Natural Language Engineering 22 (1): 1-40. (© Cambridge University Press 2014 1
doi:10.1017/S1351324914000114

UIMA Ruta: Rapid development of rule-based
information extraction applications

PETER KLUEGL!, MARTIN TOEPFER?
PHILIP-DANIEL BECK? GEORG FETTE?
and FRANK PUPPE?

L Comprehensive Heart Failure Center, University of Wiirzburg, Straubmiihlweg 2a
and Department of Computer Science VI, University of Wiirzburg, Am Hubland,
Wiirzburg, Germany
email: peter .kluegl@uni-wuerzburg.de
2Department of Computer Science VI, University of Wiirzburg, Am Hubland,
Wiirzburg, Germany
email: {martin.toepfer, philip.beck, georg.fette, frank.puppe}Q@uni-wuerzburg.de

(Received 4 Feburary 2014, revised 21 August 2014; accepted 26 August 2014;
first published online 8 October 2014)

Abstract

Rule-based information extraction is an important approach for processing the increasingly
available amount of unstructured data. The manual creation of rule-based applications is a
time-consuming and tedious task, which requires qualified knowledge engineers. The costs
of this process can be reduced by providing a suitable rule language and extensive tooling
support. This paper presents UIMA Ruta, a tool for rule-based information extraction and
text processing applications. The system was designed with focus on rapid development. The
rule language and its matching paradigm facilitate the quick specification of comprehensible
extraction knowledge. They support a compact representation while still providing a high
level of expressiveness. These advantages are supplemented by the development environment
UIMA Ruta Workbench. It provides, in addition to extensive editing support, essential
assistance for explanation of rule execution, introspection, automatic validation, and rule
induction. UIMA Ruta is a useful tool for academia and industry due to its open source
license. We compare UIMA Ruta to related rule-based systems especially concerning the
compactness of the rule representation, the expressiveness, and the provided tooling support.
The competitiveness of the runtime performance is shown in relation to a popular and freely-
available system. A selection of case studies implemented with UIMA Ruta illustrates the
usefulness of the system in real-world scenarios.

1 Introduction

Information extraction addresses the identification of well-defined entities and
relations in unstructured data and especially in textual documents. Even if the
research in this task has a long history, it becomes more and more important
nowadays due to the increased availability of unstructured data. In order to
access the concealed information for analytic processes, it has to be transformed

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

2 P. Kluegl et al.

into a structured representation. Hence, information extraction has become a key
component in the integration of textual data and can be considered as an umbrella
term for many interesting tasks such as named entity recognition, sentiment analysis
or knowledge extraction. Two emerging and challenging trends in this area are
information extraction from social media, like blogs or tweets (Piskorski and
Yangarber 2013), and knowledge extraction from clinical notes (Savova et al. 2010).

Approaches to information extraction can roughly be divided into two main cate-
gories: Approaches based on handcrafted rules and approaches based on statistical
models trained in a supervised fashion. The latter models include classifiers or
probabilistic graphical models like Conditional Random Fields (Lafferty, McCallum
and Pereira 2001). There are of course no clear boundaries since hybrid information
extraction systems can apply components of both approaches, or the rules are not
written by a knowledge engineer, but they are automatically induced. While statistical
models dominate the research in academia, commercial applications are mostly
implemented as rule-based systems (Chiticariu, Li and Reiss 2013). This discrepancy
cannot be explained by the latency of translational efforts from research to industry.
Chiticariu et al. have investigated the reasons for this disconnect and noticed that
research and industry measure the costs and benefits of information extraction
differently (Chiticariu et al. 2013). Aside from many other reasons, rule-based systems
sometimes fit better in the requirements of real-world use cases, e.g., availability of
labeled data, stability of the specification, or traceability of results. Even though
statistical models often perform better in information extraction challenges, the
need for rule-based information extraction will not decrease in the foreseeable
future. The amount of publications about rule-based systems and approaches has
even been slightly increasing in the recent years (Doan et al. 2008). Approaches
for rule-based information extraction provide also advantages in combination with
statistical models. Rules can be applied for high-level feature extraction, for solving
different pre- and postprocessing tasks, and for semi-automatic creation of gold
standards. It is often faster to engineer one rule than to annotate repeating mentions
of a specific entity.

Rule-based information extraction systems mostly consist of a specification of
a text-based rule language and an interpreter, which is able to apply the rules
on documents in order to identify new information (Appelt and Onyshkevych
1998). The textual representation of rules leads to a development process where a
knowledge engineer manually writes rules. These rules are composed of a condition
part and an action part. The condition of the rule is a pattern of properties, which
need to be fulfilled by an interesting position in the document. The properties are
normally represented as annotations. These annotations assign a specific type and
possibly additional features to a span of text. Such features may be capitalization,
part of speech, formatting, or presence in a dictionary. Since the sequential order
of properties is very important for the specification of patterns, the condition
part often represents a regular expression over annotations possibly extended with
additional constraints. If the regular expression matches on a text position, then
the action part modifies the annotations. In the majority of cases, new annotations
are added, which represent interesting entities and relations, or complex properties.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 3

The matching algorithm of a set of rules (rule grammar) is often implemented
as a Finite State Transducer (FST), an automaton which traverses the annotation
lattices and creates or modifies annotations (Cunningham, Maynard and Tablan
2000; Drozdzynski et al. 2004; Boguraev and Neff 2010). The automaton processes
the document just once and does not react on its own modifications. A popular
strategy is the usage of cascaded rule grammars, where one grammar is based on the
results of previous grammars. This approach provides many engineering advantages,
for example, the easier specification of complex patterns by describing them as a
combination of simpler ones, or the clear separation of the stages of engineering
approaches and their contexts (Boguraev and Neff 2006).

The creation of rule-based information extraction applications is a knowledge
engineering process and its success depends on diverse factors. In contrast to
approaches based on machine learning techniques, the rules are normally written
by a human knowledge engineer, whose availability and training have major
influence on the quality of the application. Developing rule-based information
extraction applications can be a time-consuming and tedious task and a qualified
knowledge engineer is an expensive resource. Thus, she should be supported by a
compact rule representation and extensive tooling in order to guarantee a rapid and
efficient development process. The rule language itself needs to provide a level of
expressiveness that facilitates the effective specification of the patterns and actions.
Both factors are able to reduce development time and costs. Finally, applications
may require a certain order of runtime performance, which influences other factors.

This paper presents UIMA Ruta (Rule-based Text Annotation)!, a rule-based
tool that focuses especially on the rapid development of information extraction and
even general text processing applications. The system consists of a rule language
extended with scripting clements and a strong development support. The rule
language was designed to provide a compact and comprehensible representation
of patterns over annotations without restricting its expressiveness or area of use.
It covers almost all features of related rule languages for information extraction
while still introducing a few new ones. Although the rule language was optimized
for rapid development and not for runtime performance, it competes well with
similar rule-based systems concerning speed. The UIMA Ruta Workbench provides
a full-featured development environment for the UIMA Ruta language, which
exceeds the functionality of most related tools. It was developed to ease every
step in engineering rule-based applications and provides, in addition to classical
editing support like syntax checking, various useful tools. The system can generate a
complete explanation of each step of the rule inference, which enables the engineer
to adapt rules responsible for unintended behavior. The engineering process is
supported by tools for introspection, test-driven development, constraint-driven
evaluation, and automatic rule induction. The combination of the provided tooling
results in a rapid and agile development of well-maintained rule sets. UIMA Ruta
is an open source project with an industry-friendly license and is now being

! An early version was published under the name TextMarker (Kluegl, Atzmueller and Puppe
2009d).

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

4 P. Kluegl et al.

developed by an active community. The project page’ contains further links to
the documentation, examples, and tutorials.

The rest of the paper is structured as follows: Section 2 gives an overview of
the related work in the area of rule-based information extraction systems. The
rule-based scripting language is introduced in Section 3. The syntax, semantics, and
the rule matching algorithm are explained in detail and illustrated with examples.
Furthermore, a selection of special features and different engineering approaches
complement the description of the language. Section 4 focuses on the development
environment and available tooling for improving the engineering experience. In
Section 5, a comparison of UIMA Ruta and related rule languages is provided.
Section 6 gives a short overview of case studies using UIMA Ruta and Section 7
concludes with a summary.

2 Related work

The related work can be divided into two main categories: systems that provide a
text-based rule language for information extraction tasks and development environ-
ments for supporting the engineering process. Rule-based information extraction is
a well-studied field. We do not provide an exhaustive overview of related systems,
but introduce only a selection of recent work. A comparison of UIMA Ruta to these
systems is given in Section 5. An introduction to the historical development in this
area can be found, for example, in Turmo, Ageno, and Catala (2006). Before the
related work is described, the main concepts of the architecture underlying UIMA
Ruta are introduced as preliminaries for the next sections.

2.1 Architectures

Rule grammars for information extraction are often part of a larger pipeline of
components. The rules build upon annotations added by the previous components
most often for linguistic analysis of the document. These components include, for
example, tokenizers, sentence detectors, gazetteers, part-of-speech taggers, morpho-
logical analyzers, or parsers. Rule-based systems are therefore integrated in an
architecture or framework for natural language processing in the majority of cases.
The architectures provide uniform models for data exchange, component interfaces
and process control, which simplify the interoperability of the components and
facilitate the specification of complete pipelines. Two popular and freely available
architectures for natural language processing are the General Architecture for Text
Engineering (GATE) (Cunningham et al. 2011) and the Unstructured Information
Management Architecture (UIMA) (Ferrucci and Lally 2004). The contribution of
this work, UIMA Ruta, is integrated in UIMA, as the name already indicates. Since
UIMA Ruta makes extensive use of its main concepts, they are shortly introduced
in the following paragraph.

2 http://uima.apache.org/ruta.html

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 5

UIMA (Ferrucci and Lally 2004) is a flexible and extensible framework for
the analysis and processing of unstructured data and text in particular. It directs
its attention especially to the interoperability of components and the scale-out
functionality for vast amounts of data. The components of the framework are
called analysis engines and are specified in a descriptor that provides information
about their implementation, configuration, and capabilities. The analysis engines
communicate in a pipeline by adding or modifying the meta information stored in the
Common Analysis System (CAS), which contains the currently processed document.
This information is represented by typed feature structures and is ordered in indexes
for an efficient access. The type of the feature structure defines its semantic and its
additional features, which consist of primitive values or other feature structures. The
available set of types and their inheritance is specified in type system descriptors.
The most common type of a feature structure is the annotation that defines two
additional features, begin and end, assigning its type and additional features to a
span of text. Most analysis engines create new annotations or modify existing ones
in order to represent the result of their analysis.

UIMA is only a framework and does not ship a rich selection of components.
There are, however, component repositories like DKPro (Gurevych et al. 2007)
that provide analysis engines of well-known components for natural language
processing. Two prominent applications that built upon UIMA are the DeepQA
system Watson (Ferrucci et al. 2010) and the clinical Text Analysis and Knowledge
Extraction System (cTAKES) (Savova et al. 2010).

2.2 Rule languages

The Common Pattern Specification Language (CPSL) (Appelt and Onyshkevych
1998) is the result of the effort of different researchers for defining a system-
independent language for information extraction. It defines a common formalism
for the representation of finite-state grammars. The Java Annotation Patterns Engine
(JAPE) (Cunningham et al. 2000) provides FST over annotations based on regular
expressions. It is probably the most noted implementation of the CPSL specification
with a few differences and extensions. JAPE is part of the GATE ecosystem, which led
to its wide-spread use. Following the CPSL specification, a JAPE grammar consists
of a set of phases, which are sequentially executed. A phase itself is composed of
a set of rules that are compiled into one FST. The actual matching strategy of the
rules can be specified at the beginning of the phase by the control style, which uses
priorities to determine applicable rules and selects the next position after a match.
The spans of newly created annotations are determined by labels in the condition
part. The action part allows the inclusion of Java code in order to avoid limitations
of the CPSL specification.

SProUT (Drozdzynski et al. 2004) (shallow processing with unification and
typed feature structures) combines the ideas of FSTs, typed feature structures and
unification-based grammars. The rules defined in their language XTDL are regular
expressions over typed feature structures and allow to define coreference constraints

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

6 P. Kluegl et al.

between the different elements of the rule. The consequences of the rules can apply
externally defined operators. For execution, the rules are transformed into FSTs.

Boguraev and Neff (2010) presented an annotation-based finite-state transducer
(AFST), which is able to navigate in dense annotation lattices. It extends the
horizontal sequential patterns with navigation in the vertical direction, which enables
the user to specify more constraints for the relationship of overlapping annotations.
The system is completely based on UIMA and thus straightforwardly supports
patterns over typed feature structures. AFST interprets the matching process of
the FST as a linear path through the annotation lattice, which is based on the
indexes and iterators of UIMA. If several annotations start at the same offsets,
the annotation with the highest priority is selected. The exact matching behavior is
specified by grammar-wide declarations. The spans of newly created annotations are
determined with surrounding tags in the condition part. The AFST language also
provides a small set of additional predicates.

