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Abstract. For a domain Q of CV we introduce a fairly general and intrinsic condition of weak
g-pseudoconvexity, and prove, in Theorem 4, solvability of the d-complex for forms with
C*®(Q)-coefficients in degree > g + 1.

All domains whose boundary have a constant number of negative Levi eigenvalues are easily
recognized to fulfill our condition of g-pseudoconvexity; thus we regain the result of Michel (with
a simplified proof).

Our method deeply relies on the L?-estimates by Hérmander (with some variants). The main
point of our proof is that our estimates (both in weightened-L? and in Sobolev norms) are suf-
ficiently accurate to permit us to exploit the technique by Dufresnoy for regularity up to the
boundary.
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Let Q be a domain of CV, z, a point of M :=9Q, U a neighborhood of z,. We
consider an orthonormal basis of (1, 0)-forms wy, ..., wy on U, and the dual basis
00y s - - - » Oy Of (1, 0)—derivatives. We assume that M is C?, take a defining function
p for Q (thus Q = {p < 0}) and denote by (p,j(z)) the matrix of the Hermitian form
00p(z) in the basis {w;}. We assume that, for a suitable choice of {w;} with
C?—coefficients and with wy = dp, and for an integer ¢ with 1 < g < N, we have

) <0, ( ) =0, ( ) =0
(p,](z))ijéq = p'](z) g+l <ijj<N-1 p,](z) I<qgtl <j<N-1

VzeMNU. (H

Remark 1. Put M(z) = span{dy,, . .., dy,}, then Misa C? majorant of the negative
eigenspace M, of 3dp|,,.. Here, as in the following, dp* is the complex hyperplane
of CV orthogonal to dp. We shall also use in the following the notation MS,
and M, for the null and positive eigenspace respectively.

Note also that (1) is independent of the choice of the ‘defining’ function p.

Denote by s3,(z) the numbers of respectively positive and negative eigenvalues of
the form a_ap(z)apL(z) and consider the condition

sy(m)=qvVzeMnNnU. 2)
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LEMMA 2. Let Qbe C*. Then (2) is equivalent, in a suitable C? basis {w;}, to (1) with
the additional requirement: (pl-j(z))[qu < 0 (instead of <0).

Proof. Let j1(2) < 1p(2) < ... < py_y(2) be the eigenvalues of (p;(2))l,,.- It is
clear that

1e(z) <0, pyy(z) 20Vze U.

Thus the eigenspace of the first g (resp. second N — 1 — ¢) eigenvectors depend C? on
z and coincide with Mj, (resp. M$, U M3)). ]

For ordered multi-indices J = (j; < ... <) of a given length |J| = k, we shall
consider vectors w = (w;). For any permutation ¢ we shall also put we() :=
segn (o)wy.

PROPOSITION 3. Assume (1). Then for a suitable p and with ¢(z) = —log(—p)(z)+
J\z1? (X real positive ), we get an exhaustion function of Q at z, such that for suitable
/' and for any k = q+ 1:

Z/ Z' ;Wi wikx — Z’ Z bi(D)wi)? = AwPVze QN U,

|K|=k—1 ij=1,...N =k i<gq

vw e GV 3)

(with a new /. > 0 and where Y indicates the sum restricted to ordered indices).

Proof. We begin by solving this initial problem. In condition (3) the Levi form is
evaluated at points of Q, whereas in the assumption (1) it is evaluated at 3Q. To
fill this gap we represent dQ as a graph xy =/ and consider the projection
Q — 0Q, z—z* along the xy-axis. For p = xy — h we clearly have:

IpT(2) = dp™(z*),  09p(2) = ddp(z").

For this reason, (1) is in fact fulfilled also in Q (even though in this form it is no more
intrinsic and depends on our particular choice of the defining function p). Thus we
shall forget z in the following and always suppose it ranges through Q.

We shall also use the notation @’ = (w1, ...,wnx_1), @y = dp. Let 1 < A < ...
and u; <, < ... be the eigenvalues of 93¢ and ddp| ap. respectively. Since
3¢ = |p|~'3dp + |p| 2N A wy + VD A @, then |p|~'u; + /' are the eigenvalues of
30| apt- Also it is clear that:

Z/ Z/ ¢@wikwik = ( Z )v,-)|w|2,

|K|=k—1 ij=1,...,.N i=1,...k
4)

S u@wilP = =) D | + g |l

Vi=k i<q i<q
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We claim that for a suitable ¢ > 0,

