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Abstract

A minimal surface is a surface with vanishing mean curvature. In this paper we study self 9-congruent
minimal surfaces, that is, surfaces which are congruent to their 9 -associates under rigid motions in U? for
0 < 9 < 2JT. We give necessary and sufficient conditions in terms of its Weierstrass pair for a surface to
be self 0-congruent. We also construct some examples and give an application.
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1. Introduction

In [1] the first author studies a special class of minimal surfaces in R3, those congruent
with their conjugates. In this paper we study the more general case of minimal surfaces
in R3 congruent to one of their associated surfaces.

Let M be a Riemann surface, g : M -»• C U {oo} a meromorphic function, and r] a
holomorphic 1-form such that t](p) = 0 if and only if g(p) = oo, with the order of r\
at p being twice the order of g at p. If the three meromorphic forms

^1 = -(1 - g2)r), (»2 = - y - Q + g 2 ) ? ? , a>3=gr),

have purely imaginary periods then the Weierstrass representation

(1) X(p) = Re / (colt (02,0)3)
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230 Weihuan Chen and Yi Fang [2]

gives an immersed minimal surface 5 = X{M) c K3. The pair (g, r)) is called the
Weierstrass pair of 5. When M is simply connected there are no period conditions to
be satisfied, and thus any pair (g, rj) on M gives a minimal surface.

From now on we will write i = \/—I.
In terms of a local coordinate z on M, rj = f (z)dz, where / is holomorphic. The

local geometry of S via the Weierstrass pair (g, TTJ) is then as follows:

(2) / = l-d + \g\2)2\r]\2 = ^(1 + \g(z)\2)2\f {z)\2\dz\2 = X2\dz\2,

(3) // = - Re(ijrfs) = - Re[f (z)g'(z)(dz)2],

4|*'(z)|
M d + lsl2)2 / \\f(z)\(l + \g(z)\2)2

where / and // are the first and second fundamental forms induced by X and K is the
Gaussian curvature. The last equation in (4) is true for any metric k2\dz\2 on M.

One more fact about the meromorphic function g is that if N is the unit normal
vector of S and n : S2 —> C U {oo} is the stereographic projection from the north pole
(0, 0, 1), then g = n o N, and S is minimal if and only if g is meromorphic.

From (2) we see that any local holomorphic coordinate z is an isothermal coordinate
for the surface and X is a conformal harmonic immersion. The conformality is
equivalent to the identity:

a)2 + co2 + co] = 0.

For more details about the Weierstrass representation see [4, page 63] or [2, Section 6].

2. Self 0-congruent minimal surfaces in R3

A minimal immersion X : M —> K3 is equivalent to a Weierstrass pair (g, r]) with
(&>!, a>2, &>3), which have purely imaginary periods. For any 0 € K, we can define
another pair (g, e'6rj). If e'e(a>u co2, &>3) also have purely imaginary periods, then
(g, e'eri) also defines a minimal surface via (1), that is,

fP
Xg(p) = Ree' I ((O\,co2,(o-i).

Jpa

These surfaces Se = XS(M) are called the associated surfaces of the minimal surface
S = X(M) = X0(M). In particular, SK/2 is called the conjugate surface of S. For
example if M is simply connected, then XB is well defined for all 0 e K. Hence when
studying the local properties, we always know the associated surfaces exist.

By the formulas (2), (3) and (4), every Se is isometric to S. The question is then
when is this isometry induced by a congruence in K3?
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[3] Self 0-congruent minimal surfaces 231

DEFINITION 1. Let A (3) = 50 (3 ) © IE3 be the rigid motion group of IR3 and
0 < 9 < 2n. A minimal surface 5 is self 9-congruent induced by F if there is a
a e A (3) and a map F : M —>• M such that

In particular, if 9 = 0 or n, then S has a symmetry by a congruence a. If 9 = n/2,
then we call 5 a self-conjugate minimal surface (as in [1]).

REMARK 1. Let D c M be an open set such that X is one-to-one on F(D). Then
F — X~l o u o X j induces an isometry between (D, IXe) and (F(D) , Ix), where lXe

and Ix are metrics induced by Xe and X respectively. Thus F must be a holomorphic
or anti-holomorphic mapping.

