. (1) follows by the definition of M(O). (2) follows from
the analogous property of the time-zero local algebras R(I):

R(I) =
⋂

J⊃I c l

R(J) =
∨

J c l⊂I

R(J), (22.33)

which is immediate.
To prove (3) and (4), instead of αt we can use the space-cutoff dynamics αt

l

for sufficiently large l to define M(Oi). We note that it follows from (22.31) and
the causality property that

αt
l

(
R(I)

) ⊂ R
(
I+]− T, T [

)
, |t| < T. (22.34)
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Then (3) and (4) follow easily from (22.34). To prove (5) we again use (22.34)
to get that

R(I) ⊂ M
(
]− ε0 , ε0 [×I

) ⊂ R(J),

for some J ⊃ I. This clearly implies (5). �

For completeness, let us note the following theorem, which says that the inter-
acting local algebras can also be defined only in terms of the ϕ fields and the
interacting dynamics.

Theorem 22.22 M(O) =
{

αt
(
W (ϑ, 0)

)
: ϑ ∈ C∞

c (I, R), {t} × suppϑ ⊂ O
}′′

.

The above theorem follows easily from the following proposition.

Proposition 22.23 For δ > 0, set Bδ (I) =
{
αt(eiϕ(f )), supp f ⊂ I, |t| < δ

}′′.
Then

R(I) =
⋂
δ>0

Bδ (I).

Proof By (22.34), we know that Bδ (I) ⊂ R(I + [−δ, δ]). Hence, by (22.33),⋂
δ>0

Bδ (I) ⊂ R(I).

To prove the converse inclusion, by (22.33) it suffices again to show that, for
all J cl ⊂ I and small enough δ > 0, one has

R(J) ⊂ Bδ (I). (22.35)

To prove (22.35), let us fix I and J with J cpl ⊂ I, and set δ0 = 1
2 dist(J, R\I).

We will first prove that if δ < δ0 , supp(ϑ, ς) ⊂ J , then

eitdΓ(ε)W (ϑ, ς)e−itdΓ(ε) ∈ Bδ (I), |t| < δ. (22.36)

Set

VI :=
ˆ

I

:P
(
ϕ(x)
)
: dx, HI =

(
dΓ(ε) + VI

)cl
,

V
(r)
I := VI 1l{|VI |≤r}, H

(r)
I :=

(
dΓ(ε) + VI − V

(r)
I

)cl
,

where r ∈ N. The Hamiltonians H
(r)
I are well defined by the methods of Sect.

22.2.5, and one has

H
(r)
I = HI − V

(r)
I , (22.37)

since V
(r)
I is bounded.

It is easy to see that VI − V
(r)
I tends to 0 in

⋂
1≤p<∞

Lp(Q) and for t > 0, r ∈ N,

e−t(VI −V
( r )

I ) is uniformly bounded in L1(Q). Using the methods of Sect. 21.3, we
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prove that

e−tdΓ(ε) = s − lim
r→+∞ e−tH

( r )
I , t > 0,

hence also

eitdΓ(ε) = s − lim
r→+∞ eitH ( r )

I , t ∈ R. (22.38)

By (22.37) and Trotter’s product formula, we have

eitH ( r )
I = s − lim

p→+∞
(
eitHI /pe−itV ( r )

I /p
)p

.

Noting that VI and hence V
(r)
I are affiliated to R(I), we see that eH

( r)
I Ae−itH ( r )

I ∈
Bδ (I) if A ∈ R(J) and |t| < δ. Since Bδ (I) is weakly closed, we get (22.36), using
(22.38).

It follows from (22.36) that W ( 1
t

(
eitεh− h)

) ∈ Bδ (I) for h = ϑ + iες,
supp(ς, ϑ) ⊂ J and |t| < δ. Using the strong continuity in Thm. 9.5, we obtain
that W (iεf) = eiπ (f ) ∈ Bδ (I) if supp f ⊂ J and f ∈ Dom ε. Hence, eiϕ(f ) , eiπ (g) ∈
Bδ (I) for supp f, supp g ⊂ J . This implies (22.35) and ends the proof of the
proposition. �

22.3 Scattering theory for space-cutoff P (ϕ)2 Hamiltonians

In this section we describe, without proof, some properties of the P (ϕ)2 model.
In particular, we discuss its scattering theory. This theory provides an interesting
example of the application of the concept of CCR representations, which arise
naturally as the so-called asymptotic fields.

In the formulation of the scattering theory we will use the symplectic space
(Y, ω) associated with the Klein–Gordon equation described at the beginning of
Subsect. 22.1.1. Recall that it is equipped with the free dynamics R � t �→ eta ,
and the free Hamiltonian H0 implements this dynamics:

eitH0 W (ζ)e−itH0 = W (eta ζ), ζ ∈ Y.