SystemT (Chiticariu et al. 2010) is a good example for current trends in research
about rule languages for information extraction. Its rule language AQL follows a
more declarative approach regarding the definition of patterns and provides a syntax
similar to SQL. The rules are not transformed into a FST but into an operator graph,
which allows the selection of an optimized execution plan. Breaking up the strict
left-to-right evaluation of the patterns, SystemT is able to achieve a much higher
runtime performance. The resulting annotators can be integrated into UIMA. An
investigation of the formal model underlying AQL can be found in Fagin et al.
(2013).

Many other rule languages have been published in the recent years. CAFETIERE
(Black et al. 2005) combines the strict sequential execution of regular expressions
over annotations with basic coreference constraints. Its data model seems to allow
only a disjunct partitioning of the document. HIEL (IJntema et al. 2012) is built
upon JAPE and focuses on a compact rule representation for elements of an
ontology. Xlog (Shen et al. 2007) is a rule language based on Datalog with embedded
extraction predicates. It supports query optimization techniques for an improved
runtime performance. The declarative language in PSOX (Bohannon et al. 2009) is
based on an SQL-like syntax. The system focuses on the extensibility of its operator
model, the explainability, and a scoring model for social feedback.

2.3 Development support

Many of the rule-based systems described in the last section also provide some
development tools, which range from only basic syntax validation to editor support
or testing of rules. The most notable tool is probably the development environment
of SystemT (Chiticariu et al. 2011). It provides an editor with syntax highlighting and
hyperlink navigation, an annotation provenance viewer, a contextual clue discoverer,
a regular expression learner, and a rule refiner. In WizIE (Li et al. 2012), a process
model is introduced that guides the developer in the different steps and enables
novice developers to create high-quality applications (Yang et al. 2013).

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 7

The IBM Content Analytics Studio® is a UIMA-based development environment
for the specification of rules in a drag and drop paradigm. ARDAKE* provides
an environment for the integration of business and semantic rules in UIMA-based
annotators. RAD (Khaitan et al. 2008) is a tool for Rapid Annotator Development.
Its rules are based on inverted index operations (Ramakrishnan, Balakrishnan and
Joshi 2006), which allows for a quick feedback of rule modifications.

3 UIMA Ruta language

The UIMA Ruta language is primarily a rule-based language for specifying patterns
over annotations and additional consequences if the pattern successfully matches
on a text position. The rules are applied sequentially in the order specified by
the knowledge engineer. The language was incrementally extended with elements
uncommon to rule languages such as control structures and variables. These two
characteristics led to a perspective from which the UIMA Ruta language can be
interpreted as a scripting language.

This section provides an introduction to the UIMA Ruta language and its
rule matching process. The different aspects of the language and engineering
approaches are illustrated by examples. Additional information about the exact
syntax, provided language elements and further introductory examples can be found
in the documentation of the system?.

From a UIMA perspective, UIMA Ruta provides a generic analysis engine,
which interprets the rule-based script files. Before the rules are applied, a tokenizer
adds annotations to the document representing different classes of tokens such as
capitalized words (CW, e.g., ‘Peter’), numbers (NUM), different kinds of punctuation
marks (COMMA, PERIOD, ...), and many more. These annotations can be utilized
to define some initial rules, which, for their part, create new annotations that will be
used by other rules. The types are part of a type hierarchy enabling the knowledge
engineer to refer to lexical properties on different levels of abstraction.

3.1 Syntax and semantics

The following sections first describe the actual executable resource, the script file,
before the syntax of rules in the UIMA Ruta language is defined. Along with
the grammars, examples for rules and scripts are given in order to illustrate valid
excerpts of the UIMA Ruta language.

3.1.1 Script definition

The general syntax of a UIMA Ruta script file is given in Grammar 1, which states
that a script consists of an optional specification of the package followed by an

3 formerly named IBM LanguageWare Resource Workbench: http://www.alphaworks.
ibm.com/tech/Irw

4 http://www.ardake.com/

3 http://uima.apache.org/d/ruta-current/tools.ruta.book.html

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

8 P. Kluegl et al.

optional list of import declarations and an optional list of statements. The language
supports four different kinds of imports: The keyword ‘TYPESYSTEM’ indicates
the import of a UIMA type system descriptor whereby its defined types are made
available in the script file. The keyword ‘SCRIPT’ includes an additional script and
its known types for further usage. The remaining two keywords ‘ENGINE’ and
‘UIMAFIT import analysis engines, which can then be executed from within the
script file. Following the imports, a list of statements constitutes the major part of
the script file and its actual functionality. Three different groups of statements can
be distinguished. Declarations define new UIMA types, new variables or external
dictionaries. The definition of new types serves only for rapid development in the
UIMA Ruta Workbench since it avoids switching to other tools. The other two
declarations define new elements of the UIMA Ruta language itself. The block
statement is a script-like control structure that provides special functionality for
the knowledge engineer such as procedures, definition by cases or restriction of the
window the rules are applied in. This construct and similar language elements are
described in Section 3.4. The remaining kind of statement, the rules, provides the
actual functionality of the script file and is described in the next section after an
example of a common composition of a script file.

Grammar 1. Simplified grammar of the script syntax.

(script) = (package)? (import)* (statement)*

(émport) == (TYPESYSTEM’ | 'SCRIPT’ | "ENGINE’ | "UIMAFIT")
(identifier) ’;

(statement) = (declaration) | (rule) | (block)

(declaration) (TypeDeclaration)

| (VariableDeclaration)
| (DictionaryDeclaration)

(block) = 'BLOCK’ ’(’ (identifier) ’)’ (ruleElement) *{’ (statement)+ '}’

Example 1 contains a script with diverse language elements for parsing biblio-
graphic references. The example starts with a specification of the package of the
script file, which is applied for defining the namespace of newly defined types and
blocks. In lines 3 and 17, two comments provide an explanation of the corresponding
environment. From lines 4 to 8, different global imports are added starting with
importing a type system descriptor making its type definitions available. Then, three
additional scripts are included and finally an external analysis engine is imported
in line 8. Line 10 contains a type declaration. The following lines 11 to 15 provide
simple rules, which execute the imported analysis engine and script files on the
current document (e.g., Year as abbreviation of uima.ruta.example.Year). From line
18 onwards, a block declaration applies a rule for each annotation of the type
Reference. This example illustrates the usage of the UIMA Ruta rule language for
the definition of a pipeline with different components and some additional post-
processing. Solving different engineering tasks like the combination of components
or the declaration of new types is an important aspect for rapid development and
avoids switching to other tools.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 9

PACKAGE uima.ruta.example;

// import the types of this type system
TYPESYSTEM types.BibtexTypeSystem;

SCRIPT uima.ruta.example.Author;

SCRIPT uima.ruta.example.Title;

SCRIPT uima.ruta.example.Year;

ENGINE uima.ruta.example.SegmentationEngine;

O 00U W =

11| DECLARE Reference;
12| Document{-> CALL(SegmentationEngine)};

14| Document{-> CALL(Year)};
15| Document{-> CALL (Author)};
16| Document{-> CALL(Title)};

18| // create bibtex annotation
19| BLOCK(forEach) Reference{} {

20 Document{-> CREATE(Bibtex, "author" = Author,
21 "title" = Title, "year" = Year)};
22| ¥

Example 1. UIMA Ruta script pipeline for parsing bibliographic references.

3.1.2 Rule definition

The syntax of rules in the UIMA Ruta language is specified in Grammar 2. A rule
commonly consists of a sequence of rule elements followed by a semicolon indicating
the end of the rule. Simple regular expression rules and conjunctions of rules are
two special kinds of rules. A rule element itself consists of at least a mandatory
match reference, which creates a connection to the document by matching on a
text fragment. This connection can be specified by five different kinds of references.
A type expression represents a UIMA type and is the most common kind of
match reference. The rule element matches on the annotation of the given type
and, therefore, on the position covered by the annotation. The feature expression
is an extension of the type expression by adding additional constraints on the
feature values of the matched annotation or by referring to the annotations stored
as feature values. A string expression represents a character sequence and enables
the rule element to match directly on the text passage of the document with the
identical character sequence. The match reference of a rule element can also consist
of composed rule elements for a sequential, conjunctive or disjunctive grouping. The
last kind of match reference is the wildcard, which provides a placeholder for any
kind of text passage.

A rule element can be extended with several optional language elements. The
anchor marker ‘@’ in front of a rule element will be discussed in Section 3.2. The
optional quantifier part specifies how often the rule element may match or has to
match for a successful rule match. It supports the four most common quantifiers
known by regular expressions (‘?, “*’, ‘+’, min/max), each in a greedy and reluctant
form. A rule element without a quantifier has to match exactly once.

After the optional quantifier, curly brackets contain lists of optional conditions
and actions, which are separated by an arrow ‘->’. Conditions are binary predicates
and specify additional constraints on the matched position that need to be fulfilled

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

10 P. Kluegl et al.

Grammar 2. Simplified grammar of the rule syntax.
(rule) == ((ruleElement)+ | (regEzpRule) | (conjunctRules))’}

(ruleElement) = '@’? (matchReference) (quantifier)? (’{’ (conditions)?
-> (actions)? '})? (inlinedRules)?

matchReference = (typeEzpression stringExpression
tchRef typekE: i tringE. i

| (featureExzpression) | (composedRE) | (wildCard)
(composedRE) = (" (ruleElement)+)’

| °C (ruleElement) (’&’ (ruleElement))+ ')’

| °C (ruleElement) (’|” (ruleElement))+)’
(quantifier) = O V| R | R | 0 | 4

| [(numberEzpression) ’,” {(numberExpression) ’]

| [(numberEzpression) ’, (numberExpression)]’ * 7’
conditions = (condition * (condition
(conditions) (condition) (°,’ (condition))*
(actions) = (action) () (action))*
(condition) ::= ConditionKeyword ’(’ (expression) (’,” (expression))*)’
(action) ::= ActionKeyword '(’ (expression) (’," (expression))* ')’
(inlinedRules) a= (>0 7<) {7 (rule) +)

for a successful match of the rule element. Actions represent the consequences of the
rule and are only applied if the complete rule matched successfully. Conditions and
actions both start with a keyword indicating its type followed by a list of expressions
in parentheses determining possible arguments and configurations. The last optional
part of a rule element, the inlined rules, is discussed in Section 3.4. Examples of rules
in different notations are given in the following. They are semantically identical, but
represent the preferences of different rule engineers.

// three notations of the same rule that matches on

// texts like ¢‘Dec. 2004’’, “‘July 85’’ or ‘¢11.2008’°

ANY{INLIST(MonthsList) -> MARK(Month), MARK(Date,1,3)}
PERIOD? NUM{REGEXP(".{2,4}") -> MARK(Year)};

(ANY{INLIST (MonthsList) -> Month} PERIOD?
NUM{REGEXP (" .{2,4}") -> Year}){-> Datel};

ANY{INLIST(MonthsList)} PERIOD? NUM{REGEXP(".{2,4}")
-> MARK (Month,1), MARK(Year,3), MARK(Date,1,3)};

SO0 N WN -

—_

Example 2. Three different notations of the same rule for detecting dates: old
fashioned (line 34+4), compact (line 6+7), and traditional (line 9410). Years with
three digits are allowed.

The first rule in Example 2 (lines 3 and 4) consists of three rule elements. The
first one (ANY...) matches on every token, which covers text that occurs in the
word list MonthsList. The second rule element (PERIOD?) is optional and does
not need to be fulfilled, which is indicated by its quantifier ‘?”. The last rule element
(NUM. ..) matches on numbers that fulfill the regular expression REGEXP(".{2,4}")
and have a length of at least two characters to a maximum of four characters. If
this rule successfully matches on a text passage, then its three actions are executed:
An annotation of the type Month is created for the first rule element, an annotation

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 11

Conditions AFTER, AND, BEFORE, CONTAINS, CONTEXTCOUNT, COUNT, CURRENTCOUNT, ENDSWITH,
FEATURE, IF, INLIST, IS, LAST, MOFN, NEAR, NOT, OR, PARSE, PARTOF, PARTOFNEQ,
POSITION, REGEXP, SCORE, SIZE, STARTSWITH, TOTALCOUNT, VOTE

Actions ADD, ADDFILTERTYPE, ADDRETAINTYPE, ASSIGN, CALL, CLEAR, COLOR, CONFIGURE,
CREATE, DEL, DYNAMICANCHORING, EXEC, FILL, FILTERTYPE, GATHER, GET, GETFEATURE,
GETLIST, GREEDYANCHORING, LOG, MARK, MARKFAST, MARKFIRST, MARKLAST, MARKONCE,
MARKSCORE, MARKTABLE, MATCHEDTEXT, MERGE, REMOVE, REMOVEDUPLICATE,
REMOVEFILTERTYPE, REMOVERETAINTYPE, REPLACE, RETAINTYPE, SETFEATURE, SHIFT,
TRANSFER, TRIE, TRIM, UNMARK, UNMARKALL

Fig. 1. (Colour online) List of conditions and actions currently available in UIMA Ruta.

of the type Year is created for the last rule element, and an annotation of the type
Date is created for the span of all three rule elements. If the word list contains the
correct entries, then this rule matches on strings like ‘Dec. 2004’, ‘July 85" or ‘Nov.
2008 and creates the corresponding annotations.