In the following we also consider branched surfaces, that is, rj may vanish at points
where g does not have a pole.

Now we want to derive necessary and sufficient conditions of the Weierstrass pair
(g, rj) such that the induced surface is a self ^-congruent branched minimal surface.
First, we define a Mobius transformation <t> : <CU{oo} —> CU{oo} tobe orthonormalif

az~c
t a,ce€ and \a\2 + \c\2 = 1.

cz + a

THEOREM 1. Let S be a minimal surface and (g, rj) be its Weierstrass pair. Then
S is self 9-congruent induced by F if and only if there is an orthonormal Mobius
transformation <t> such that

(5) go F = $>og, or g o F = $ o g = —— I,
\cg(z)+aj

and
(6) Re{F*(r,)F*(dg)} = Re{eier,dg],

where F*(r)) is the pullback oft), etc.

PROOF. First suppose S is self #-congruent, then there is a holomorphic or anti-
holomorphic map F : M -* M and a a = T + / € A ( 3 ) such that a o Xe = X o F,
where r € S0(3) and / 6 I 3 . Then by comparing the second fundamental forms
Il9 = F*II we have

and (6) follows.
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232 Weihuan Chen and Yi Fang [4]

Next let N : M —> S2 be the unit normal map of S. Since 5 and S# have the same
Gauss map g, N is also the unit normal of Se, and so r o N = ±N o F, where the sign
is determined by whether F is holomorphic or antiholomorphic. Since r is a rotation,
it induces an orientation-preserving isometry on the unit sphere S2.

It is well known that a transformation which preserves orientation and circles on
S2 is a Mobius transformation, and therefore through the stereographic projection
n : S2 — {(0,0, 1)} —>• C, r can be expressed as n o x — <J> o it, where

<&(z) — , a, b, c, d e C, and ad — be = 1.
cz + d

Because r is an orientation-preserving isometry on the unit sphere S2, 4> preserves

the metric 4\dz\2/(l + \z\2)2, which means

\ad - bc\2\dz\2

2)2(l + |z|2)

therefore a = d, c = —1), and \a\2 + \c\2 = 1.

Combining these facts we get

^?og — <$>onoN=noToN—no (±N o F) = g o F (or — £~' o F),

and (5) is true.
Now suppose there exist F and <t> such that (5) and (6) hold, then IIe = F*ll. If

we can prove that Ie — F*I, then by the fundamental theorem for surfaces, we know
that S is self #-congruent.

Supposing that F is holomorphic, it follows from (5) and (6) that

g'(F{z))F'{z) = *' (*L
(cg(z) + a)2

Re{f(F(z))g'(F(z))(F'(z))2(dz)2} = Re{ewf (z)g'(z)(dz)2).

Taking directions such that (dz)2 is real and purely imaginary respectively, we have

f(F(z))g'(F(zMF'(z))2 = eief{z)g'{z) = ewf (z)g'(F(z))F'(z)(cg(z) + 5)2,
so

f(F(z))F'(z) = eief(z)(cg(z) + a)2.

Therefore, we get

(1 + I « ( Z ) I 2 ) V / ( Z ) I 2 = (1 +
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[5] Self 0-congruent minimal surfaces 233

= Qag(z) - c\2 + \cg(z) + fll2)2'7,^^

= (l + \<Pog(z)\2)2\f(F(z))F'(z)\2

= (l + \g(F(z))\2)2\f(F(z))F'(z)\2,

which means Ie = F*I.
The case that F is antiholomorphic is similar. •

Now taking 8 = 0 or n, we get a criterion for minimal surfaces with a symmetry.

COROLLARY 1. Let X : M -+ R3 be a minimal surface with Weierstrass pair
(g, rj). Then S = X (M) has a symmetry if and only if there is an orthonormal Mobius
transformation <I> and a holomorphic or anti-holomorphic map F : M -» M such
that

(7) goF = <t>og, or g o F = <J> o g,

and

(8) Re{F*(r,)F*(dg)} = ±Re{r1dg} = Re{eier]dg}, 0=0, n.