22.3.1 Domain of the space-cutoff P (ϕ)2 Hamiltonian

Let us start with some questions about the Hamiltonian H constructed in Thm.
22.16.

The domain of H is not explicitly known, except if degP = 4, when it is
known that DomH = Dom dΓ(ε) ∩Dom V . However, noting that, for all δ > 0,
the Hamiltonian δdΓ(ε) + V is also bounded below, one obtains the following
bounds:

H0 ≤ C(H0 + V + b1l), for some C, b > 0. (22.39)

These estimates are called first-order estimates. The following higher-order esti-
mates are in practice a substitute for the lack of knowledge of the domain of H.
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They are an important technical ingredient of the proof of most results described
in this section.

Proposition 22.24 Assume the hypotheses of Thm. 22.16. Then there exists
b > 0 such that, for all r ∈ N,

‖Nr (H + b1l)−r‖ < ∞,

‖H0N
r (H + b1l)−n−r‖ < ∞,

‖Nr (H + b1l)−1(N + 1l)1−r‖ < ∞. (22.40)

22.3.2 Spectrum of space-cutoff P (ϕ)2 Hamiltonians

The following theorem about the essential spectrum of space-cutoff P (ϕ)2 Hamil-
tonians was proven in Dereziński–Gérard (2000).

Theorem 22.25 Assume the hypotheses of Thm. 22.16. Then

spec ess(H) = [inf spec (H) + m,+∞[.

Corollary 22.26 Therefore, H possesses a non-degenerate ground state (that
is, inf specH is a simple eigenvalue).

Proof Noting that m > 0, the existence of a ground state follows immedi-
ately from Thm. 22.25. Using the representation of e−tH of Prop. 21.34, we
see that e−tH is positivity improving in the Q-space representation. By the
Perron–Frobenius theorem (Thm. 5.25), it follows that the ground state is non-
degenerate. �

22.3.3 Asymptotic fields

Scattering theory of space-cutoff P (ϕ)2 Hamiltonians is quite different from the
usual scattering theory studied e.g. in the context of Schrödinger operators. It
resembles the so-called Haag–Ruelle scattering theory developed in the setting
of the axiomatic quantum field theory. Its main ingredients are the so-called
asymptotic fields.

Theorem 22.27 Assume the hypotheses of Thm. 22.16. Suppose in addition
that

|x|sg(x) ∈ L2(R) for some s > 1.

Then the following hold:

(1) For all ζ ∈ Y, the strong limits

W±(ζ) := s − lim
t→±∞ eitH W (e−ta ζ)e−itH

exist. They are called the asymptotic Weyl operators.
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(2) The maps

Y � ζ �→W±(ζ) ∈ U
(
Γs(Z)

)
are two CCR representations over the symplectic space (Y, ω).

(3) The representations W± are regular, so that we can define the asymptotic
fields φ±(ζ) by the identity

W±(ζ) = eiφ±(ζ ) .

(4) One has

eitH W±(ζ)e−itH = W±(eta ζ),

i.e. the unitary group eitH implements the free dynamics eta in the CCR
representations W±.

(5) Let us equip the symplectic space (Y, ω) with its canonical Kähler anti-
involution j defined in (22.4). Let K± be the corresponding space of vacua
of W± (see Def. 11.41). Let Hpp(H) be the point spectrum subspace for H.
Then

Hpp(H) ⊂ K±.

Proof The theorem is relatively easy to prove and can be found in Dereziński–
Gérard (2000). The main step of the first statement is the so-called Cook argu-
ment: we prove that the time derivative of t �→ eitH W (e−ta ζ)e−itH applied to a
vector from a dense set is integrable. �

Let us note that Thm. 22.27 can be generalized to cover a much larger class
of Hamiltonians. In particular, as proven in Dereziński–Gérard (1999), it holds
under rather weak assumptions for the operators called sometimes Pauli–Fierz
Hamiltonians. Operators of this form are well motivated from the physical point
of view – they often appear in non-relativistic quantum physics.

It is natural to ask what type of CCR representations are defined in Thm.
22.27. Statement (5) suggests that a distinguished role is played by the Fock
representation. In fact, one can prove that for space-cutoff P (ϕ)2 Hamiltonians
no other sectors exist.

Theorem 22.28 Suppose that the assumptions of Thm. 22.27 hold. Then the
following are true:

(1) The CCR representations W± are of Fock type for the anti-involution j;
(2) K± = Hpp(H).

