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Non-Left-Orderable 3-Manifold Groups

Mieczysław K. Da̧bkowski, Józef H. Przytycki, and Amir A. Togha

Abstract. We show that several torsion free 3-manifold groups are not left-orderable. Our examples are

groups of cyclic branched coverings of S3 branched along links. The figure eight knot provides simple

nontrivial examples. The groups arising in these examples are known as Fibonacci groups which we

show not to be left-orderable. Many other examples of non-orderable groups are obtained by taking 3-

fold branched covers of S3 branched along various hyperbolic 2-bridge knots. The manifold obtained

in such a way from the 52 knot is of special interest as it is conjectured to be the hyperbolic 3-manifold

with the smallest volume.

We investigate the orderability properties of fundamental groups of 3-dimensional

manifolds. We show that several torsion free 3-manifold groups are not left-order-
able. Many of our manifolds are obtained by taking n-fold branched covers along
various hyperbolic 2-bridge knots. The paper is organized in the following way: after
defining left-orderability we state our main theorem listing branched set links and

multiplicity of coverings from which we obtain manifolds with non-left-orderable
groups. Then we describe presentations of these groups in a way which allows the
proof of non-left-orderability in a uniform way. The Main Lemma (Lemma 3) is the
algebraic underpinning of our method and the non-left-orderability follows easily

from it in almost all cases. Moreover we prove the non-left-orderability of a family of
3-manifold groups to which the Main Lemma does not apply. These groups, known
as generalized Fibonacci groups F(n − 1, n), arise as groups of double covers of S3

branched along pretzel links of type (2, 2, . . . , 2,−1). We end the paper with some

questions.

Definition 1 A group is left-orderable if there is a strict total ordering ≺ of its ele-
ments which is left-invariant: x ≺ y iff zx ≺ zy for all x, y and z.

Straight from the definition, it follows that a group with a torsion element is not
left-orderable.

It is known that groups of compact, P2-irreducible 3-manifolds with non-trivial
first Betti number are left-orderable [BRW, H-S]. However, our main theorem be-

low lists various classes of 3-manifolds with non-left-orderable groups. Non-left-or-
derability of 3-manifold groups has interesting consequences for the geometry of the
corresponding manifolds [C-D, RSS].

Theorem 1 Let M(n)
L denote the n-fold branched cover of S3 branched along the link L,

where n > 1. Then the fundamental group, π1(M(n)
L ), is not left-orderable in the follow-

ing cases:
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(a) L = T(2 ′,2k) is the torus link of the type (2, 2k) with the anti-parallel orientation of

strings, and n is arbitrary (Figure 1).

(b) L = P(n1, n2, . . . , nk) is the pretzel link of the type (n1, n2, . . . , nk), k > 2, where

either (i) n1, n2, . . . , nk > 0, or (ii) n1 = n2 = · · · = nk−1 = 2 and nk = −1
(Figure 2). The multiplicity of the covering is n = 2.

(c) L = L[2k,2m] is a 2-bridge knot of the type p
q

= 2m+ 1
2k

= [2k, 2m], where k, m > 0,

and n is arbitrary (Figure 4).

(d) L = L[n1,1,n3] is the 2-bridge knot of the type p
q

= n3 + 1
1+1/n1

= [n1, 1, n3], where

n1 and n3 are odd positive numbers. The multiplicity of the covering is n ≤ 3.

· · ·

2k

Figure 1

· · ·

n1

· · ·

n2

· · ·

n3

· · ·

nk

...

Figure 2

The manifolds described in parts (a), (b), and also for n ≤ 3 and the figure-
eight knot, L = L[2,2] = 41, in part (c) are Seifert fibered manifolds. The non-

left-orderability of their groups follows from the general characterization of Seifert
fibered manifolds with a left-ordering [BRW]. Part (c) for the figure-eight knot when
n = 3 is of historical interest because it was the first known example of a non-left-
orderable torsion free 3-manifold group [Rol]1. Part (c) for the figure-eight knot

when n > 3, gives rise to hyperbolic manifolds that are related to examples discussed
in [RSS], as they are Dehn fillings of punctured-torus bundles over S1. The manifolds
obtained in parts (c) and (d), when n > 2 (except M(3)

41
), are all hyperbolic manifolds

as well2.

1This Euclidean manifold was first considered by Hantzsche and Wendt [H-W]. J. Conway has pro-
posed to call this manifold didicosm. It can be also described as the 2-fold branched cover over S3 branched
along the Borromean rings.

