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Let X be a complex normed space, with dual space X'. Let T be a bounded
linear operator on X. The numerical range V(T) of 7"is denned as {f(Tx): x e X,
fe X', || x || = || / 1 | = fix) = 1}, and the numerical radius v(T) of T is denned
as sup {| z |: ze F(r)}. For a unital Banach algebra A, the numerical range
V(a) of a e A is denned as K(Ta), where Ta is the operator on A denned by
Tab = ab. It is shown in (2, Chapter 1.2, Lemma 2) that V(a) = {/(a):/eZ)(l)},
where £»(1) = {/e^': | | / | | = / ( l ) = 1}.

For .Jf a Hilbert space, we have the power inequality v(Tn) ^ v(T)n [see (1)].
In (3) it is shown that, for a normed space X,

\\T"\\^n\{elnyv{TT (« = 1, 2, ...) (1)

and that {|| T" \\/v(T)n} is bounded when X has finite dimension. Glickfeld (4)
has given an example of an operator T for which || T || = ev(T). The purpose
of this paper is to prove the following theorem.

Theorem. There exists a Banach space X and a non-zero bounded linear
operator T on X such that

| |T" | = «!(e/n)Mr)n (» = 1, 2, ...).
Corollary. For the operator of the theorem,

v(T)n ^ n\(e"-2)ln"v(Ty > v(T)n (n = 2, 3, ...).

Hence the constants in equality (1) are best possible, and || T" \\/v(T)n need
not be bounded. Also, the power inequality does not extend to normed spaces.

Proof of Theorem. Let n be a positive integer. Let An be the algebra of
elements

ao + ajU + . - .+aX (a0, .... an e C)
where «n+1 = 0. For a e An, define

p(a) = i n f i x k | e | Z f c l : £ cke*<u = a, ck, zkeC, mep\.
(_& = I ft = I J

Clearly p is subadditive. To see that p is an algebra-norm, let a, a' e A. For
any e>0, there exist a positive integer m, and ct, z^C (i = 1, 2, ..., m) such
that

£ c^'u = a and f) \Ci\ e^'Up(a)+e. (2)
i = 1 i = 1
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Similarly,

These give

so that
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= 1
= a' and

i = l y = l

j = 1

= aa'

<l + l*JI I
i = I j = I

Since e is arbitrary, p(aa') ^ p(a)p(a'). Now assume that /?(a) = 0, where
a = <x0 +... +anM

n. From (2),

• = 1

Since e is arbitrary, a = 0.
i = 1

(r = 0,1, ...,«).

Suppose that u" = £ cteZfcU- Then> u s i n 8 t n e f a c t t h a t ^ ^ (e/n)"f" (̂  ^ 0),
fc = I

we have

k = 1 k = 1

Hence />(«") ^ «!(e/«)n. Also, u(u) = sup | z | ~1 log pi?") by (2, Chapter 1.3,

Theorem 4). Since K O g c | z | , U(M) g 1. From (1), we must in fact have
v(u) = 1 and p(u") = n\(e/n)n.

Now let ^ be the algebra of sequences (al,a2,...), where aneAn and
{/>(#„)} is bounded, with pointwise multiplication. For a e A, let

| a | = sup{p(an): « = 1, 2, . . .}.

It may be proved that A is complete, and so is a Banach algebra. Let a be the
element («l9 w2> •••)» where wn is the element u of the algebra An above. Then
|| eza I = sup {p^""): n = 1, 2, ...} g gl'l, so that o(c) ^ 1. Also

If we define, in the algebra An, a functional/by

then it is easily seen tha t / e Z>(1) if and only if

| l+A l Z + . . . + Anz7«! | ^ e | z | (zeC).

For r = 1, 2, ..., «, /(tO = Ar e F(ur), and so

| | \ +... + knz''ln\\^e\z\ (z 6 C)}.
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It may be verified that, for Xt = A2 = ... = An_t = 0, and Xn = «!(e" - 2)/n",
/ eD( l ) , so that v{tf) ^ n!(e"-2)/nn. Since t>(a") ^ v(if), the corollary is
established.

There remains the question of the best constants kr in v(ef) ^ krv(a)r. From
the above, we have kr ^ r\pr, where

pr = sup{|Ar|:

Also, for any unital Banach algebra A, ae A with v(a) = 1, a n d / e D(l), we
have

| /(e") | = | l + ... + zn/(an)/n! + - | ^ e | z | (z e C).

Hence f(ar) g r!^f, where

qr = sup{|Ar|: | l + . . .+Ar2 '+. . . |^C ' z l (zeC)}.

Since this holds for any/e I>(1), ^(a') ^ r\qr. Hence kr g r!^r. To show that
kr = r\qr, it is enough to show that/?, = qr. I am grateful to Professor J. G.
Clunie for permission to publish his proof of the latter fact.

Lemma. pn = qn(n = 1, 2, ...).
00

Proof. For 0 < e < l , there exists a function /(z) = £ ctz
fc such that

* = o
|/(z)| ^ e | z | (zeC) , and | c n |># n - e . Then, by Cauchy's inequality and
Parseval's theorem, for N>n,

\fc JV+l / \ft = JV+1

N

where K is a constant. Let gN(z) = £ cfc(l—e)*z*. For z e C,
* = o

00

|0JVO)| ^ | / (( l-e)z) |+ X! | cfc |(1 — e)fc [ z |*.

For 0 ^ | z | = r ^ 1, provided Ae-1(l — if ^ e, we have

so that
| gN(z)\ ^ e{i~e)r+Ke~\l-e)NrN+1 ^ er.

For r ^ 1, provided s~1(l-ey g (l-e"e).
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Hence, for N sufficiently large, | gN{z)\ % e1 2 ' . Therefore

As this holds for any s with 0 < e < 1, pn ^ qn. As pn g qn, we have pn = #„.
It is of course not necessary to show that there exists a function/for which

| cn | = qn, but perhaps it is worth mentioning that Montel's theorem gives such
an extremal function.

Corollary. kn = n\pn (n — 1, 2, ...)•

This paper was written while the author held an S.R.C. research fellowship.
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