DREVEDS

i —2q = ((k— @t —ke) = J. (5)
i=1,...k i=1,...q

(where in turn A is positive for suitable A'). In fact:
33 = (—p) '30p + p PN Aoy + A DA
=(—p) '3 p + [p 20N A on +2(—p) ' Red By p + o] (6)
—cd' AN+ VDA w.
Now for suitable large ¢ we can make the term between brackets ‘[-]’ in the second
line of (6) to be positive. It follows:
30 = (—p) 100 p — e A + Ao Ao. (7)
Let {Ni} describe the family of complex k-dimensional planes in CV. We have:
Z Ai = inf trace(58<f>|Nk)
i=1,.k N
: -1y - /=
> 1]1V1Aftrace(((—p) JIp—cdnw+21dAw)ly,) (8)
> (ki — ko) +(=p)" Y
i=1,...k

i=1,...,

(where the central inequality is due to (7)). From (8) and (1) our claim (5) imme-
diately follows. (5) and (4) imply in turn (3). The proof is complete. O

We shall consider forms /' =Y, fy@, (resp. u = >y uxdg) of type (0, k) (resp.
(0, k — 1)). (Since all forms shall be understood to be antiholomorphic we shall only
mention in the following their degree k instead of their type (0, k).)

THEOREM 4. Assume that in a C? basis of ;’s, (1) is fulfilled. Then there is a fun-
dame_ntal system of neighborhoods {U} of z, such that if k(= degree(f)) = g+ 1
and of =0in QN U, then the equation

du=f 1is solvable in C®°(QN U’) for any U'CCU. 9

The proof will be given in many steps. For a real positive function ¢ and for an

integer k >0, we define L(Zb(Q)k to be the space of k-antiholomorphic forms
1

S = fr6s with [[f7]l,G= (fo e~?|f;1?dV)?) < +oo (dV = the Lebesgue mea-

sure on CV , {w;} = a basis over cy ). Here, as always, Y indicates the sum over
ordered indices. We let 9 act as a complex:

3 Bl

LIS L@ > Ly . (10)
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We denote by 9* (resp. 0w,;) the adjoint of d (resp. —dg,) in the Li(Q)-norm. We have
Z/ Z/ / ¢ (8w, fix O fix — 8, fix 0, fix ) AV +
IK|=k—1 ij=1,...N Y€

PN /gze_¢'8@fff'2dV — 113/ + ROW, + 13+ ROE, D

=k i=1,...,
Vf € C(Q)Y,

where R(f) is an error where no f; is differentiated and which involves the derivatives
of the coefficients of the w;’s. Let (I) be the left side of (11). We then get

(D) < 2018115 + 1113) + o111/ 115 Vf € C(Q)F, (12)

where ¢; denotes terms which can be estimated by the sup-norm of the first
derivatives of the w;’s over the support of f. (In the following we shall also use
the notation ¢, for constants which can be estimated by the second derivatives.)
If we introduce now a new ¥ > 0, and replace (10) by:

L, @ 5 13 @f > 2@, (13)
we get:

(D) = 11’1 + R() + oy - 115, + 113 + ROII;,

_ _ 14
<2010 oy + N 115) + a1l 115 + 20100 |f11;  Vf € CX(Q), (9

where 3y - f := Y % > dwelfix. The main ingredient of the proof of Th. 4 is con-
tained in the following

PROPOSITION 5. For any orthonormal C*-basis {w;}, and with (¢;;) denoting the
matrix of 99¢ in such basis, we have

> ZN fg ey fixfixkdV — Y /Q eyl P dV

|K|=k—1 ij=1,..., |J|=k (15)
<218 1150y + N1, + O 115) + (a7 + oIS 115 ¥ € CQ).
Proof. We recall that
5({)[ - _821,7
8006, — 03,00, = 06,00, @ + Y _ hdr, — Y Ty, 16
h

h
_ ha
= Gyt D i, = Y i
h h

https://doi.org/10.1023/A:1001811318865 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001811318865

q-PSEUDOCONVEXITY AND REGULARITY 159

where the terms ch involve the antiholomorphic derivatives of the coefficients of the

w’s. We apply (16) to the terms in the first sums of (I) with i/ or
i=j>=q+ 1. The remaining terms added to the second sum give

DU Wufikllp+ D Y NdaSill (17)

IK|=k—1 i<gq =k i3> q+lorig]

We also apply (16) to the terms in the second sums in (17) with i < ¢, i¢ J. Thus (17)

becomes:
DAL I DRCHAED D D KRN VN2
Vi=k i<g =k i>g+1 = k i<qigJ

Thus we get

Z/ Z /‘eid)(nbz}flKj/‘KdV Zfe ¢¢nlfl|2dv +
NJQ

|K|=k—1 ij=1,..., =k i<gq
2 2
DU S+ DY D sl
=k i<gq =k i>q+1

211313y, + 113+ 11I113) + o113+

(Z S [ o fmiavi+ 3 I | e %f;»a@(f;K)ﬁde).