Proof To prove (1) we use the number quadratic forms n± associated with the
CCR representations W±, defined in Subsect. 11.4.5. Let V ⊂ (2ε)

1
2 L2(R) be a

finite-dimensional space and Ψ ∈ Dom |H| 12 . Then, using

a±�(h)Ψ = lim
t→±∞ eitH a�(eitεh)e−itH Ψ, Ψ ∈ Dom |H| 12 , (22.41)
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we obtain that

n±
V (Ψ) =

dimV∑
i=1

‖a±(ei)Ψ‖2

= lim
t→±∞

(
e−itH Ψ|

dimV∑
i=1

a∗(eitεei)a(eitεei)e−itH Ψ
)

= lim
t→±∞

(
e−itH Ψ|dΓ(Pt)e−itH Ψ

)
,

where Pt is the orthogonal projection on the subspace eitεV. We now note that

dΓ(Pt) ≤ N ≤ C(H + b1l),

by the first-order estimates (22.39). Therefore,

n±
V (Ψ) ≤ C

(
Ψ, (H + b1l)Ψ

)
.

This implies that the number quadratic forms n± = supV n±
V are densely defined

since Dom |H| 12 ⊂ Dom n±. By Thm. 11.52, this implies (1).
The proof of (2) is much more difficult and involves methods borrowed from

N -body scattering theory; and see Dereziński–Gérard (2000) and Gérard–Panati
(2008). �

The two statements of Thm. 22.28 taken together are sometimes called asymp-
totic completeness, since they give a complete understanding of the asymptotic
CCR representations. This form of asymptotic completeness can be proven for
a much larger class of Hamiltonians. In particular, in Dereziński–Gérard (1999)
it has been proven, under rather weak assumptions, for a large class of massive
Pauli–Fierz Hamiltonians. The crucial assumption used in the proofs of these
statements is the existence of an energy gap in the spectrum of their 1-body
Hamiltonians, which is usually called the positivity of their mass.

For space-cutoff P (ϕ)2 Hamiltonians the condition m > 0 is needed to define
the model itself. On the other hand, massless Pauli–Fierz Hamiltonians are easy
to define. Thm. 22.27, with minor modifications, can be proven for a large class
of such Hamiltonians. An outstanding question of scattering theory is what the
conditions are for asymptotic completeness to hold in the case of massless Pauli–
Fierz Hamiltonians.

The central concepts of the standard formulation of scattering theory, used
in quantum mechanics, are the free Hamiltonian, and the wave and scattering
operators. The reader may wonder why these concepts are missing from Thms.
22.27 and 22.28.

In reality, both wave operators and the scattering operator have a natural
definition, which is essentially an application of the formalism of Sect. 11.4. The
role of the free Hamiltonian is to some extent played by

K ⊗ 1l + 1l⊗ dΓ(ε), (22.42)

where K := H
∣∣
Hp p (H ) .
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Theorem 22.29 Assume the hypotheses of Thm. 22.27. Then there exists a
unique unitary operator S± : Hpp(H)⊗ Γs(Z) → Γs(Z) such that

S±Ψ⊗ Ω = Ψ, Ψ ∈ Hpp(H),

S±1l⊗W (ζ) = W±(ζ)S±, ζ ∈ Y.

It satisfies

S±(K ⊗ 1l + 1l⊗ dΓ(ε)
)

= HS±.

Definition 22.30 The operators S± are called wave or Møller operators. S :=
S+∗S− is called the scattering operator.

Clearly, S is a unitary operator on Hpp(H)⊗ Γs(Z) commuting with (22.42).

22.4 Notes

The first general result on existence and uniqueness of solutions for non-linear
Klein–Gordon equations is due to Ginibre–Velo (1985). More recent references
can be found in the book by Tao (2006). The space-cutoff P (ϕ)2 model was first
constructed for P (ϕ) = ϕ4 by Glimm–Jaffe (1968, 1970a), for general P by Segal
(1970) and Simon–Høgh-Krohn (1972), using the theory of hyper-contractive
semi-groups, and by Rosen (1970). The full translation invariant model was
then constructed by Glimm–Jaffe (1970b) using local algebras, as in Subsect.
22.2.6. Later a construction by purely Euclidean arguments was given by Glimm–
Jaffe–Spencer (1974), Guerra–Rosen–Simon (1973a,b, 1975) and Fröhlich–Simon
(1977). The higher-order estimates for the P (ϕ)2 model are due to Rosen (1971).

The construction of the asymptotic fields for a large class of models is due to
Høgh-Krohn (1971). The spectral and scattering theory of space-cutoff P (ϕ)2

models was studied by the authors in Dereziński–Gérard (2000) and by Gérard–
Panati (2008), following an earlier similar work on Pauli–Fierz Hamiltonians by
Dereziński–Gérard (2004).
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