REMARK 2. If, more generally, we define the self ^-congruence by

a oXe = X o F,

where a € 0(3) 0 K\ then (6) becomes

Re{F*(rj)F*(dg)} = ±Rt{emr]dg}.

Theorem 1 continues to hold, the proof being similar. The point is, the fundamental
theorem for surfaces is also true when two surfaces have the same first fundamental
form and their second fundamental forms differ by a sign, in which case, the linear
transformation is orientation reversing.

REMARK 3. For the case of maximal surfaces in L3, with the help of a similar
Weierstrass representation (see [3]) we can also study the theory of self ^-congruent
maximal surfaces and get similar results.

3. Special coordinates

Although Theorem 1 gives necessary and sufficient conditions for 5 to be self
^-congruent, the condition (6) is hard to verify in general. To rectify this, we study
some special isothermal coordinates for minimal surfaces.
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234 Weihuan Chen and Yi Fang [6]

3.1. Normal isothermal coordinate Let p e M be a non-flat point of S, that is,
K(p) < 0, and equivalently, dg ^ 0 at p. Assume that z is an isothermal coordinate
such that z{p) — 0 and r\ = / (z)dz, where / is a holomorphic function, / (0) ^ 0.
Then on an open disk D c M we can define a holomorphic function which is also a
local isothermal coordinate,

(9) w(z) = r
Jo

We call such w defined above a normal isothermal coordinate. Under a normal
isothermal coordinate w, the Weierstrass pair (g, rj) can be expressed as

g(w) = g(z(w)),

(10) dz
v = w*(f(z)dz) =f(z(w))—dw =

dw
Thus by (2), (3), and (4), we have

(11) A4 = - ^ n ^ T ' " = -**«"»>2]-
Let S be self ^-congruent induced by F. If F has a fixed point p with K{p) < 0,

then we say that 5 is self 9-congruent induced by F with a fixed point. Note that we
always assume that the fixed point is a non-flat point.

For self 9 -congruent minimal surfaces induced by F with a fixed point, we can use
the normal isothermal coordinate to simplify the statement of Theorem 1.

THEOREM 2. Let X : M —> K3 be an immersed minimal surface with Weierstrass
pair (g, rj). Then S — X(M) is self 9-congruent induced by F with a fixed point p if
and only if there is an orthonormal Mobius transformation <t> such that

(12) g(±e'9/2w) = <t>(g(w)), or g(±e-
w/2w) = ®(g(w)),

where w is the normal isothermal coordinate such that w(p) = 0 .
If in addition g{p) = 0, then (12) becomes

(13) g(±ei9/2w) = e^giw), or g(±<r'"/2Tt7) = e~ilpg(w),

for some <p € K.

REMARK 4. By a rotation in R3 if necessary, we can always make g(p) = 0.
As long as the fixed point p is not a branch point, the theorem is true even S has

branch points.
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[7] Self 0-congruent minimal surfaces 235

PROOF. Since dg ^ 0 at p and p is not a branch point, a normal isothermal
coordinate as defined in (9) exists.

First suppose 5 is self 0 -congruent. Let w be the normal isothermal coordinate w
such that w(p) — 0 and let D, :— {\w\ < r). On £>r we have ??dg = (dw)2, thus by (3),

HXe = -Reieier1dg} =-Rt{{eM'2dw)2}.

On the other hand, since F(0) = 0 there exists 0 < rx < r such that F{Dn) c Dr, so
that on Dr,

F*IIx = -Re{(dF(w))2}.

Since S is self 0-congruent, comparison of the two formulas gives

(14) F(w) = ±eie/2w, or F(w) = ±e~ie/2w.

Thus (12) follows immediately from (5) and (14).
If g(0) = 0, then (12) implies $(0) = 0 as well. Thus $(u>) = ei4> • w, and so (13)

is true.
Conversely, if there is an orthonormal Mobius transformation $ for an immersed

minimal surface with Weierstrass data (g, dw/g') under the normalized isothermal
coordinate w such that (12) is true, we can take

(15) F(w) = ±ew/2w, or F(w) = ±e~iei2w.