The language also supports syntactic sugar that allows one to specify conditions
and actions using expressions without keywords. The knowledge engineer can use
boolean expressions, such as boolean variables, or feature-match expressions in order
to formulate compact conditions. As for actions, a type expression is able to replace
a MARK action and feature-assignment expressions are able to modify the values
of matched feature structures. The second rule in Example 2 (lines 6 and 7) provides
an alternative of how the first rule can be rewritten without MARK actions.

Usually, the conditions and actions are clearly separated in well-known rule
languages. While the conditions make up the left-hand part, the actions follow in a
right-hand part after a distinctive separator. In the UIMA Ruta language, actions
can occur at each rule element after the list of conditions and are not located solely at
the end of the rule as it would be expected. Allowing actions to be attached to the rule
element, which supplies the context for its consequences, provides various advantages
and results in a more compact rule representation. However, the actions can be de-
tached and listed at the last rule element in most situations, simulating the traditional
composition. The third rule in Example 2 (lines 9 and 10) provides an example of
how the first rule can be rewritten with the actions located at the end of the rule.

The conditions and actions in the previous examples reflect only a small sample
of the available constructs. The language provides more than 25 different conditions
and more than 40 different actions, which enables the knowledge engineer to
tackle different annotation tasks efficiently. An overview of the available actions
and conditions is given in Figure 1. Actions, for example, cannot only add new
annotations, but are also able to remove (UNMARK) or modify existing ones
(SHIFT), or execute other components (EXEC). Special actions are also applied
for creating relations between entities or simply copying feature values as shown in
Example 3.

1| Token{-> CREATE(Container, "pos" = Token.posTag, "lemma" = Lemma.value,
2 "token" = Token)};

Example 3. A simple rule for copying feature values and assigning annotations to
features. A new annotation of the type Container is created, which stores different
information of the underlying annotations as feature values.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

12 P. Kluegl et al.

The rule creates a new annotation of the type Container for each Token
annotation. Furthermore, three features are automatically filled with values: The
value of the feature ‘posTag’ of the Token annotation is assigned to the feature ‘pos’
of the Container annotation. The value of the feature ‘value’ of a Lemma annotation
with the same offsets as the matched Token annotation is assigned to the feature
‘lemma’ of the Container annotation. Finally, the complete Token annotation is
stored in the feature ‘token’.

Different users have different use cases and require specialized language constructs
for efficiently implementing their rule-based applications. UIMA Ruta provides
a plugin concept for extending the language by additional actions, conditions,
functions, and even blocks, which modify rule execution. The knowledge engineer is
not restricted to the available list of language elements, but can adapt and optimize
the language for her use cases.

3.2 Inference

The description of the syntax and semantics in the last section provided an overview
on the specification of valid rules and their meaning. This section now considers
how the rules are applied. Before the matching algorithm is introduced, the order of
rule application is discussed.

3.2.1 Rule execution

UIMA Ruta rules are applied in an imperative manner, one rule after another, in the
same order they occur in the script file. This leads to an interpretation of the language
as cascaded FSTs, whereas each transducer corresponds to one rule. Other rule-based
languages for information extraction compile the rules of one phase into one FST in
order to avoid unnecessary and duplicate inference steps. Although sequential execu-
tion provides some disadvantages, the advantages prevail in the focus of the system,
which is rapid development of rule-based information extraction applications.

The disadvantages consist mainly in the possibility of a decreased performance
for large rule sets and in the missing truth maintenance between rules. However,
truth maintenance is hardly supported by automata-based languages in general. The
performance issue compared to rules compiled in one single FST occurs especially
if many rules start with the same match reference resulting in a variety of identical
and redundant operations. If, however, the rules have no joint match references, the
performance differs only marginally since the rules share no states in the automaton.
The absence of truth maintenance potentially leads to an increased number of
rules. If a rule activates or negates the preconditions of previous rules, then their
postconditions are not automatically executed or revoked. The knowledge engineer
has to add additional rules for propagating the desired effect like in other languages.

The advantages of this kind of imperative rule execution can particularly be found
in its simplicity, which is important for rapid development of rule sets and can be
essential for inexperienced users or users not familiar with rule-based systems.
The user does not have to consider side effects to previous rules and snares of
dependent rules. Due to the missing truth maintenance, the rules of a script have

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 13

to be structured correspondingly to their dependencies, which results in a clear
and comprehensive set of rules. The absence of truth maintenance also implies an
improved performance because the match references and conditions of other rules do
not need to be reevaluated after a rule added or removed annotations. Furthermore,
the ability to revoke the postconditions of rules either confines the rule language
or increases its complexity. The usage of rule scripts with truth maintenance as a
prototyping language for the definition of pipelines, for example, is only possible if
the operations of arbitrary components can be taken back. The linear execution of
rules makes the definition of pipelines possible in the first place. Another advantage
consists in an easier explanation of the rule inference, which enables the user to
identify the causes of undesired rule behavior quickly.

3.2.2 Rule matching

Rules in UIMA Ruta are atomic statements concerning the inference, as pointed
out in the last section. A rule itself can be interpreted as a FST. For the description
of the rule matching in UIMA Ruta a pseudo code algorithm is utilized.

Algorithm 1 Pseudo-code of the rule matching algorithm in UIMA Ruta.

procedure STARTMATCH
rule element e « identify starting rule element
CONTINUEMATCH(e)

end procedure

procedure CONTINUEMATCH(rule element e, optional position p, optional rule match o)
if position p is given then
anchors a « all valid positions next to position p
else
anchors a « all valid positions for the rule element e
end if
for all positions i of anchors a do
rule match m < new alternative of rule match o or new rule match
validate match reference and conditions of e on position i for rule match m
rule element n « NEXTELEMENT(rule element e, rule match m)
CONTINUEMATCH(rule element n, position i, rule match m)
end for
end procedure

function NEXTELEMENT(rule element e, rule match m)
if quantifier of e indicates further repetition then
return rule element e
else
rule element n « identify rule element next to e
if rule element n exists and rule match m is valid then
return rule element n
else
DONEMATCHING(rule match m)
end if
end if
end function

procedure DONEMATCHING(rule match m)
if rule match m is valid then
apply all actions of rule
end if
end procedure

The rule matching of UIMA Ruta is specified in Algorithm 1. The rule starts
to match by calling the procedure sTaARTMATCH. First of all, the rule element

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

14 P. Kluegl et al.

is determined, which initiates the rule matching process. Normally, this is the
first rule element of the rule resulting in a left-to-right match. If the match
reference of the selected rule element consists of a composed rule element, then the
starting rule element is determined in the list of contained elements. The beginning
rule element is requested to continue the matching process with the procedure
CONTINUEMATCH.

The procedure CONTINUEMATCH provides one to three arguments: the current
rule element, an optional position and an optional rule match. If this method is
called by the procedure STARTMATCH, then only one argument is given. First of all,
valid positions for the rule element are determined. Either all valid positions, e.g.,
annotations of the type of the match reference, are listed, or only valid positions
next to the provided position in the arguments are listed. The strategy for selecting
the next position can be configured. For each possible position of this list, several
operations are performed. First, a new rule match is created, which stores the
current state of the matching process, e.g., already evaluated positions. If a rule
match was provided by the arguments of the procedure, then a copy is created,
representing a new alternative rule match. The position is validated concerning the
match reference, the conditions and the additional rules inlined as conditions. UIMA
Ruta is, therefore, able to handle positions where multiple annotations begin. If the
rule element matched successfully, then the next rule element is identified by using
the function NEXTELEMENT. The next rule element is then requested to continue with
the matching process at the new position.

The function NEXTELEMENT not only provides the next rule element, but also
terminates the matching process if no remaining rule elements can be found. The
function initially checks whether the quantifier of the rule element allows repetitions,
and returns the current one as appropriate. Reluctant and optional quantifiers
are neglected in the pseudo code for simplicity. If the rule element has matched
sufficiently, then the next rule element is determined. This is usually the rule element
following the current one. The last procedure DONEMATCHING simply validates if
the current rule match was successful and then applies all actions and additional
rules inlined as actions on the positions stored in the rule match. The matching
algorithm tracks a rule match until it terminates and possibly applies the actions
before an alternative match is considered. This facilitates the specification of useful
rules.

The description of the matching algorithm mentioned that the starting rule
element is normally the first rule element of the rule, which can decrease the
performance of the matching process for certain rules to some extent. This prob-
lem is illustrated with two rules in Example 4 that match on the second last
token.

1| ANY LastToken;
2| ANY @LastToken;

Example 4. Two simple rules that match on a token followed by a LastToken
annotation. While the first rule has to investigate every token, the second rule starts
to match with the second rule element and requires less index operations.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 15

The first rule investigates each token of the document starting with the first one,
which results in many unnecessary rule matches. The second rule provides a start
anchor, indicated by the symbol ‘@’ This optional symbol enables the user to
manually specify the starting rule element. The rule begins with the annotation of
the type LastToken and continues the match with the previous rule element, which
results in a right-to-left matching and in only one rule match. The UIMA Ruta
language also provides an option called ‘dynamic anchoring’ that automatically
determines the starting element using a heuristic applied on the amount of involved
annotations. The option can be activated in the configuration parameters or by
other rules in the script. The possible occurrences of matching references of the rule
elements are compared and the rule element with the least amount of initial matches
is selected. The heuristic also includes the quantifier and composed rule elements.
Furthermore, a penalty for the reverse matching direction can be specified. Dynamic
anchoring is a newer feature and thus not yet activated by default.

As a special kind of match reference, the wildcard ‘#’ can be used to optimize the
rule matching performance further. The two rules in Example 5 create an annotation
of the type Sentence for all text passages that are surrounded by periods. While the
first rule matches on one token (ANY) after another until the next occurrence of
a period, the second rule matches directly on the next period found in the UIMA
index. This reduces the amount of considered positions and also provides a compact
representation.

1 PERIOD ANY+?{-> Sentencel} PERIOD;

2 PERIOD #{-> Sentence} PERIOD;
Example 5. Two equivalent rules for annotating text between two periods. While the
first rule needs to match on each token (ANY), the second rule just searches for the
next period resulting in less UIMA index operations.

The general performance concerning execution time of the UIMA Ruta rule-based
script mainly depends on the amount of index operations in the UIMA framework,
and, related to this, on the amount of rule matches and the involved conditions.
Similar to programming languages, it is possible to implement slow and fast rule
sets for solving the same problem. Since the language was especially designed to
support rapid development, the user normally does not stress performance issues in
the first place. If, however, the execution time of a rule script needs improvement,
many possibilities exist.

This section introduced a few options to reduce the amount of rule matches or
index operations. The user can also make use of efficient dictionaries or can profile
the rule execution in order to identify bottlenecks (cf. 4.2).

3.2.3 Beyond sequential matching

The matching process described so far only considers rule elements as sequential
patterns. The language also supports rule elements that need to match on the same
position. As introduced in Section 3.1.2, composed rule elements are not only able

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

16 P. Kluegl et al.

to specify sequential patterns, but also disjunctive and conjunctive rule elements.
The list of disjunctive rule elements separated by the symbol ‘" specify that at least
one of the rule elements needs to match in order to obtain a successful match of the
composed rule element. Analogously, all of the conjunctive rule elements separated
by the symbol ‘&’ need to match in order to continue the matching process. These
language elements can be applied for verifying different aspects on the same position
that cannot be represented by a combination of conditions.

Another language construct that does not represent a strict sequential pattern is
specified by the symbol ‘%’, which is applied for connecting two rules. The resulting
rule builds a conjunction of both rules and its actions are only applied if both rules
have successfully matched. While conjunctive rule elements (‘&’) have to match on
the same position, the connected rules may match independently of each other on
different positions in the current window or document.

The rule in Example 6 consists of two connected rules and matches only if there
is an arbitrary capitalized word followed by a number in the document and if there
is also some arbitrary lower-cased word followed by a number.

1| CW NUM % SW NUM;

Example 6. A conjunction of two simple rules. The complete rule matches only if
both rules are able to match independently of each other.

3.3 Visibility and filtering

The UIMA Ruta language and its inference are designed to provide an instrument
for solving different text processing and information extraction tasks. One step
in this direction is the possibility of defining patterns not only over token but
over arbitrary types of annotations. Rules can, therefore, be applied for matching
sequences of tokens, but also sequences of paragraphs. Another feature provided by
UIMA Ruta is the specification of the visibility that determines which kinds of text
passages represented by annotations are accessible by the rules. While one type of
text is important in one use case, it should be ignored in other applications. If the
rules are applied, for example, to label sequences of tokens, then the whitespaces
between tokens are of minor interest and the user should be able to ignore them
in the definition of the rule set. However, if the rules are built in order to parse
identifiers or indentation of tables, whitespaces are essential and need to be included
in the pattern. Another example is the processing of headlines in a document. In
a sequential pattern over headline annotations, the paragraphs do not need to be
considered in the specifications of rules.

Rule-based languages often specify the types available in a phase whereas
annotations of other types are automatically skipped. The UIMA Ruta language
provides a more complex and dynamic concept of visibility. Here, text positions
covered by annotations of specific types are invisible. This leads to a coverage-based
visibility concept instead of a type-based one. All annotations and their covered
text passages that start or end with a type specified in the set of filtered types are

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 17

not accessible by the rules. This means that these invisible positions will be skipped
when the next position for the rule match is determined. The set is calculated using
three lists. The default list is specified in the configuration parameters and generally
contains types for whitespace and markup. The elements of the filtered list are added
to this list. Afterwards, the elements of the retained list are removed. The filtered
and retained lists can be modified by actions so that the knowledge engineer is able
to adapt the rule inference to her current requirements directly in a UIMA Ruta
script. The exact behavior of rules facing invisible annotations is explained with
Examples 7 and 8.