2It follows from the Orbifold Theorem that branched n-fold covers (n > 2) of S3 branched along
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The case p
q

=
7
4

= 1+ 1
1+1/3

= [3, 1, 1], that is, the branching set being the 52 knot,

is of special interest since M(3)
52

is conjectured to be the hyperbolic 3-manifold with

the smallest volume [Ki]. The fact that π1(M(3)
52

) is not left-orderable was observed in
[C-D, RSS]. The non-left-orderability in other cases is proved here for the first time.

The special form of the presentations of the groups listed in Theorem 1, allows
us to conclude the theorem in most cases, using the Main Lemma formulated below

(Lemma 3).

Proposition 2 The groups listed in Theorem 1 have the following presentations:

(a) π1(M(n)
T(2 ′ ,2k)

) =

{x1, x2, . . . , xn | xk
1x−k

2 = e, xk
2x−k

3 = e, . . . , xk
nx−k

1 = e, x1x2 · · · xn = e}

(b) (i) π1(M(2)
P(n1 ,n2 ,...,nk)

) =

{x1, x2, . . . , xk | xn1

1 x−n2

2 = e, xn2

2 x−n3

3 = e, . . . , xnk

k x−n1

1 = e, x1x2 · · · xk = e}

(ii) π1(M(2)
P(2,2,...,2,−1)

) = {x1, x2, . . . , xk | x2
1 = x2

2 = · · · = x2
k = x1x2 · · · xk}

(c) π1(M(n)
L[2k,2m]

) =

{z1, z2, . . . , z2n | z2i+1 = z−k
2i zk

2i+2, z2i = z−m
2i−1zm

2i+1, z2z4 . . . z2n = e} where

i = 1, 2 . . . n and subscripts are taken modulo 2n.

(d) π1(M(n)
L[2k+1,1,2l+1]

) = {x1, . . . , xn | r1 = e, . . . , rn = e, x1x2 · · · xn = e}, where

k ≥ 0, l ≥ 0, ri = x−1
i

(

x−k
i xk+1

i+1 x−1
i

) l
x−k

i xk+1
i+1

(

(x−k
i+1xk+1

i+2 x−1
i+1)lx−k

i+1xk+1
i+2

)

−1
, and

subscripts are taken modulo n.

Proof Since the presentations for all manifolds from Theorem 1 are obtained by
similar calculations, therefore we shall only provide full details for the case (c) (com-
pare [M-V]). Let T1 denote the 2-tangle in Figure 3(a), −[2k] in Conway’s notation
and let T2 denote the 2-tangle in Figure 3(b), [2m] in Conway’s notation. Let us

assume that the arcs of T1 and T2 are oriented in the way shown in Figure 3.

b

a

b

u

u

u

w

w

(a) T1 = −[2k] 2k right-handed half-twists

(b) T2 = −[2m] 2m left-handed half-twists

Figure 3

hyperbolic 2-bridge knots and links or along the Borromean rings are hyperbolic, except for M(3)
41

which
is a Euclidean manifold, didicosm [Bo, HLM, Ho, Th].
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Let F2 = {a, b |} be a free group generated by a and b. Assign to the initial arcs
of T1 the generators a and b. Then by successive use of Wirtinger relations, pro-

gressing from left to right in the diagram, we finally decorate the terminal arcs by
ū = (ba−1)ka(ab−1)k and u = (ba−1)kb(ab−1)k, respectively (see Figure 3(a)). Anal-
ogously, assigning to initial arcs of the tangle T2 = [2m] (Figure 3(b)) the elements
b and u of F2 and using Wirtinger relations successively one obtains terminal arcs

decorated by w = (u−1b)mb(b−1u)m and w̄ = (u−1b)mu(b−1u)m, respectively. Com-
bining these calculations in the fashion illustrated in Figure 4, we obtain the relation
((ba−1)kb−1(ab−1)kb)mb = a((ba−1)kb−1(ab−1)kb)m and the presentation

π1(S3 − L[2k,2m])

=
{

a, b
∣

∣ r =
(

(ba−1)kb−1(ab−1)kb
)m

b
(

(ba−1)kb−1(ab−1)kb
)

−m
a−1

}

.

a b

2k

u u

2m

w

w

Figure 4: The 2-bridge knot [2k, 2m]

Using Fox non-commutative calculus [Cr], as explained in [Pr, P-R], we compute
a presentation of π1(M(n)

L[2k,2m]
) by “lifting” the generators a and b as well as the defining

relation r of π1(S3 − L[2k,2m]).
We illustrate this by first computing a presentation of the fundamental group of

the n-fold cyclic unbranched covering of S3 − L[2k,2m]. Since π1(S3 − L[2k,2m]) has
2 generators, a and b, the covering space will have n + 1 generators, that is, y =
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ab−1, τ (y), τ 2(y), . . . , τ n−1(y) and bn, where τ is the inner automorphism of F2,
given by τ (w) = bwb−1 (see Figure 5).

p

a b

.
.
.