K hij K hij
(18)

Let us denote by 4, B, C, D, the four lines in (18). To get a good estimation for D we
remark that:

/Q e o, finfikdV = — /9 e’ chfik 90, fixdV — fg e 0, (fikfikdV.  (19)

It follows:
B\’ B
D<o IVII¢(5) ol 1B < 5+ 0+ oI 15 (20)
Then the conclusion follows. O

Let us denote by Dj. and Dj; the domains of * and d respectively defined by (13).

PROPOSITION 6. Let Q be bounded and endowed with an exhaustion function which
satisfies (3) (Vz € Q) in a suitable basis of w; over Q. Then ifk = q + 1 and for anew ¢
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and a suitable \y, we have:
15—y < NS5y + 13f115 Vf € D3N D;.. 1)

Moreover for any compact subset K CCQ, we may choose Yl =0 and
bl = Q2+ + o)z

Proof. We choose { according to [5, Lemma 4.1.3]; (in particular, VK, we can
choose Y|x = 0). This ensures density of C;° into L?-forms.

We then take an exhaustion function ¢ for Q which satisfies (3) Vz € Q. We go back
to (15) of Proposition 5; this holds now for L? instead of C2° forms. Moreover, in the
present situation the left side is larger than },|[f||§) for some constant A > 0 indepen-
dent of K. Let ¢ > ¢|x; we replace the above ¢ by y(¢p) + (2 + o7 + 02)|z|?, where
% 18 a positive convex function of a real argument 7 which satisfies:

x(1) =0, fort <e,
1) = g KD for 1> . (22)
Under this choice of ¢ and y, (21) clearly follows. ]

With the conclusions of Proposition 6 at our disposal, the rest of the proof of
Theorem 4 can be carried out along classical lines. First we need to translate
the basic estimate (21) into two results on existence and regularity of solutions
of the system (3, 9*). For their proof we give [5, Lemma 4.41 and Th. 4.2.5] as general
reference and [13, Prop. 2.1 and Prop. 2.2] for a specific proof. We shall denote by
m = m(z) the (strictly plurisubharmonic) function m = (2 + o7 + o2)|z|>. We shall
denote by 9 (resp. &) the d-complex (resp. its adjoint) over L2 (Q)-forms.

PROPOSITION 7. Let Q be bounded, assume (3) Yz € Q in a C?* basis of w;, and let
k= q+ 1. Then for any f € Lzm(Q)k with of = 0 there exists u € L,i(Q)k*1 such that

Gu=f, 5u=0), [ul <IfIP 23)

Let |-l denote the norm of the Sobolev space W¥(Q) of index s. Let
Q. = {z € Q|dist(z, 0Q) > &}.

PROPOSITION 8. Let Q be bounded, suppose (3) be satisfied Vz € Q in a suitable

basis of w;, and let k= q+1. Then for any f € C(Q)" with of =0 there is
u € C®(Q,) such that for any s > 0 and for suitable S; > 0 (independent of [):

S S,
u=f, Tu=0), ||ullg < 65—4:1 1115y (24)
where the norm of f and u are over Q and Q, respectively.

End of Proof of Theorem 4 (cf. Dufresnoy [2]). We choose a decreasing sequence of
domains ..., Q, D Q,; ... D Q which inherit from Q the property (1) (and hence, if
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they are small enough, (3)), and require that for n with 0 <y <% we have
n?" < dist(3Q,, 3Q) < (7* /2). For instance, if Q is defined in a neighbourhood
of z, by xy —h <0, we can define Q, by x, —h < (5> /2). Let U (resp. U,) be
the sphere with center z, and radius o (resp. ¢ + (5> /2). we consider the functions

/s 7\
¢t,=—log<—xN+h+7>+i|z|2—log —|Z—zo|2+<a+7> .

Clearly the functions ¢, verify (3) for a smooth basis of w;’s on @, N U,. Let f'be a
smooth form in Q N U, for v, large. To solve the equation du = f in QN U, we first
extend f to f in Q,,v = v, such that f is still C* and

13f lg, N Uyl < Css®s (25)

for any S and for suitable Cgs;. (This is clearly possible because 87 |=0o0nQ.) On
account of Proposition 8, we take solutions 4, over Q, N U, of

oh, = of 26)
vl =
hla,nw ety < Ss ) S 113111 .

a solution o of d =f — hy, and finally solutions o, of

50‘»’-&—1 =h, — hv+1 o 5
Hotwt1ll(s42) < Ss+1(’72 )_(H- )”hv —hyy s < Cs,s(%)‘,

(for S and v large). This is clearly possible by recalling (25), (26). It follows that the

series Y, o, converges in C*°(QN U) and solves (3, o) = f— li‘r)n h, = f. This
completes the proof of Theorem 4. O
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