1| W NUM;
2| Document{-> RETAINTYPE (SPACE,MARKUP)};
3| w onuM;

Example 7. Two identical rules that match on different text positions due to the
changed filtering settings in the second rule. The second rule is sensible to markup
and whitespaces in its sequential constraint.

The first rule in Example 7 matches on text fragments like ‘Dec
2004,
‘May1999’, or July 85 since whitespaces and markup are filtered by default. The
second rule (line 2) changes the filtering settings by adding the types for space and
markup annotations to the retained list, which makes them visible again. The last
rule is identical to the first one, but matches only on the text fragment ‘May1999’
since the matching process was unable to find a valid subsequent position.

Sentence;

Document{-> RETAINTYPE (MARKUP)};
Sentence;

Document{-> FILTERTYPE (Headline)};
Sentence;

Document{-> RETAINTYPE, FILTERTYPE};

AN B W

Example 8. Three rules for matching on sentences. The other rules change the
filtering setting resulting in different matches on sentences.

Example 8 contains three identical rules that match on a sentence and three rules
that change the filtering settings. The first rule matches on sentences that do not
start with a whitespace or markup annotation due to the default filtering settings.
The second rule enables matching on markups. The third rule (line 3) also matches
on sentences that start with a markup element. The fourth rule hides headlines and,
thus, the fifth rule is not able to match on sentences that start with or are part of a
headline. The last rule resets the filtering settings to its default values.

3.4 Blocks and inlined rRules

The implementation of annotation tasks using only a plain rule language often leads
to rule sets that are hard to interpret by a human. This is caused by the lack of

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

18 P. Kluegl et al.

control structures, which are compensated by additional conditions or activation
rules. Control structures can be very useful in rule-based information extraction
applications. Examples for those elements are the restriction of the rule match to
a certain window, further modularization, conditioned execution of rule sets or
application of rules for each occurrence of an annotation.

The UIMA Ruta language provides the BLOCK construct for these use cases.
The syntax of blocks was already specified in Section 3.1.1. A block construct starts
with the keyword ‘BLOCK’ followed by an identifier that is utilized in case the
block is invoked by another rule. The main part, the head, is a rule element, which
specifies the functionality of the block. The body of the construct finally contains
a list of statements, e.g., rules. The rules within the block are only applied in the
context of the matches of the rule element in the head. If the rule element did
not match, then the contained rules are not applied at all, which corresponds to a
conditioned statement. If the rule element matches on several annotations, then the
contained rules are applied once for each matched annotation and only within this
annotation, which corresponds to an iteration over the annotations and a restriction
of the context. These use cases are illustrated with examples.

1 BLOCK (German) Document{FEATURE("language", "de")} {
2 // rules for german documents

}

Example 9. A conditioned statement using the block construct. The contained rules
are only applied if the language of the document is set to ‘de’.

Example 9 provides a block construct that applies the contained rules only if the
language of the document was set to ‘de’.

1| BLOCK(ForEach) Sentence{} {
2 // ... do something
3|
Example 10. Iteration over annotations of the type Sentence. The contained rules

are applied for each sentence and only in the window of the current sentence.

The block in Example 10 applies the contained rules on each sentence. Rules that
try to match over the boundaries of a sentence will automatically fail. Within the
body of the block, the type Document refers to the current sentence rather than to
the whole document.

Another language element that provides similar functionality is an extension of
a rule element, the so-called inlined rules (cf. Section 3.1.2). These occur in two
manifestations, either interpreted as consequences indicated by the symbol ->’ or
as preconditions (‘<-"). The former kind provides similar functionality as the block
element, but can directly be utilized in more complex rules. If the rule matched
successfully, then the inlined rules are applied in the context of the match of the
rule element. The latter provides functionality for expressing more complex, nested
conditions. Here, the rule itself matches successfully in the first place if one of the
contained rules was able to match. Both extensions enable the knowledge engineer

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 19

to specify complex patterns in a compact representation. Their syntax and semantics
are illustrated with two examples.

The rule in Example 11 matches on an annotation of the type Prefix followed by
a sentence annotation. If this match was successful, then the rule in line 2 is applied
in the context of the matched sentence annotation. It creates an annotation of the
type SentNoLeadingNP with the offsets of the matched sentence, if the sentence
does not start with an annotation of the type NP.

1] Prefix Sentence->{

2 Document{-STARTSWITH(NP) -> SentNoLeadingNP};

3003}

Example 11. An example of an inlined rule interpreted as a postcondition. An
annotation is created for each sentence if additional requirements are fulfilled.

Example 12 contains a rule element extended with an inlined rule interpreted as a
precondition. The rule tries to match on each annotation of the type Sentence, but
only succeeds if this sentence contains an annotation of the type NP followed by
another NP.

1| Sentence{-> SentenceWithNPNP}<-{

2 NP NP;

3003}
Example 12. An example of a rule element with an inlined rule interpreted as a
precondition. An annotation is created only if the sentence contained two subsequent

noun phrases.

3.5 Engineering approaches

The support of different engineering approaches for solving an annotation task is
an important characteristic of a generic rule-based information extraction system.
The formalization of rules based on only one engineering perspective may lead
to inconvenient representations. The UIMA Ruta language was in particular
designed to provide a generic pattern formalism that enables the user to solve
annotation tasks with different approaches. Among other things, it is achieved
with special conditions and actions that encapsulate the necessary functionality. In
the following, a selection of approaches are discussed and illustrated with examples.
These approaches do not have to be applied separately, but can also be mixed at each
stage.

3.5.1 Classical approaches

Many classical approaches for rule-based information extraction can be identified.
The simplest one is called candidate classification, which generates possible candidate
annotations and then assigns a specific type if the candidate holds certain prop-
erties. The rule in Example 13 considers each annotation of the type paragraph
and labels it as a headline if it is mostly bold, underlined and ends with a
colon.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

20 P. Kluegl et al.

1| Paragraph{CONTAINS(Bold, 90, 100, true),
2 CONTAINS (Underlined, 90, 100, true), ENDSWITH(COLON)
3 -> MARK (Headline)};

Example 13. Candidate classification with UIMA Ruta rules. The rule classifies a
paragraph as a headline if it is ninety to hundred percent covered by Bold and
Underlined annotations, and ends with a colon

Annotations of interest can be approached in a bottom-up or a top-down manner.
The former approach starts by identifying small parts of the targeted annotations
and successively composes them until the desired annotation can be specified.
The latter approach starts with more general annotations and refines or reduces
the considered positions until the annotations of interest are found. Example 14
provides an example for labeling the author section of a scientific reference using
a bottom-up approach. The first rule creates annotations for name initials, which
consist only of one upper-case letter followed by a period. The second rule specifies
names as a capitalized word followed by a comma and a list of name initials. The
last rule finally combines a listing of names to the annotations of the type Author.

1 (CW{REGEXP(".")} PERIOD){-> Initial};

2| (CW COMMA Initial+){-> Name};

3| (Name (COMMA Name)*){-> Author};
Example 14. Bottom-up approach for labeling author sections. The first rule detects
initials, the second rule identifies names, and the third rule combines names to

authors.

Rules that consider the content of an annotation are sometimes hard to specify.
However, the boundaries of the targeted annotation are possibly easier to identify
without facing the variety of patterns occurring within that annotation. An example
of this boundary matching approach is given in Example 15. The first rule identifies
the start of the author part of a reference and the second rule detects possible ends
of the author section. The third rule creates an annotation for spans that starts with
an annotation of the type AuthorStart and ends with an annotation of the type
AuthorEnd.

1| Reference{-> MARKFIRST (AuthorStart)};

2| coLON{-> AuthorEnd} CVW;

3| (AuthorStart # AuthorEnd){-> Author};
Example 15. Boundary matching approach for labeling author sections. First rule
detects the start position, the second rule identifies the end position, and the third

rule combines both for the complete annotation.

3.5.2 Transformation-based rules

Transformation-based rules are applied on already existing annotations and try to
correct specific errors or defects. The usage of transformations can greatly ease the
definition of patterns and accelerate the development of rule sets. The inclusion of all
possible exceptions or negative preconditions in the rule that creates the interesting

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 21

annotations leads to confusing rule constructs. These exceptions can be neglected
initially, if later transformation-based rules remove annotations that should have
been excluded. The transformation-based approach can also be beneficial in many
other scenarios. One example is the usage of transformations for domain adaptation
or improving the accuracy of arbitrary models.

The UIMA Ruta language provides several actions for modifying existing an-
notations. The action UNMARK removes annotations of the given type, the action
SHIFT changes the offsets of an annotation dependent on the other rule elements
and the action TRIM reduces the span of an annotation. The first rule in Example 16
removes annotations of the type Headline, if they contain no words at all. A previous
rule identified headlines using the layout of the document, but did not include a
condition validating their contents. If only one rule was responsible for annotating
headlines, the additional precondition is easily added. If the annotations of the type
Headline are, however, created by twenty different rules, then the additional condition
has to be added twenty times, which decreases the readability and aggravates possible
refactorings of the script. The second rule in Example 16 expands the span of an an-
notation of the type Person if it is preceded by the word ‘Mr’ and an optional period.

1 Headline{-CONTAINS (W) -> UNMARK(Headline)};

2| "Mr" PERIOD? @Person{-> SHIFT(Person,1,3)};
Example 16. Two examples for transformation-based rules. The first rule deletes
headlines without words and the second rule includes text like ‘Mr.” in Person
annotations.

3.5.3 Scoring rules

It is sometimes not possible to specify a combination of properties in one rule.
In some situations the knowledge engineer wants to weight different aspects for
dealing with uncertainty. The UIMA Ruta language provides a special action and
condition for such use cases. The action MARKSCORE adds a heuristic score for a
certain kind of annotation and the condition SCORE is able to evaluate this score
for further processing. While scoring rules can help to solve problematic tasks in
a compact manner, larger sets of scoring rules get increasingly hard to maintain.
Example 17 contains a small example for the identification of headlines.

STRING s;
Paragraph{CONTAINS (W,1,5)->MARKSCORE (5,HeadlineInd)};
Paragraph{CONTAINS (W,6,10) ->MARKSCORE (2, HeadlineInd)};
Paragraph{CONTAINS (Bold ,80,100,true)->MARKSCORE (7 ,HeadlineInd)};
Paragraph{CONTAINS (Bold ,30,80,true)->MARKSCORE (3,HeadlineInd)};
Paragraph{CONTAINS (CW,50,100, true)->MARKSCORE (7 ,HeadlineInd)};
Paragraph{CONTAINS (W,0,0) ->MARKSCORE (-50,HeadlinelInd)};
HeadlineInd{SCORE (10) ->MARK (Headline)};
HeadlineInd{SCORE(5,10) ->MATCHEDTEXT (s),

LOG("Maybe a headline: " + s)};

[=EN-NCCIN o NN NI N

—_

Example 17. Scoring rules for weighting different aspects of headlines. The rules
create an annotation of the type Headline for paragraphs like ‘Diagnoses:’ since the
first (line 2) and fifth rule (line 6) increase the score resulting in an overall score of
12. The rule in line 8 evaluates the score and creates a new annotation.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

22 P. Kluegl et al.

The rules from lines 2 to 7 weight different aspects indicative of headlines and
assign a score to the annotation HeadlineInd. The first two rules specify that a
paragraph with fewer words is more likely to be a headline. The third and fourth
rules investigate the layout and the fifth rule assigns higher scores to paragraphs
with many capitalized words. The sixth rule reduces the score for paragraphs that
contain no words at all. The remaining rules evaluate the score and either create a
new annotation of the type Headline, if the score exceeded the threshold of 10, or
emit a message for less certain positions using a string variable defined in line 1.

In summary, the UIMA Ruta language facilitates the quick specification of com-
prehensible extraction knowledge. It supports a compact representation while still
providing a high level of expressiveness for solving diverse tasks.

4 UIMA Ruta workbench

The development of rule-based applications for information extraction is first of all
an engineering task. It can be a difficult, tedious and time consuming task, which
depends on human resources and their qualification. Qualified rule engineers are
potentially an expensive resource or only available to a limited extent. The engineers
should therefore be supported by tools that ease the access to the rule-based
systems and that improve the engineering experience in general. While improvements
of the usability and an extensive documentation weaken the learning curve, the
development environment should provide features that decrease the time and labor
enabling the rapid development of rule sets. A (nonexhaustive) list of those features
for supporting the rule engineer can be identified:

Clear visualization of different language elements The visualization of language ele-
ments by highlighting different syntactic constructs provides a clear overview
of the rule set. Semantic highlighting of the occurrences of some language
elements further improves readability.

Direct feedback on defective rules Writing rules is an error-prone process. The de-
velopment environment should notify the user instantly about syntax errors,
typing errors and misplaced constructs. The engineering process is decelerated
if feedback about erroneous rules is not given before the rules are applied.