Then (12) and (15) are just the local versions of (5) and (6). So by Theorem 1, S is
self ^-congruent. D

REMARK 5. Under a normal isothermal coordinate, we can relax the definition of
self 0-congruent with a fixed point by dropping the fixed point condition and only
requiring that F(Dn) c F(Dr), for some 0 < r{ < r. Then (14) can be modified to

(16) w(F(p)) = ±eie'2w(p) + c, or w(F(p)) = ±e-w/2w(p) + c,

forp € Dri,c = w(q), q e Dr. And then (12) can be stated as

(17) g{±ei6l2w + c) = 4>±(g(w)), or g(±e-
w/2w + c) = *±(g(w)),

But (13) has no generalizations.

By (11) we have the following corollary.

COROLLARY 2. Let Sbea minimal surface in E3, and let w be the normal isothermal
coordinate around a point p e S. If the Gaussian curvature K is invariant under the
transformation in (16), then S is self 6-congruent.
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PROOF. X and X o F induce the same first and second fundamental forms. •

Taking 9 = 0 or n again, we have another corollary.

COROLLARY 3. LetX : M —>• R3 be an immersed minimal surface with Weierstrass
pair (g,r)). If F : M —> M induces a non-trivial symmetry of X and if there is
a non-flat point p such that F(p) = p, then under coordinates of R3 such that
X(p) = (Xl(p),X2(p),X3(p)) = (0, 0, O)andN(p) = (0 ,0 , -1 ) , we have

' - 1 0 0 \ /0 - 1 0\
X ' o F = ± | 0 - 1 O l X ' , or X'oF = ±\l 0 0 A",

o o i / \° o i/

where X' means the transpose ofX.

PROOF. We again use a normal isothermal coordinate w such that w(p) = 0.
Since g(0) = 0, by (13) there are <p and (p± e R such that

g(-w) = e'*g(w), or g(±w) = e-'**g(w).

Hence we have either F(w) = —w, <$>(z) = el(t>z; or F(w) = ±uJ, 4>±(z) = e"^z.
Let * = 0 or <J>±, then there is a r e 50(3) such that n o r = * o n. Because

X(p) = (0, 0, 0) and F(p) = p, ± r o X = X o F.
Under our coordinate system, T has the form

(cos \js — sin i/r
sin xjr cos \fs 0

0 0

w h e r e \j/ = <f> o r <f>±.

Since ^(0) = 0, the tangent plane of 5 at X(p), TX(p)S, is the X, AVplane. By (10)
we have locally

co3 = ^ - r , g(0) = 0, g'(0) / 0.
8

Let

G(w)= f g ( U ; ) ^ W , then G(0) = 0, G'(0) = 0, G"(0) ^ 0.
Jo g'(w)

Hence G is a two-to-one covering branched at w = 0. Then X3(iy) = ReG(u;),
and Xjl(0) is a one-dimensional variety with a singularity at w = 0. Moreover,
X "̂1 contains exactly 4 curves emitting from w = 0 with adjacent angle 7r/2. Since
X is conformal, 5 and TX(P)S intersect (X3 = 0) locally in 4 curves emitting from
X(p) = 0 with adjacent angle n/2.
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[9] Self 0-congruent minimal surfaces 237

But the tangent plane, XiX2-plane, is also invariant under ± r . If s in^ 7̂  0 or
±1 , then S meets its tangent plane at (0,0, 0) in more than 4 curves emitting from
(0,0,0), a contradiction to the above observation.

Thus i/f must be either 0, n, n/2, or 3n/2. Then according tOToN — NoFor
x o N — —N o F, we have X o F = ± r o X. The proof is complete. •

3.2. The Gaussian coordinate At a non-flat point p e M, dg ^ 0, so we can
use the Gauss map g as an isothermal coordinate as well. In this situation, the local
Weierstrass pair is (z,f(z)dz), and all local properties of 5 are determined by /
alone.

We call the coordinate zip) = g(p) the Gaussian coordinate.
We restate this important special case of Theorem 1.