Figure 5

The relation r will also be lifted to n relations r̃, τ (r̃), τ 2(r̃), . . . , τ n−1(r̃), in the
group of the n-fold cyclic covering, where

r̃ =
(

(y−1)k(τ−1(y))k
)m(

(τ (y−1))k(y)k
)

−m
y−1.

When dealing with the branched case, however, the relations an
= e and bn

= e

should also be added3. We then write the word an in terms of new generators as
yτ (y) . . . τ n−1(y). In order to simplify the presentation of π1(M(n)

L[2k,2m]
) we put x1 =

τ−1(y), x2 = y, x3 = τ (y), . . . , xn = τ n−2(y). Thus

π1

(

M(n)
L[2k,2m]

)

=
{

x1, x2, . . . , xn

∣

∣ x−1
i

(

x−k
i xk

i−1

)m(

x−k
i+1xk

i

)

−m
= e, x1x2 · · · xn = e

}

,

where i = 1, 2, . . . , n and subscripts are taken modulo n.

To change this presentation to the one described in Proposition 2(c) we “deform”
variables by putting z2i = xi and z2i+1 = x−k

i xk
i+1. In new variables the presentation

has the desired form

π1

(

M(n)
L[2k,2m]

)

=
{

z1, z2, . . . , z2n

∣

∣ z2i+1 = z−k
2i zk

2i+2, z2i = z−m
2i−1zm

2i+1, z2z4 · · · z2n = e
}

,

where i = 1, 2, . . . , n and subscripts are taken modulo 2n.4

It is worth mentioning that the case (c) that we singled out for illustrating the
proof of Proposition 2 involves a step that the proofs for other cases do not require.

3Since L[2k,2m] is a knot, the relation an = e follows from the relation bn = e and the relations τ i(r̃).
4In the special case of k = m = 1 we obtain the classical Fibonacci group F(2, 2n) already known

to be the fundamental group of M(n)
41

. We suggest that the presentation for any k and m to be called the

(k, m)-deformation, F((k, m), 2n), of the classical Fibonacci group.
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More specifically, all of the presentations given in the statement of Proposition 2, ex-
cept for the case (c), are results of straightforward calculations and we do not need to

deform the variables in any way in those cases in order to obtain the desired presen-
tation.

The following definition and Main Lemma capture the algebraic properties of
listed groups.

Definition 2

(i) Given a finite sequence ǫ1, ǫ2, . . . , ǫn, ǫi ∈ {−1, 1}, for all i = 1, 2, . . . , n

and a nonempty reduced word w = xb1
a1

xb2
a2

. . . xbm
am

of the free group Fn =

{x1, x2, . . . , xn | }, we say w blocks the sequence ǫ1, ǫ2, . . . , ǫn if either ǫa j
b j > 0

for all j or ǫa j
b j < 0 for all j = 1, 2, . . . , m.

(ii) A set W of reduced words of Fn is complete if for any given sequence

ǫ1, ǫ2, . . . , ǫn, ǫi ∈ {−1, 1},

for i = 1, 2, . . . , n, there is a word w ∈ W that blocks ǫ1, ǫ2, . . . , ǫn.
(iii) The presentation {x1, x2, . . . , xn | W} of a group G is called complete if the set

W of relations is complete.

Lemma 3 (Main Lemma) Any nontrivial group G that admits a complete presenta-

tion is not left-orderable.

Proof Suppose, on the contrary, that ≺ is a left-ordering on G. Let

G = {x1, x2, . . . , xn | W}

be a complete presentation of G. Let

E =
{

(ǫ1, ǫ2, . . . , ǫn) | xǫi

i � e in the group G, ǫi ∈ {−1, 1}, i = 1, 2, . . . , n
}

.

Since W is complete, each sequence

(ǫ1, ǫ2, . . . , ǫn) ∈ E

is blocked by a word w ∈ W . Since w is a relator, this is impossible, because the prod-
uct of a number of “positive” elements in a left-orderable group will be “positive”,
not the identity. This contradiction completes the proof.