Shortcuts for editing The development environment should provide functionality for
recurring elements either by completion of the statements of the user or by
templates for favored constructs. In general, the effort of writing rules should
be minimized.

Adaptable to process model of user The rule engineering task can be approached
with different process models. The user should be able to adapt and optimize
the development environment to her own process model.

Easy introspection of results When the engineered rules are applied on exemplary
documents, the resulting annotations should be visualized in an clear and
accessible way. The user should be able to directly investigate different aspects
of the annotated documents.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 23

Explanation of rule execution The application of rules on a document should not
be opaque. The user should be able to comprehend and track every step of
the rule inference in order to identify and correct undesired behavior.

Automatic validation of the rule set’s correctness Manual verification of rules and
validation of their results is tedious and time consuming and potentially has
to be performed every time the rule set is extended or refined. This task
should be automated by specifying test cases, and informative reports should
be provided to the user.

Support for automatic induction of rules The development environment should sup-
port the user in the specification of rule sets. In case additional data is available,
it can be utilized in order to propose rules that solve a specific annotation
task.

The UIMA Ruta Workbench tries to provide a development environment and
additional tooling, which cover all of these features. It is implemented as a rich
client application extending the Eclipse platform®, which allows the user to arrange
the different features and tools according to her preferences. The available tooling
of the Eclipse platform can be directly utilized in the UIMA Ruta Workbench, e.g.,
version control of script files, which allows collaborative development’. Figures 2—
4 depict various tools in a compact layout. The large amount of features and
additional tooling leads to an increased complexity of the system. Thus, the UIMA
Ruta Workbench is not easily accessible for inexperienced users, but favors trained
engineers, who are able to take advantage of all features for an increased productivity.
The following sections highlight how a strong tooling support can render the rapid
development of rule-based information extraction systems possible, and refer to the
figures in order to illustrate the different tooling support.

4.1 Basic development support

A development environment for rule-based information extraction applications
should provide at least some basic features in the opinion of the authors, like
the option to create and modify rules, the execution of these rules on a set of
documents and the visualization of the annotations created by the rules. The central
parts of the Workbench are the workspace with UIMA Ruta projects, the full-
featured editor, the launch capacity for executing script files and the visualization of
annotated documents based on the CAS Editor®, which can also be used to create
new annotations, e.g., for gold standard documents.

Figure 2 provides a screenshot of some views of the default perspective of the
UIMA Ruta Workbench. Part (A) contains the list of UIMA Ruta projects in the
workspace. A UIMA Ruta project applies a distinct folder layout: the script folder

6 http://www.eclipse.org/

7 If different rule engineers work on the same script files, then they require tools for sharing
and investigating the performed changes. The UIMA Ruta Workbench is compatible with
all prevalent SCM integrations like SVN or Git.

$ http://uima.apache.org/d/uimaj-2.6.0/tools.html#ugr.tools.ce

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

24 P. Kluegl et al.

=) Rurta - ExampleProj ipt/uima/nuta/ de/Auth - Eclipse Platform e
Eile Edit Gource Refacior [Navigate Segrch Project Bun Window Help
frow e s | | | R - S B R N = T TR e T == -| =
Quick Access £ | [UIMA Ruta | (7 UIMA Ruta Explain 7 UIMA Ruta CDE 50 Team Synchronizing [k SVN Repository Exploring @ Cas Editor &)/ Java
i3 Script Explorer 53 = 0O 4 Authorruts I | o7 Mainauta m Annotation Brow... 51 = O
- 9 SPECIAL{REGEXP("8") -> MARK(MameLinker)}; .
= s =
= Coe2 A 21 /f first name initials (B) Only types with...
| # = BxampleProject 22 CW{REGEXP(".") -> MARK(FirstHameInitial,1,2)} PERIOD; Only annotations with.
I - B ;"v!_ : — = BA caurtPERIOO[T -
- uirna.ruta.eample el
s o 25 Firsthoser FirstomeInitisl® Céf-> MARK(Nome, 1, 2, 3)}; S o.a.urtRutaBesic 169
A * ; 26 FirstMameInitial+{-PARTOF(Name)} CW{-> MARK(Mame, 1, 2, 3)}; _ B o.2.urtSPACE (23]
Main.ruta a7 rul nANTOr fismat nErEvm® "3 rramsad ElesetismaTadsdalsl 2 s BA o.2.urtSPECIAL [2]
A - s n L.
& Illbe.mta BA c.a.urtSW4]
& Yearnuta - (] R ¥ Bl ureduther (1]
| & descriptor Empiel.btamid 31 _ c A BA u.r.eAFirstNamelniti
I 4 (& input 4 Ogren, P.V., Wetzler, P.G., Bethard, 5.: ClearTK: A |- BA ureAName [3]
[Examplel bt for Statistical Natural Language Processing. In: UIMiE BAl u.r.e.ANameLinker [£
[E Exampiled.a workshop at LREC @8. - = B& u.relNamelistPart
4 = output . W i o B8 vreBibtexl] 2
E.r-umpld.bl.xm! a [/ Ogren, PV, Wetz
i Examplel bt omi = begin: 0 |
{ (= resources - Selection View 11 g ol il end: 156
(= test On with... (D) BA author: Ogre
LICENSE Oy e oAb BA title: ClearTk| | |
f :]Nonc'i & y wrecw] (E) ~ B year (2008) il
i ; :t nterp: E:: il |W1Fﬂ BA 0.2.urtRutaBasic [1]] BA u.r.eTitle [1]
g ExtensionsExample [uima, ¥ BR ureluthor[l] Il ureT.TitleStopper (1 =
< oam v BA ureAMNamelll v L ;
Wiitable Srmart Insert n:1

Fig. 2. (Colour online) The UIMA Ruta Workbench: (A) Script Explorer with a UIMA
Ruta project. (B) Full-featured editor for specifying rules. (C) CAS Editor for visualizing the
results. (D) Overview of annotations sorted by type. (E) Annotations overlapping the selected
position in the active CAS Editor.

contains the rule-based script files, the descriptor folder the descriptor files of UIMA
analysis engines and type systems, and the resources folder contains dictionaries and
word lists. The Workbench automatically generates an analysis engine and type
system descriptor for each script file. These descriptors can be utilized in arbitrary
UIMA applications. When executing a script file, the documents in the input folder
are processed by default and their results are stored in the output folder.

The user is able to add dependencies in a UIMA Ruta project pointing to other
projects of the workspace. A dependency to a UIMA Ruta project enables the user
to refer to its script files and leads to reusable subprojects. The Workbench takes care
of the correct configuration of the generated analysis engines descriptors. A UIMA
Ruta project can, however, also have dependencies to Java projects in the workspace.
When a UIMA Ruta script is launched, then the classpath is automatically expanded
by the dependencies, and analysis engines implemented in the same workspace can
be utilized in a script file. This enables rapid prototyping across languages.

Part (B) in Figure 2 shows the full-featured editor. It provides editing support
known by common programming development environments, especially syntax
highlighting, semantic highlighting, syntax checking, auto-completion, template-
based completion and more. Thereby, the user is optimally supported in writing
or editing rules. Defective rules are instantly highlighted in the editor and the
auto-completion proposes suitable language elements based on the current editing
position.

For visualizing the results of the rule execution, the UIMA Ruta Workbench
utilizes the CAS Editor (C) extended with additional views for an improved access

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 25

reUIMﬂRmEqiain- pleProj tetrni i i i i i) - Eclipse Platform (=
| Eile Edit Navigate Search Project Bun Window Help
!I |t L > e e | it Quick Access B9 | &7 UIMA Ruta
I 2 Ruta Query 2 =0 Examplelbe. 21 | ™ =50 % Applied Rules 33 =7
| [=] Ogren, P.V., Wetzler, P.G.- 4 T [1/1] BLOCK({Main) uima.tcas.DocumentAnnotation [0. »
| for Statistical Natural Lz = [1/1] Document] -> MARKFAST (Known, Knownlist,
Query Data: Ci\example-projects\ExamplePro, workshop at LREC @8. [BBSE e [1/1] Document{ -> CALL(Year)) [0.0255]15.72%]
| File Filter: i # o 11/1] Document! -> CALL{Author)} [0.0235[1447%]
iy 4 %% [1/1] BLOCK{Auther) uima.teas. Documentinnet
Type System: C:\example-projects\ExamplePro = [1/1] Document{ -> MARKFAST (FirstName, F =
[| |Author Title; (A) = [0/25] “and”, false) -> MAR
= [5/5] COMMA -> MARK({NameLinker)} [0.00
(E) 2 = = =+ [0/2] SPECIAL[REGEXP("&C", false) -> MARK(M
= [5/16] CWIREGEXP(".", false) -> MARK(FirstN
. o = [0/0] Firsthlame- FirstNamelnitial* CW{ -> M
F
: Ay FabiRivect: B « [0/5] FirstNamelnitial+[-PARTOF(Name)) CW
Result: found 2 matches in 2 documents &P = =+ [3/16] CW{-PARTOF(Name),-REGEXP(".", fals
&Y (B) = = [2/3] Name{-PARTOF{NameListPart)} Namel
i Ogren, P.V., Wetzler, P.G., Bethard, 5 ClearTK: A igP wt 1171 Mamel itPart+ Namal-BARTOF Bithor ™
Stephen Soderland, Claire Cardie, and Raymond &G 1] *
AS
A Clear T 22 Rule Elements &2 =
= = 4 i% CW[-PARTOF({Name),-REGEXP(".", false]} -
© Matched Rules 53] « A Ogren 3
45 Ogren, PV, o ow 3
[4 Wetzler, P.G. (C) 4 © -PARTOF(Name) (D)
ri 5 /, Bethard, 5. €3 PARTOF(Name)

4 © -REGEXP(".", false)
"3 RERFYDI™ * falcal

S

Fig. 3. (Colour online) The UIMA Ruta Workbench: (A+B+C+D) A selection of views
for the explanation of the rule execution: (A) The Applied Rules view for detailed report
with profiling information. (B4+C) Successful and failed matches. (D) The Rule Elements view
displaying matches of rule elements and results of conditions. (E) The Ruta Query view for
introspection in a collection of documents.

to the annotations. The Annotation Browser view (D) lists the annotations of
a document sorted by their types. The Selection view (E) lists all annotations
overlapping the position that is currently selected in the CAS Editor. Both views
provide additional filtering options and enable the user to obtain a fast overview
of the results of the rule execution and to investigate overlapping annotations at
specific positions.

4.2 Explanation of rule execution

The explanation of rule execution is an essential feature for rule-based systems in
general. Writing new rules is laborious, especially if the newly written rules do not
behave as intended. The user has to be able to comprehend and track the behavior of
the rules especially in order to identify undesired rule behavior. Answers to different
questions need to be provided to the user: Did the rule match at all? Where did the
rule match successfully or where did it failed to match? Why did a rule match or fail
to match? The UIMA Ruta Workbench provides several views in order to answer
these questions. The whole rule execution is protocolled and stored in the document
represented as annotations, if the user executes the script in the debug mode.

The main view for the explanation is the Applied Rules view. It displays structured
information about all rules that tried to match on the document (cf. Figure 3(A)).
The view shows how often a rule tried to match in total and how often it succeeded.
This information is given in brackets at the beginning of each rule entry. The rule

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

26 P. Kluegl et al.

itself is given afterwards. Additionally, some profiling information, providing details
about the absolute and relative execution time within the current block is added at
the end of each rule entry.

The Matched view and Failed view display rule matches for rules selected in the
Applied Rules view (cf. Figure 3 (B+C)). The views contain the covered text spans in
order to provide a quick overview to the user. She can see, which positions have been
successfully matched and which positions have been unsuccessfully investigated by
the rules.

The Rule Elements view (D) finally displays the exact covered text for each match
reference and the evaluation results for each condition. This enables the user to
quickly identify the causes for a successful or failed rule match.

So far, the views for the explanation of the rule execution present a well-structured
report if the user tries to inspect the behavior of specific rules. If, however, several
rules create a certain type of annotation, then the user has to investigate each of
these rules in order to identify the reasons for an erroneous annotation. The Created
By view solves this deficiency by displaying the rule that was responsible for the
creation of a specific annotation that has been selected in the Annotation Browser
view.

The UIMA Ruta Workbench additionally provides several other views that help
the user to investigate the rule execution. Among these are views that visualize the
rule matches on specific positions or the rule matches of rules containing specific
language elements, as well as the Statistics view, which provides a compact report
of the execution time of the conditions and actions.