THEOREM 3. Let X : M —>• K3 be a minimal surface and p e M a non-flat point.
Let (D1, z) be a Gaussian coordinate around p. If S = X(M) is self 9-congruent
induced by F for which there exists an open set p 6 D C D' such that F(D) C D',
then F is an orthonormal Mb'bius transformation

(18) F(z) = ^ , and
cz + a
^ , and «/(*) f ^
cz + a (cz + a)4

or

(19) F(z) = , and
\cz + aj

where a,c e C and \a\2 + \c\2 = 1.
And ifg(p) = 0 and F(p) = p, then

(20)

or

(21)

for some (p € IF

F(z) = e'*z,

F(z) = e~'*z,

I

and

and

e>ef(z) = el-*+f(ei+z),

e">f(z) = e'-2*f{e-i*z)

PROOF. Note that g(z)=z and F(D)CD' imply F(z)=g o F(z)=<$> og(z)=<i>(z).

•
REMARK 6. Suppose S has a finite total curvature annular end corresponding to

a punctured disk D — {p}. If 5 is self 6>-congruent induced by F, then F can be
holomorphically extended to p. So our theory can be applied to complete minimal
surfaces which have finite total curvature annular ends. For such surfaces, see for
example, [4, Section 9] or [2, Section 11].
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4. Some examples

Let us look at some examples.

EXAMPLE 1. Let M = C or C - {0} and (g, r)) — (z, f (z)dz), where

/(z) = azk, 0 /aeC, kel, kjL-1,-2,-3.

Then (g, r)) defines a self 6>-congruent (branched if k > 0) minimal surface for any
0 < 6 < 2n, induced by F(z) = e^z such that

9 - (jfc + 2)<p = 2ln, for some / € 1,

or by F(Z) = e~^z with

= 2/7r, for some / 6 Z,

where arga is the angle of a, that is, a = \a\e'arga.
For ^ = —2, the surface is a catenoid or its associated surfaces, these surfaces are

not well defined in C — {0}, except the catenoid, that is, when a € OS. It is well known
that the catenoid is a rotation surface, and from our criterion, self 0-congruent.

PROOF. By Theorem 3 and Remark 6, notice that g(0) = 0 so <t>(z) = e^z. When
F is holomorphic, then by (20)

ael9zk - e

Similarly, when F is anti-holomorphic, then by (21)

that is,

ae'ezk = e^aie-'HY = aei(k+2»zk,

•

EXAMPLE 2. Let q > 1 be a positive integer,

/ \Z) — Z / t u^Z , UJCQ 9^ U, KQ ^ t — 1 , — Z , —J,

andM c C be the convergent disk of/. Then (z,f(z)dz) generates a self 0-congruent
minimal surface for all 6 = (p/q)n but may induced by different F, where p is an
integer and 0 < p < 2q.

In fact, let

e + 2ln ...
0; = , , „ , / 6 Z, F(z) = e*z,

https://doi.org/10.1017/S1446788700002196 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002196


[11] Self 0-congruent minimal surfaces 239

then it is easy to check that F and / satisfy (20).
e Rfork > 1, let

ko + 2

Then clearly F and/ satisfy (21).
In particular, for M = C, / (z) = ez*', (z, f (z)dz) gives a self {p/q)n-congruent

immersed minimal surface induced by F(z) = e'^z or F(z) = e'^i, for any integer
0 < p < 2q, and any <f> e K such that

9 - 2<t> = 2ln, for some I € 1.

EXAMPLE 3. Let M = D> := {z e C; |z| < 1} and

Then taking 9 = n/2 and substituting

F(z) = ±e-i3n/4z and F(z) = ±ei!r/4z

into (21), we have

eief (z) = if (z) = -^-. = en*f{F{z)).