Theorem 1 follows easily from the Main Lemma and Proposition 2 in all cases
except for part (b)(ii) which we deal with separately in the following lemma.

Lemma 4 Let

F(n − 1, n) =

{x1, · · · , xn | x1x2 · · · xn−1 = xn, x2x3 · · · xn = x1, · · · , xnx1 · · · xn−2 = xn−1}.

If n > 2, then F(n − 1, n) is not left-orderable.
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Proof F(2, 3) is finite (it is the quaternion group Q8), hence it is not left-orderable.
Let us assume, then, that n > 3. First of all, note that the mapping

xi 7→ g : F(n − 1, n) → {g | gn−2
= e} = Zn−2

defines an epimorphism, and since n − 2 > 1 our group is not the trivial group.

It is not hard to see that in F(n − 1, n) we have x2
1 = x2

2 = · · · = x2
n = x1x2 · · · xn.

Let t = x2
i = x1x2 · · · xn for any i. Suppose that ≺ is a left-ordering on F(n − 1, n).

Since F(n − 1, n) is not the trivial group, hence t 6= e unless our group has a torsion,

which is not the case. Consider the case t ≺ e. The case e ≺ t can be dealt with
similarly.

Since t = x2
i , we must have xi ≺ e for all i. In particular, xi 6= e for all i. This

makes x1 � x2 ≤ · · · � xn � x1 impossible, because if x1 = x2 = · · · = xn 6= e,
then x2

1 = t = x1x2 · · · xn = xn
1 implies xn−2

1 = e, which in turn makes F(n − 1, n) a
torsion group and thus non-left-orderable.

Therefore, xi+1 ≺ xi for some i modulo n. Assume, without loss of generality, that
xn ≺ xn−1. Multiplying from the left by x1x2 · · · xn−1 one obtains

t = x1x2 · · · xn−1xn ≺ x1x2 · · · xn−2xn−1xn−1 = x1x2 · · · xn−2t = tx1x2 · · · xn−2.

The last equality holds because t = x2
i commutes with all xi . Multiplying both sides

from the left by t−1 gives e ≺ x1x2 · · · xn−2, contradicting the fact that xi ≺ e for all i.

Left-orderability of a countable group G is equivalent to G being isomorphic to a
subgroup of Homeo+(R) (compare [BRW]). Calegari and Dunfield related left-order-

ability of the group of a 3-manifold M with foliations on M. Therefore we have

Corollary 5

(i) The groups of manifolds described in Theorem 1 do not admit a faithful represen-

tation to Homeo+(R).

(ii) Manifolds described in Theorem 1 do not admit a co-orientable R-covered folia-

tion [C-D].

Thurston proved that if an atoroidal 3-manifold M has a taut foliation then there
exists a faithful action of π1(M) on S1 [C-D]. Exploring the fact that the group of the
manifold of the smallest known volume, M(3)

52
, (together with some of its subgroups)

is not left-orderable, Calegari and Dunfield showed that π1(M(3)
52

) does not admit a

faithful action of π1(M) on S1 and therefore M(3)
52

does not admit a taut foliation

[C-D]. The connection between faithful actions of π1(M) on S1 and on R is to be
explored further.

We would like to contrast our non-left-orderability results with some examples of

left-orderable 3-manifold groups.

It is known that if M(n)
K is irreducible (as is always the case for a hyperbolic knot K)

and the group H1(M(n)
K ) is infinite, then the group π1(M(n)

K ) is left-orderable [BRW,
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H-S]. There are several examples of 2-bridge knots with infinite homology groups of
cyclic branched coverings along them. For the trefoil knot 31 we have H1(M(6k)

31
) =

Z ⊕ Z. For hyperbolic 2-bridge knots 96 = K[2,2,5] and 1021 = K[3,4,1,2] the groups

H1(M(6)
96

) and H1(M(10)
1021

) are also infinite.5

We end the paper with some questions about possible generalizations of our re-
sults.

Problem 1

(i) Are the groups π1(M(n)
52

) non-left-orderable for n > 3?

(ii) Are the groups π1(M(n)
K ) of hyperbolic 2-bridge knots K with finite H1(M(n)

K )

non-left-orderable?
(iii) Are the groups π1(M(n)

K ) of hyperbolic knots K with finite H1(M(n)
K ) non-left-

orderable?
(iv) In general, for which links L and multiplicities of covering n, is the group

π1(M(n)
L ) non-left-orderable?
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