4.3 Introspection by querying

The engineered rules are not only applied on a single document during the
development process, but on a collection of documents. In order to investigate the
resulting annotations, the user typically has to inspect each document separately.
The UIMA Ruta Workbench provides an additional view for the introspection in
collections of annotated documents by querying. The Ruta Query view contains
different text fields for specifying the folder containing the queried documents, the
necessary type system and a set of UIMA Ruta rules (cf. Figure 3(E)). The view
applies the rules on the collection of documents and presents the matches of the
rules to the user. The rules can thus be interpreted as a query statement. The view
can be applied in many scenarios during the development process. The user can,
for example, obtain an overview of the occurrences of certain types of annotations
or even patterns of annotations. This includes useful activities like investigating
if a pattern of annotations has been or has not been annotated with a specific
type. In contrast to work like Cunningham (2005) and Greenwood, Tablan, and
Maynard (2011) on querying and retrieval, this view is only intended to support the
knowledge engineer since no indexing is applied and the query does not scale for
other applications.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 27

o midm228. 09867 08784 e :
‘ o 4TL-ZI05-1. O96TE 09543 (B) 13 Docus

r T
 UIMA Ruta CDE - ExampleProject/script/ui jin.ruta - Eclipse Platform =)
[Ele Edt Source Refactor Navigate Search Project Bun Window Help — -
oo R R e B B, PR
Quick Access T | & UIMARuta [; UIMA Ruta Explain UIMA Ruta CDE
sen CDE Documents 0 0-=n0o & Mainruta i3 e = s CDE Constraints 11 Ha=no
_ o = = | PACKAGE uims.ruts.exssple; 5
en (D] |9 2 Constraint =)
Test Data: Diworkworkspace-nuta\CDI 1] A7y (licated 1a the Reference{OR(CONTAINS(Author), CON &
T) r - = 5 TYPESYSTEM types.BibtexTyp 3 ONTARNS(Title) 4 L
ype System: D:/work/workspace-ruta/CDI (=) i Reference{ CONTAINS(Date) v
7 SCRIPT uisa.ruta. le. Author; " L)
mse=00030 spearmans=08708 pearsons=08447 co 8 SCRIFT :m.::t:,::::l:.utl:: AuthorSTARTSWITH(Referenc b ==
3 SCRIPT uisa.ruts.exssple.vear; Seskig (ot | ToiE ..) [
Document CDE F1 = Tithe{- CONTAINS(Publisherdnd]}: z -
‘ Tithe ANY(-PARTOF{EditionMarker) -

Date] -PARTOF{Mumin\W) k.
Date ANY{OR(-IS(SPECIAL), IS(Quatel)k _

m

* idpdfboxte.. 09911 08889 14
* 05-2005.0¢.. 09985 09926 .

‘ m

® A00-2002d... 10 10
s AO4-100w 10 a1 "1 | @ Annotation Test I [g PLIL=0
8 CDE Result & = o Script: pimartaesmpleMain nitisliew + TP: 8 BFP: 0 BFN: 0 Fl: 10
Constraint Result 2 > Examplel.betami [400) Type (A) TP FP FN Prec. Recall F1
Tite{-CONTAINS(Publisherdnd): 1.0 * Example.tetomi [41000) Total 4 0 0 10 10 10 E
| | Title ANY|-PARTOF EditionMarker... 092 (C) vimartseampleduthor 1 0 0 10 10 10
f Date{-PARTOF (NuminW) 10 x uimarutseampleBibtes 1 0 0 10 10 10
L m L Ll A d simmn m i mnmaede Tk 1 n n in in 1in s

Fig. 4. (Colour online) The UIMA Ruta Workbench: Different views for automatic validation.
(A) The Annotation Testing view for gold standard evaluation. (B) Results of constraint-driven
evaluation. (C) Detailed results of specific constraints. (D) Collection of expectations.

4.4 Automatic validation

The manual validation of the results of a currently developed rule set can be tedious
and time consuming, especially if several documents have to be inspected. The user
has to perform this task potentially each time the rule set is extended or refined
in order to ensure the correct processing of the documents. Hence, an automatic
validation of the rule set’s correctness is one of the most important features of a
development environment for rule-based information extraction. The UIMA Ruta
Workbench provides tools for the automatic validation of rule sets using labeled
and unlabeled documents.

4.4.1 Gold standard evaluation

The user should be able to define test cases that are utilized to validate the rule set.
In the context of information extraction applications, the test cases are equivalent
to a set of documents containing annotations of interesting types. The rules are
applied on the raw documents and the resulting annotations created by the rules are
then compared to the given gold annotations. The differences are used to calculate
an evaluation score, e.g., the F; score.

The UIMA Ruta Workbench provides this functionality with the Annotation
Testing view. Figure 4(A) contains a screenshot of this view, which consists of the
list of tested documents on the left side and the results for the currently selected
document on the right side. Additionally, the user is able to select different evaluators
resulting in different F1 scores, e.g., based on annotations, tokens or features. The

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

28 P. Kluegl et al.

usefulness of this functionality can be summarized with the description of three use
cases:

Goal-oriented development A real-world scenario for the development of a rule-
based information extraction system often includes a quality threshold specified
by a contractee. Given a set of annotated documents, the developed rules have
to achieve a previously defined evaluation score in order to be accepted for
deployment. This use case is directly supported by the UIMA Ruta Workbench
and the user is able to continuously compare the current state of the application
to the desired targets.

Test-driven development Test-driven development (Janzen and Saiedian 2005) is a
programming process model where first test cases for specific parts of func-
tionality are defined before the actual program code is written. The developed
code is then continuously validated during development in order to ensure
the correctness of different parts of the software. Test-driven development
has proven itself as an effective process model (Maximilien and Williams
2003). This process model can also be applied to the development of rule-
based information extractions systems. First, a set of documents is manually
annotated, which provides a best possible coverage of different challenges. The
rules are then developed against these test cases until the performance of the
rules is sufficient. A methodology and detailed process model for test-driven
development of rule-based information extraction systems has been published
by Kluegl, Atzmueller, and Puppe (2009b).

Regression testing Another reliable process model for developing rules can be
summarized as follows. The rule engineer considers one document after
each other and creates new rules, or refines old rules. Starting with the
first document, she creates an initial set of rules, which extracts interesting
information within this document. After the rules are applied on the document,
it is either perfectly annotated or manually corrected, and is stored as a test
case. The rule engineer continues with the second document and extends,
modifies and refactors the rule set until the annotations in the second document
are correctly identified. During these modifications of the rules set, however,
the test case of the first document is continuously validated in order to ensure
that the rules still provide the necessary functionality for the first document.
This procedure is iterated for the complete collection of documents until all
documents are sufficiently processed by the created rules.

4.4.2 Constraint-driven evaluation

One of the advantages of rule-based information extraction approaches is that annot-
ated documents are not strictly necessary for application development. Nevertheless,
they are very beneficial for rule-based systems, e.g., for accelerating the development
or quality maintenance. There is a natural lack of labeled data in most application
domains and its creation is error-prone, cumbersome and time-consuming as is
the manual validation of the extraction results by a human. A human is able to
validate the created annotations in those documents using background knowledge

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 29

and expectations on the domain. An automatic estimation of the rule set’s quality
in unseen and unlabeled documents using this kind of knowledge provides many
advantages and greatly improves the engineering experience.

The Constraint-driven Evaluation (CDE) framework (Wittek et al. 2013) is a
combination of the testing framework and the querying functionality, and greatly
improves the engineering process in the opinion of the authors. It allows the user to
specify expectations about the domain in form of constraints. These constraints are
applied on documents with annotations, which have been created by a set of rules.
The results of the constraints are aggregated to a single CDE score, which reflects
how well the created annotations fulfill the user’s expectations and thus provide a
predicted measurement of the rule set’s quality for these unlabeled documents. The
documents can be ranked according to the CDE score, which provides an intelligent
report about the well and poorly processed examples. Figure 4 (B+C+D) provides
a screenshot of different views to formalize the set of constraints and to present the
predicted quality of the model for the specified documents.

Compared to the test-driven development in the last section, this approach
facilitates a constraint-driven development, which requires no annotated data. This
process is illustrated with an simple example for identifying one specific person
name in each document of a larger collection. The knowledge engineer specifies her
background knowledge and expectations about the domain using rules. These rules
cover, for example, that each document should contain exactly one annotation of
the type Name. After the actual extraction rules are applied on the large set of
documents, the expectations are compared to the Name annotations created by the
rules. Using the CDE score, the documents are ranked where documents that violate
the expectations are listed first. The knowledge engineer is now able to investigate
these problematic documents where the rule obviously failed either by finding no
name or by labeling multiple names. After the rule set is refined or extended,
this process is iterated. More information about this tool can be found in Wittek
et al. (2013).

4.5 Supervised rule induction

All development support described until now has focused on the manual engineering
of rule-based information extraction systems. The user defines the set of rules in
an ecosystem of tools, which facilitate the writing or enable an improved quality
maintenance. Besides that, the development environment can also support the user
in the construction of new rules. Given a set of annotated documents, machine
learning algorithms can be applied in a supervised fashion in order to propose new
rules. The user can then inspect the proposed rules for insights in possibly interesting
patterns of annotations. Furthermore, she can extend her rule set with a selection
of the proposed rules, which can again be extended or adapted.

The UIMA Ruta Workbench provides the TextRuler framework for the supervised
induction of rules. The TextRuler view allows the user to specify the training data, the
interesting types of annotations and the preferred learning algorithm. The induced

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

30 P. Kluegl et al.

rules for each algorithm are presented in a separate view. Currently, four different
algorithms are available.

LP? The two implementations of this rule learner, naive and optimized, are adapt-
ations of the original algorithm published by Ciravegna (2003). LP? induces
three different kinds of rules. Tagging rules identify the boundaries of the
annotations, context rules shift misplaced boundaries and correction rules
finally are able to remove boundaries again. Correction rules are, however, not
yet supported by our implementations.

WHISK The two implementations of this rule learner, token and generic, are
adaptations of the algorithm published by Soderland, Cardie, and Mooney
(1999). The Whisk algorithm induces rules in the form of modified regular
expressions. In contrast to the original algorithm, our implementations do not
directly support multi-slot rules.

KEP The name of the rule learner KEP (knowledge engineering patterns) is
derived from the idea that humans use different engineering patterns to write
annotation rules. Our algorithm implements simple rule induction methods
for some patterns, such as boundary detection or annotation-based restriction
of the context. The results are then combined in order to take advantage of
the interaction of different kinds of induced rules. Since the single rules are
constructed according to how humans engineer rules, the resulting rule set
resembles more handcrafted rule sets. Furthermore, by exploiting synergy of
patterns, the patterns for some annotations are much simpler.

TraBal. Our TraBaL algorithm (Eckstein, Kluegl and Puppe 2011) is able to induce
transformation-based error-driven rules. The basic idea is similar to the Brill
Tagger (1995), but the template generation is more generic and can also handle
arbitrary annotations instead of tags of tokens. This algorithm was built in
order to learn how to correct the annotations of arbitrary models or human
annotators.

A methodology and process model for the semi-automatic development of rule-
based information extraction systems where the human engineer is supported and
completed by rule induction algorithms has been published in Kluegl et al. (2009a).

4.6 Semi-automatic creation of gold documents

A popular approach for creating annotated documents is the semi-automatic
annotation using rules. The labeling of a large collection of documents is time
consuming, but can be accelerated if recurring annotations are automatically created.
The rule engineer defines a few rules that are able to create correct annotations
instead of manually specifying them one after each other. Afterwards, the created
annotations need to be verified, whereas missing annotations are added and defective
annotations are removed. This functionality is already covered by the default tooling
of the UIMA Workbench in combination with the CAS Editor. The approach
can, however, be improved if the user is supported in the manual verification of
the annotations. The UIMA Ruta Workbench provides the additional view Check

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 31

Macro: AMOUNT_NUMBER
({Token.kind == number}
(({Token.string == ","} |
{Token.string == "."})
{Token.kind == number})*
) (NuM L, mom) NUM) k)

Rule: Moneyl {-> AmountNumber};
((AmountNumber SPACE? CurrencyUnit)
(AMOUNT_NUMBER) {-> Money};

(SpaceToken.kind == space)?
({Lookup.majorType == currency_unit})
)
:money ~-->
:money.Number = {kind = "money", rule = "Moneyl"}

Fig. 5. An excerpt of an exemplary JAPE macro and rule (Cunningham et al. 2000) (left) for
the detection of ‘money’ entities and their UIMA Ruta equivalents (right).

Annotations for this use case, which enables the user to efficiently accept, reject or
replace the proposed annotations. The view lists all annotations of types selected by
the user, which can quickly classify these annotations as correct or erroneous.

In summary, the UIMA Ruta Workbench provides a large amount of useful tooling
that helps to improve the engineering experience and lowers the overall development
time and costs.

5 Comparison to related systems

We compare UIMA Ruta to a representative selection of related systems and
highlight different aspects of rule representation and execution, expressiveness of the
language, runtime performance, and available tooling for development support. A
special focus is laid on the concise representation of rules, which is one important
aspect for rapid development. The less text the knowledge engineer has to write for
achieving the same functionality, the better. The compactness and expressiveness of
the UIMA Ruta language is illustrated in Figures 5, 7, and 8. Each figure depicts a
representative example of a related language taken from the respective publication
and its equivalent in the UIMA Ruta language.

Figure 5 contains an example of a JAPE macro and rule (Cunningham et al.
2000) and their equivalents in UIMA Ruta. UIMA Ruta does not enforce a clear
separation of conditions and actions and thus does not need to support labels. Java
code cannot directly be included in UIMA Ruta rules, but the language itself can
be extended and arbitrary Java code wrapped in additional analysis engines can be
executed. This integration of functionality implemented in Java is, however, more
complex compared to JAPE, but allows tooling like explanation and editing support.
JAPE specifies the accessible types for each phase, whereas UIMA Ruta applies a
more complex and dynamic paradigm of coverage-based visibility controlled by
the annotations themselves. In contrast to JAPE, which compiles all rules of a
phase into one FST, UIMA Ruta applies the rules sequentially in the order they are
specified, supports variable matching direction, and is able to match on all disjunctive
alternatives. Overall, the UIMA Ruta language provides almost all features of JAPE
together with a more concise representation. The development of JAPE grammars
is barely supported by tooling to the best knowledge of the authors. The GATE

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

32 P. Kluegl et al.

1000 ms +

10| Cliape

HjapePlus

JRuta

Ruta [da)

1 g —

50kB 100 kB

Fig. 6. (Colour online) Average processing time for documents of different sizes.

framework provides, however, a rich selection of tools like ANNIC (Cunningham
2005) for discovering new patterns.