Thus (z,f(z) dz) gives a self conjugate minimal surface, as shown in [1, page 566].
More generally,

f(z)=

F(z) = ±e-'"n2<l)z and F(z) =

gives a self ^/^-congruent surface for any integer q > 1 via the Weierstrass pair
(z,f(z)dz);

f(z)=
—oo</:<oo

±e-
i"IOq)z and F(z) =

gives a self 7T + 7r/<?-congruent surface for any integer q via the Weierstrass pair
(z,f(z)dz). Similarly,

/ ( z ) =

= ±ei"K2q)z and

give self ^/^-congruent surfaces, and so on.
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Now suppose M = E := C U {00} is the Riemannian sphere. For a meromorphic
function/ : E ->• E such that for any loop L C E,

(22) zkf(z)dz = O, k = 0,1,2,
JL

the Weierstrass pair (g, 17) = (z,f(z)dz) defines a (branched) minimal surface on
E — / "' (00). We say that such a surface is generated by / .

In E, any orthonormal Mobius transformation can be written as F(z) = e'^z under
a suitable coordinate z- In fact, if a ^ 0, then

-C „ l » l « — - = ̂  — ^(u,)) =

a\2z — ac
cz(u>)-fa a (ac)z(w) + \a\2

w(z) =

if a = 0, then

F(z(w)) = -£ J _ = e'c-^w, w(z) = - .
cz(tu) z

If a surface 5 generated by / : E -*• E is self 0-congruent induced by F, then by
Theorem 3 we know that F is an orthonormal Mobius transformation or the conjugate
of one. Note that we can change coordinate by any Mobius transformation w = O(z),
then up to a rotation, (w, f o <t>~l(w)(dz/dw) dw) is the Weierstrass pair of 5. Hence
by the above observation we can assume that

(23) F(z) = £ *z, or F(z) = e *z

under a suitable coordinate z.
So when we study self ^-congruent minimal surfaces generated by / , we can

always assume that it is induced by such F as in (23).
Using Theorem 3 we can give a criterion for meromorphic functions / such that

(z,f(z)dz) defines a self 0-congruent minimal surfaces induced by F such that
F(0) = 0 via the leading coefficients and order of pole (or zero) of/ at 0.

Using (23) and the analytic continuation, we only need to study the behaviour of/
at z = 0.

THEOREM 4. Letf be a meromorphic function defined in a neighbourhood of 'z = 0
with the Laurent expansion,

00

/ (z) = Y akz
k, ah r 0, fl_, = a_2 = a_3 = 0.

Let S be the minimal surface generated by (z,f (z)dz) and let 0 = rn, 0 < r < 2.
Then S is self rn-congruent induced by a holomorphic F such that F(0) = 0 if and
only if
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[13] Self ^-congruent minimal surfaces 241

• ifr is irrational, thenf (z) = a^z1*, F(z) = eithz, and<f>, = (0+2Zjr)/Oto+2),
I € Z. In particular, ifko = 0, then f is a constant and S is an Enneper's surface;

• if r is rational, then / ( z ) = zi°Pi{zK'), where I e Z, Pt is holomorphic,
Pi(0) ̂  0, and Ki is the least positive integer such that

ll)

4 G '

Furthermore, F(z) = e'^'z, <f>, = (0 + 2ln)/(k0 + 2).

Now suppose that at/a^ € 0& and let 0 < s := mga^/n < 2, then S is self rn-
congruent induced by an anti-holomorphic F such that F(0) = 0 if and only if

• if r + 2s is irrational, then f (z) = a^z*0, F(z) = e'*'z, and <p, = (6 +
2axgako +2l7t)/(ko + 2), I e Z. In particular, ifk0 = 0, thenf is a constant and S is
an Enneper's surface;

• ifr + 2s is rational, then f (z) = zk"Pi(zKl), where I G Z, P/ w holomorphic,
P;(0) ^ 0, and T̂/ w r/ie least positive integer such that

K,(r + 2s + 21)

2*o + 4 G

Furthermore, F(z) = e'+'z, (pi = (0 + 2 arg ah + 2ln)/{k0 + 2).

PROOF. Since a_i = a_2 = a-3 = 0, for any loop L in the definition domain of/,
(22) is satisfied hence all associated surfaces exist.