For a comparison of the runtime performance, we utilized the Named Entity
Recognition component in GATE without the part-of-speech tagger and applied
only the gazetteers and the first three phases of the JAPE grammar with overall
58 rules. A manual translation of these rules to UIMA Ruta resulted in about 44
rules, which can be considered as created by an inexperienced knowledge engineer.
They do not include UIMA Ruta specific optimizations. Both systems are applied
on nine sets of documents each containing 10,000 documents and providing an
increasing document size, taken from the Enron email dataset’. Startup time of the
frameworks and Java can be neglected, because we evaluated the first batch twice, but
only measured the second run. Figure 6 depicts the average runtime for components
based on the JAPE implementation, the optimized JAPE Plus implementation?,
UIMA Ruta and UIMA Ruta with activated dynamic anchoring'!. UIMA Ruta is
able to compete well for all sizes of documents, although the rules are not optimized
at all, and they sequentially apply 44 phases in contrast to three phases of JAPE.
Dynamic anchoring improves the performance only slightly since the patterns have
not been engineered accordingly and considerable processing time is caused by the
gazetteers.

The UIMA Ruta language provides a higher expressiveness than AFST (Boguraev
et al. 2010), which is limited to a linear path through the annotation lattices. Each
special functionality in AFST (honor, focus, advance, ...) is available in UIMA
Ruta using the corresponding language constructs. Figure 7, for example, contains
exemplary rules for vertical navigation in AFST and UIMA Ruta. The AFST rule
starts by matching on a PName annotation and then steps into this annotation
indicated by the operator ‘@descend’. The next element ‘Title[string=="'General]’
specifies that the PName annotation has to start with a Title annotation with
the covered text ‘General. A period between two elements indicates a sequential
constraint. The vertical navigation is repeated for the Name annotation, which has
to contain a Last annotation with the covered text ‘Grant’. The elements First and
Middle are optional, but required for the linear path through the annotation lattices.

° https://www.cs.cmu.edu/ enron/
10 http://gate.ac.uk/sale/tao/splitch8.html#sec jape :plus
' We applied GATE 7.1 and UIMA Ruta 2.2.0.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 33

findG = PName[@descend] .

" S R PName <-{
Title[string=="General"] . Title{REGEXP ("General")}
Name [@descend] . Name <-{

First[] |<E? . Middle[] |<E> Last {REGEXP ("Grant")};
. Last[string=="Grant"] . 3.
Name [@ascend] . 3. ’

PName [@ascend] ;

Fig. 7. (Colour online) An exemplary AFST rule (Boguraev et al. 2010) (left) for vertical
matching in ‘PName’ annotations and its UIMA Ruta equivalent (right). The rules match on
text passages like ‘General Ulysses S. Grant’ if the corresponding annotations are present.
The optional patterns for the First and Middle annotations are not necessary in UIMA Ruta.

create view CapsLast as
select CombineSpans(C.name, L.name) as name
from Caps C, Last L

where FollowTok(C.name, L.name, O 0); (Caps Last){-> Person};
Person{PARTOFNEQ (Person)
create view PersonAll as -> UNMARK (Person)};
(select R.name from FirstLast R) union all ... Person{CONTAINS (Person,2,100)
. union all (select R.name from CapsLast R); -> UNMARK (Person)}

create view Person as select * from PersonAll R
consolidate on R.name using ’ContainedWithin’;

Fig. 8. (Colour online) Excerpt of exemplary AQL rules (Chiticariu et al. 2010) (left) for the
detection of persons and their UIMA Ruta equivalents (right). The last two UIMA Ruta
rules are only necessary for the consolidate statement.

AFST includes a small set of additional predicates, whereas UIMA Ruta ships
an extensive set of conditions and actions. The Domain Adaptation Toolkit (Bogur-
aev and Neff 2006) provides grammar development functionality and is able
to create type system descriptors based on the grammars like the UIMA Ruta
Workbench.

SystemT criticizes three aspects of rule languages based on the CPSL specific-
ation: Lossy sequencing, rigid matching priority and limited expressiveness in rule
patterns (Chiticariu et al. 2010). None of these properties can be observed in UIMA
Ruta. The rule language of SystemT, AQL, is a declarative relational language
similar to SQL and thus does not provide a compact representation. Especially since
the modification of the content of a view enforces the specification of another view.
While the syntax is accessible to programmers, it might appear counterintuitive for
users not familiar with SQL. Most of the features of AQL are also supported in
the UIMA Ruta language. Figure 8 provides an excerpt of an AQL grammar for
the detection of persons and the UIMA Ruta rules with the same functionality.
Broadly speaking, AQL rules typically consist of a create view statement that
specifies the created type of annotation, select and from statement for specifying
the input and output, and a where statement for the pattern. The first UUIMA Ruta
rule is equivalent to the first create view statement in the AQL example. There
is no need for the second create view statement in UIMA Ruta since the rules
are able to operate on the same types of annotations. The second and third UIMA
Ruta rules emulate the last create view statement, which consolidates overlapping
annotations.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

34 P. Kluegl et al.

WORK EXPERIENCE:
(A) AMERICAN EAGLE (B) City, State
Sales Associate July 2009 - present
Krperlicher Untrrxuchungsh = Collat d with the store handiser creating displays to antract clicntele ’ 2
67-jihriger, 175 cm groBer Patie : I;:: my l:lmd _av.:n'mns to .usir.».l ul.»l::"tdﬂ‘\ .il;_lhgir.slxw.m.g uspclzricmc
Cor. 1/6 Systolikum mit punect) . Pﬂm-“l:d.’ scan every picee o m:h :.; i:Im:mor) contro
vesikulires ATO, keine pen| ICHS SEPRICR 10 Thorotsc By INSSuct Knowiedm
Deackochinsis s Chaouch, PLANET BEACH City, State
positiv, keine Organomegalie Spa Consultant Aug. 2008 - |’1roml
Umfangsdifferenz rechter Unterd * Sell retail and memberships to meet company sales goals
* Build organizational skills by single handedly running all operating procedures
M - ik alinate te GG shais vants snd aasds
12, Poo : mee in Information Extraction. In: AAALOT:
Elimische Chemie: Natrium: 1. o s of 22nd National Conference on Artificial intelligence, pp. 913-918,
21 [20 - 27] mmoll, Glucose; AAAI Press (2007)
ml/min/l, T3gm, Creatinin: 1.2 | 13. Singh. S., Sehultz, K., McCallum, A.: Bi-directional Joint Inference for Entity Res-
49 [34 - 7] mg/dl, Gesamt-Bilirubin: 0.4 olution and Segmentation Using Imperatively-Defined Factor Graphs, In: Proceed-
(ALAT): 277 [50] UN, GGT: 1166 [60] [] ings of the European Conference on Machine Leamning and Knowledge Discovery
Dehydrogenase: 196 [250) UA, in Databases: Part 11 pp. 414-429. ECML PKDD 09, Springer-Verlag (2000)
EKG: 14. Sutton, C.: GRMM: GRaphical Models in Mallet (2006), htep://=allet.cs.
_ usass.edu/gram/
15, Sutton, C., MecCallum, A.: Collective Segmentation and Labeling of Distant Enti-
(c) ties in Information Ex! 1 In: ICML Workshop on Statistical Relational Learn-
ing and Its Connection Mher Fields (2004)

Fig. 9. (Colour online) Excerpts of exemplary documents processed in the case studies:
German clinical letters (A), curricula vitae (B), and scientific references (C).

The rule execution of SystemT is not based on FSTs, but applies an optimized
operator plan for the execution of rules. The rules in UIMA Ruta are also not limited
to a left-to-right matching, which can greatly improve the runtime performance. The
automatic selection of the starting rule element (dynamic anchoring) is a first step
toward an optimized execution plan. UIMA Ruta was developed for the rapid
development of rules and cannot (yet) compete with SystemT concerning runtime
performance.

SystemT provides the best tools for development support of all related systems,
to the best knowledge of the authors. Most of the features are also supported in a
similar form by the UIMA Ruta Workbench. The development support of UIMA
Ruta provides more possibilities to automatically estimate the quality of the rules,
e.g., also on unlabeled documents, which is an essential assistance for developing
rules. Another development environment for creating rules is the IBM Content
Analytics Studio, which propagates a drag-and-drop paradigm for specifying patterns
instead of a textual language. In contrast to UIMA Ruta, the system provides a
more sophisticated dictionary support, but lacks many advantages of flexible rule
languages. In our experience, trained knowledge engineers are faster in specifying
rule sets in a textual form.

6 Case studies

This section describes a selection of information extraction applications implemented
by the authors of this paper with UIMA Ruta. All case studies process domains with
semi-structured texts. Examples of these documents are given in Figure 9. Table 1
provides an overview of the case studies’ key figures. UUIMA Ruta is not restricted
to these kinds of documents, but can also be applied for structured documents, free
texts or other tasks.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 35

Table 1. Key figures of case studies: amount of involved rules, effort spent for rule
development, size (#documents) of development and test set, and F| score on unseen
test set. *Confidential project with industrial partner where effort and F score are not
available, but the company confirmed an increase of efficiency by 100%

#rules effort #documents F; score
(dev/test) (test set)

Curricula vitae (Section 6.1) 25 1h 5/10 0.979
Clinical letters (Section 6.1) 102 <2h 15/126 0.972
References (Section 6.2) 1884 <6 h 12/21 0.997
Curricula vitae (Section 6.3) ~1000 n/a n/a n/a*
Clinical letters (Section 6.4) 463 n/a 500/200 0.992

6.1 Increasing recall in precision-driven prototyping

The two case studies published in Kluegl, Atzmueller, and Puppe (2009¢c) are both
proof-of-concept prototypes using UIMA Ruta. They apply precision-driven rules,
which are able to identify confident information, and then find additional information
using the regularities in the document. The first case study identifies companies in
English curricula vitae with dictionaries and some simple rules for projection of
consistent compositions (cf. Figure 9(B)). About 25 rules have been specified for this
task without any specific process model. The second case study detects headlines
in clinical letters for further segmentation and classification of their contents (cf.
Figure 9(A)). The rules first extract confident headlines and then find the remaining
headlines using the layout of the known headlines (cf. Section 6.4). Overall, the rule
set contains 102 rules. The applied datasets for the development and evaluation of the
prototypes consist of 15 curricula vitae with 72 companies and 141 letters with 1515
headlines whereas thirty and ten percent have been utilized as a development set.
Both rule sets achieve an F; score of over 0.97 on the remaining unseen documents
and have been created in less than 2 h.

6.2 Segmentation of references

The rules in the case study of Kluegl, Hotho, and Puppe (2010) have been engineered
to extract the BibTeX entities Author, Title, Editor, and Date/Year in references of
scientific publications (cf. Figure 9(C)). The approach is implemented with three
sets of rules, which have been engineered using 223 labeled references in 12 and
a combination of test-driven development and regression testing. The first set of
rules serves as a simple base component, which already extracts the targeted entries,
but was created with minimal effort. The second set analyzes the boundaries of the
entries and creates a model of the consistencies of the document by investigating the
dominant composition of entities. The third set finally consists of transformation
rules, which change the type and offsets of the entries dependent on the model
of local consistencies. Overall, the application consists of 1884 rules, which have
been engineered in less than 6 h. The approach achieves remarkable results in the
limited scenario of 299 unseen and well-formatted references in 21 documents with

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

36 P. Kluegl et al.

an average F; score of 0.997. Processing a reference section with 20 references takes
in average 0.418 seconds. The F; score of the base component is 0.983. Example 18
contains a transformation-based rule that corrects Author annotations dependent
on the consistencies.

1‘ Author ->{#{-> SHIFT (Author ,1,2)} EndOfAuthor ANY[0,4]7 ConflictAtEnd;};

Example 18. Example of a transformation-based rule for correcting Author
annotations dependent on a type variable (EndOfAuthor), which stores the dominant
ending of authors, and an additional annotation (ConflictAtEnd) that points out
discrepancies to the local model.

6.3 Template extraction in curricula vitae

UIMA Ruta was applied for template extraction in German curricula vitae (cf.
Figure 9(B)). An early version is described in Atzmueller, Kluegl, and Puppe (2008).
The goal was to detect the projects including the start and end date, the employer,
the title and the important skills. The application utilized rules that imitate the
perception of humans in order to identify the project segments. This is achieved
by modeling different layers of perceptible text fragments (paragraph, table, line)
and finding minimal structures with multiple dates and maximal structures with
exactly one date. This process is extended with patterns for repetitive fragments.
Then, extensive dictionaries and contextual rules are applied for the extraction
of interesting information within these segments. The application consists of about
1,000 rules engineered using a methodology similar to regression testing, but without
a labeled dataset. It was still necessary to manually validate the extraction results,
but the application was able to double the efficiency of the division that populates
databases with the extracted information.

6.4 Segmentation of clinical letters by headline identification

The application described in Beck (2013) provides a real-world implementation for
the segmentation of clinical letters mentioned in Section 6.1 (cf. Figure 9(A)). The
goal is the recognition and classification of different sections, such as diagnosis,
history, various kinds of examinations, therapy and epicrisis. These sections are
then processed by further information extraction applications in order to populate
a clinical data warehouse. The rules have been engineered using 500 labeled letters
using the test-driven development methodology. The script files consist overall of 463
rules and 217 other statements for blocks, declarations and imports. First, the rules
extract the headlines in the document and then use the headlines for the identification
and categorization of the sections. Headlines are detected using different approaches
based on the formatting, semantic keywords, or consistencies within the letter. By
combining these approaches, the application is able to achieve an F; score of 0.993
on 200 unseen documents. Our baseline similar to a component of cTAKES (Savova
et al. 2010) using only keywords and regular expressions resulted in an F; score of
0.912.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 37

7 Conclusions

UIMA Ruta is a useful tool for rule-based information extraction in the ecosystem
of UIMA. The system was designed with a special focus on rapid development in
order to reduce development time and costs. The rule language can be applied for
solving various use cases, but still provides a compact representation. It covers most
functionality of related languages and still introduces a few new features that ease
the specification of complex patterns. The UIMA Ruta Workbench adds another
important aspect for rendering rapid development possible. It provides extensive
tooling support for all tasks that a knowledge engineer has to perform when
creating rule-based information extraction applications. UIMA Ruta is currently
unique concerning the combination of integration in UIMA, expressiveness of its
language and industry-friendly open source license.

The future work in the development of UIMA Ruta is mainly driven by the
requirements of the community. In order to establish the system further and to
improve its acceptance in the community, more examples and ready-to-use rule
sets will be provided in the future. Since UIMA Ruta has put its focus on rapid
development, there remain many opportunities to enhance the runtime performance.
Two directions can be identified: the introduction of language elements that compile
multiple rules into one automaton and the intensified usage of optimized execution
plans. Even if the language specification of UIMA Ruta is already compact and
expressive, it still can be extended to cover different use cases more efficiently. One
example is the incorporation of unification-based techniques for coreference tasks.
Java code directly embedded in rules would allow experienced users to close gaps of
functionality with the cost of reduced tooling support. Ontologies are not yet directly
supported, but can improve information extraction applications. Finally, advanced
rule induction algorithms and similar tools will be able to support the knowledge
engineer further in the creation of information extraction applications.

Acknowledgments

This work was supported by the Competence Network Heart Failure, funded by the
German Federal Ministry of Education and Research (BMBF01 EO1004).

References

Appelt, D. E., and Onyshkevych, B. 1998. The common pattern specification language.
In Proceedings of a Workshop on Held at Baltimore, Maryland: October 13-15, 1998,
(TIPSTER 98), Stroudsburg: ACL, pp. 23-30.

Atzmueller, M., Kluegl, P, and Puppe, F. 2008. Rule-based information extraction for
structured data acquisition using TextMarker. In Baumeister and Atzmueller (ed.) LWA-
2008 (Special Track on Knowledge Discovery and Machine Learning), Wiirzburg, Germany,
pp. 1-7.

Beck, P.-D. 2013. Identifikation und Klassifikation von Abschnitten in Arztbriefen (in German).
Master Thesis, University of Wiirzburg.

Black, W. J., McNaught, J., Vasilakopoulos, A., Zervanou, K., Theodoulidis, B., and Rinaldi,
F. 2005. CAFETIERE: conceptual annotations for facts, events, terms, individual entities
and RElations. Technical Report TR-U4.3.1. Parmenides Technical Report.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

38 P. Kluegl et al.

Boguraev, B., and Neff, M. 2006. An annotation-Based finite-state system for UIMA: pattern
matching over annotations. Technical Report, IBM T.J. Watson Research Center.

Boguraev, B., and Neff, M. 2010. A framework for traversing dense annotation lattices.
Language Resources and Evaluation 44(3): 183-203.

Bohannon, P, Merugu, S., Yu, C., Agarwal, V., DeRose, P, Iyer, A., Jain, A., Kakade,
V., Muralidharan, M., Ramakrishnan, R., and Shen, W. 2009. Purple SOX extraction
management System. SIGMOD Record 37(4): 21-27

Brill, E. 1995. Transformation-based error-driven learning and natural language processing:
a case study in part-of-speech tagging. Computational Linguistics 21(4): 543-565.

Chiticariu, L., Chu, V., Dasgupta, S., Goetz, T. W., Ho, H., Krishnamurthy, R., Lang, A., Li, Y.,
Liu, B,, Raghavan, S., Reiss, F. R., Vaithyanathan, S., and Zhu, H. 2011. The systemT IDE:
an integrated development environment for information Extraction rules. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data, New York:
ACM, pp. 1291-1294.

Chiticariu, L., Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F. R., and Vaithyanathan, S.
2010. SystemT: an algebraic Approach to declarative information extraction. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, Stroudsburg:
ACL, pp. 128-137.

Chiticariu, L., Li, Y., and Reiss, F. R. 2013. Rule-based information extraction is dead! Long
live rule-based information extraction systems! In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, Stroudsburg: ACL, pp. 827-832.

Ciravegna, F. 2003. (LP)2, rule induction for information extraction using linguistic
constraints. Technical Report CS-03-07, Department of Computer Science, University
of Sheffield.

Cunningham, H. 2007. Indexing and querying linguistic metadata and document content. In
Recent Advances in Natural Language Processing IV: Selected papers from RANLP 2005.
292, pp- 35-44. Amsterdam: John Benjamins Publishing Company.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, 1., Gorrell,
G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H.,
Petrak, J., Li, Y., and Peters, W. 2011. Text Processing with GATE (Version 6). Murphys,
CA: Gateway Press.

Cunningham, H., Maynard, D., and Tablan, V. 2000. JAPE: a java annotation patterns engine
(Second Edition). Research Memorandum CS-00-10, Department of Computer Science,
University of Sheffield, Sheffield.

David J., and Hossein S. 2005. Test-driven development: concepts, taxonomy, and future
direction. Computer 38(9): 43-50.

Doan, A., Granavo, L., Ramakrishnan, R., and Vaithyanathan, S. 2008. Special Issue on
Managing Information Extraction. New York: ACM.

Drozdzynski, W., Krieger, H.-U., Piskorski, J., Schifer, U., and Xu, F. 2004. Shallow processing
with unification and typed feature structures - foundations and applications. Kiinstliche
Intelligenz 18(1): 17-23.

Eckstein, B, Kluegl, P., and Puppe, F. 2011. Towards learning error-driven transformations
for information extraction. In Workshop Notes of the LWA 2011 - Learning, Knowledge,
Adaptation, Magdeburg, Germany, pp. 199-204.

Fagin, R., Kimelfeld, B., Reiss, F., and Vansummeren, S. 2013. Spanners: a formal framework
for information extraction. In Proceedings of the 32nd Symposium on Principles of Database
Systems, New York: ACM, pp. 37-48.

Ferrucci, D., and Lally, A. 2004. UIMA: An architectural approach to unstructured
information processing in the corporate research environment. Natural Language
Engineering 10(3/4): 327-348.

Ferrucci, D. A., Brown, E. W., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A.,
Murdock, J. W.,, Nyberg, E., Prager, J. M., Schlaefer, N., and Welty, C. A. 2010. Building
Watson: an overview of the DeepQA project. AI Magazine 31(3): 59-79.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 39

Greenwood, M. A. Tablan, V., and Maynard, D. 2011. GATE Mmir: answering
questions Google Cant. In Proceedings of the 10th International Semantic Web Conference
(ISWC2011). Lecture Notes in Computer Science, vol. 7031. Springer.

Gurevych, 1., Miithlhduser, M., Miiller, C., Steimle, J., Weimer, M., and Zesch, T. 2007.
Darmstadt knowledge processing repository based on UIMA. In Proceedings of the First
Workshop on Unstructured Information Management Architecture at Biannual Conference of
the Society for Computational Linguistics and Language Technology, Heidelberg: Springer.

IIntema, W., Sangers, J., Hogenboom, F., and Frasincar, F. 2012. A lexicosemantic pattern
language for learning ontology instances from text. Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 15. Amsterdam: Elsevier, pp. 37-50.

Khaitan, S., Ramakrishnan, G., Joshi, S., and Chalamalla, A. 2008. RAD: a scalable
framework for annotator development. In Alonso, Blakeley and Chen (ed.), ICDE, Los
Alamitos, CA: IEEE Computer Society Press, pp. 1624-1627.

Kluegl, P,, Atzmueller, M., Hermann, T., and Puppe, F. 2009a. A framework for semi-automatic
development of rule-based information extraction applications. In Hartmann and Janssen
(ed.), Proceedings LWA 2009 (KDML - Special Track on Knowledge Discovery and Machine
Learning), Darmstadt, Germany, pp. 56-59.

Kluegl, P, Atzmueller, M., and Puppe, F. 2009b. Test-driven development of complex
information Extraction systems using TextMarker. In Naplepa and Baumeister (ed.),
4th International Workshop on Knowledge Engineering and Software Engineering (KESE
2008), 31th German Conference on Artificial Intelligence (KI-2008), Darmstadt, Germany,
pp. 19-30.

Kluegl, P, Atzmueller, M., and Puppe, F. 2009¢c. Meta-level information extraction. In 32nd
Annual German Conference on Artificial Intelligence (KI 2009), Berlin: Springer, pp. 233—
240.

Kluegl, P., Atzmueller, M., and Puppe, F. 2009d. TextMarker: a tool for rule-based information
Extraction. In Chiarcos, Eckart de Castilho and Stede (ed.), Proceedings of the Biennial
GSCL Conference 2009, 2nd UIMA@GSCL Workshop, Tiibingen: Gunter Narr Verlag,
pp. 233-240.

Kluegl, P, Hotho, A., and Puppe, F. 2010. Local adaptive extraction of references. In 33rd
Annual German Conference on Artificial Intelligence (KI 2010), Berlin: Springer, pp 40-47.

Lafferty, J., McCallum, A., and Pereira, F. 2001. Conditional random fields: probabilistic
models for segmenting and labeling sequence data. In Proceedings 18th International
Conference on Machine Learning, San Francisco: Morgan Kaufmann, pp. 282-289.

Li, Y., Chiticariu, L., Yang, H., Reiss, F. R,, and Carreno-fuentes, A. 2012. WizIE: a best
practices guided development environment for information extraction. In Proceedings of
the ACL 2012 System Demonstrations, ACL 12, Stroudsburg: ACL, pp. 109-114.

Maximilien, E. M., and Williams, L 2003. Assessing test-driven development at IBM. In
ICSE °03: Proceedings of the 25th International Conference on Software Engineering, Los
Alamitos: IEEE Computer Society Press, pp. 564—5609.

Piskorski, J., and Yangarber, R. 2013. Information extraction: past, present and future. In
Poibeau, Saggion, Piskorski and Yangarber (ed.), Multi-source, Multilingual Information
Extraction and Summarization, Theory and Applications of Natural Language Processing,
Berlin: Springer, pp. 23-49.

Ramakrishnan, G., Balakrishnan, S., and Joshi, S. 2006. Entity Annotation based on inverse
index operations. In Jurafsky and Gaussier (ed.), EMNLP, Stroudsburg: ACL, pp. 492—
500.

Savova, G. K., Masanz, J. J., Ogren, P. V., Zheng, J., Sohn, S., Kipper-Schuler, K. C,
and Chute, C. G. 2010. Mayo clinical text analysis and knowledge extraction system
(cTAKES): architecture, component evaluation and applications. Journal of the American
Medical Informatics Association: JAMIA 17(5): 507-513.

Shen, W., Doan, A., Naughton, J. F., and Ramakrishnan, R. 2007. Declarative information
extraction using datalog with embedded extraction predicates. In Proceedings of the 33rd

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

40 P. Kluegl et al.

International Conference on Very Large Data Bases, (VLDB '07), VLDB Endowment,
pp. 1033-1044.

Soderland, S., Cardie, C., and Mooney, R. 1999. Learning information extraction rules for
semi-structured and free text. Machine Learning 34: 233-272.

Turmo, J., Ageno, A., and Catala, N. 2006. Adaptive information extraction. ACM Computing
Surveys 38(2): 1-47.

Wittek, A., Toepfer, M., Fette, G., Kluegl, P.,, and Puppe, F. 2013. Constraint-driven evaluation
in UIMA Ruta. In Kluegl, Eckart de Castilho and Tomanek (ed.), UIMA@GSCL, CEUR
Workshop Proceedings, vol. 1038. CEUR-WS.org, pp. 58-65.

Yang, H., Pupons-Wickham, D., Chiticariu, L., Li, Y., Nguyen, B., and Carreno-Fuentes,
A 2013. T can do text analytics!: Designing development tools for novice developers. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (CHI 13),
New York: ACM, pp. 1599-1608.

https://doi.org/10.1017/51351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