First suppose S is self ^-congruent. If F is holomorphic, then Theorem 3 gives
that F(z) = e""z. By (20) we have

(24) e

Thus by comparing the coefficients we have

(25) eieak = e'(*+2)V, k > fc0-

Thus

(26, ^ ± » * € Z . or a ,=0 .
2 -̂

In particular, since ka ^ 0, if
e - (k0 + 2)<p = _; z

2TT
then let
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For any k — k\ + k0, &i > 0, we have

_9-(k + 2)0, _ 6 - (kp + 2)0, kx<t>, _ *.0,
* ' ' " In In In In'

So Akl e 2 if and only if

2TT ~ 20

If r is rational, then the set of m such that

is an Abelian group G(l)d with infinitely many elements. Thus G(l)—{pK,; pel}.
This proves that if r is rational, then * for which ak ^ 0 is of the form * = fc0 + q%h
and therefore

q=0

Setting

,=0

we have that P,(0) = a^ ^ 0 and/ (z) =
If r is irrational, then G(l) = {0} and/ must be the monomial a^z*0. In particular,

if *0 = 0, then / is a constant, and 5 must be a piece of an Enneper's surface.
Clearly the converse is also true, thus the proof of the case when F is holomorphic

is complete.
Now consider the case when F is anti-holomorphic and F(z) = e~'*z. By the

assumption ak/a^ € K, we have

(27) e<%0 £ ~zk = £

Thus by comparing the coefficients we have

(28) ene+2«gat

Thus
<29, (r f frfr- ^ M ( t a

27T

One then argues exactly as in the case when F is holomorphic. •

https://doi.org/10.1017/S1446788700002196 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002196


[15] Self ^-congruent minimal surfaces 243

5. An application

In [1], the first author used the normal isothermal coordinate to reduce the problem
of finding self conjugate (9 = n/2) minimal surfaces to the case of finding a n/A
rotationally invariant solution (that is, k(w) — k(em/4w)) of the following equation:

(30) k2(u, v) Alogk(u, v) = 1, (M, V) e £2 C R2, w = u + iv,

where A is the usual Laplacian on R2.
It is also interesting to find 9 rotationally invariant solutions (that is, k(w) =

k(ei6/2w)) to (30) in R2.
If we think of k2\dz\2 as an intrinsic metric on R2, then by (2) and (4) (note that (4)

is true for any metric k2\dz\2) we have: A is a solution to (30) is equivalent to (at

k4 = -\/K.

Recall that for a minimal surface S, by (10) and (11), under a normal isothermal
coordinate w the Weierstrass pair of 5 has the form (g, r}) = (g, dw/g') and

4̂ = z i = d + \S\2)4

K I6\g'\4

Thus A is a solution to (30). Suppose the surface is self 2#-congruent induced
by F(w) — e'^w, where w is a normal isothermal coordinate. Then by (13) of
Theorem 2, if g(0) = 0 and g'(0) ^ 0, the function

gives a 0 rotationally invariant solution to (30).
We have constructed many self ^-congruent minimal surfaces, their first fundamen-

tal forms (under a normal isothermal coordinate) give examples of 9 invariant solution
to (30).

Let us construct some more examples defined on the whole C = K2. Letg : C -+ C,

~ p
g(w)=} anw

n, ai^O, and 9 =-it, p, q 6 N, 0 < p < 2q.
n = l ^

We want the surface with Weierstrass pair (g, dw/g') to be self 29-congruent induced
by F(w) = ei9w. Since g(0) = 0 and g'(0) ^ 0, (13) of Theorem 2 implies that this
is the case if

(32) g(eiew) = e»g(w),
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for some 0 € R. Let us take <t> = 9, then comparing the coefficients we find that

eMan = eiean,

thus
e-nd ,

€ 1, or an = 0.2TT
Hence, when an ^ 0,

(« - Up el.
2q

If we take n = 2kq + \, then (32) is satisfied. Thus

*=0

gives a 9 = pn/q rotationally invariant solution to (30) on C - g'~'(0) via (31), for
all positive integers p such that 0 < p < 2q.

Of course we can also discuss other kinds of invariant solutions to (30), such as
k(w) = X(e~'ew), corresponding to the self 29-congruent minimal surfaces induced
by anti-holomorphic maps with a fixed point.
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