
Natural Language Engineering 22 (1): 1–40. c© Cambridge University Press 2014

doi:10.1017/S1351324914000114
1

UIMA Ruta: Rapid development of rule-based

information extraction applications

P E T E R K L U E G L1, M A R T I N T O E P F E R2,

P H I L I P - D A N I E L B E C K2, G E O R G F E T T E2

and F R A N K P U P P E2

1Comprehensive Heart Failure Center, University of Würzburg, Straubmühlweg 2a

and Department of Computer Science VI, University of Würzburg, Am Hubland,

Würzburg, Germany

email: peter.kluegl@uni-wuerzburg.de
2Department of Computer Science VI, University of Würzburg, Am Hubland,

Würzburg, Germany

email: {martin.toepfer, philip.beck, georg.fette, frank.puppe}@uni-wuerzburg.de

(Received 4 Feburary 2014; revised 21 August 2014; accepted 26 August 2014;

first published online 8 October 2014)

Abstract

Rule-based information extraction is an important approach for processing the increasingly

available amount of unstructured data. The manual creation of rule-based applications is a

time-consuming and tedious task, which requires qualified knowledge engineers. The costs

of this process can be reduced by providing a suitable rule language and extensive tooling

support. This paper presents UIMA Ruta, a tool for rule-based information extraction and

text processing applications. The system was designed with focus on rapid development. The

rule language and its matching paradigm facilitate the quick specification of comprehensible

extraction knowledge. They support a compact representation while still providing a high

level of expressiveness. These advantages are supplemented by the development environment

UIMA Ruta Workbench. It provides, in addition to extensive editing support, essential

assistance for explanation of rule execution, introspection, automatic validation, and rule

induction. UIMA Ruta is a useful tool for academia and industry due to its open source

license. We compare UIMA Ruta to related rule-based systems especially concerning the

compactness of the rule representation, the expressiveness, and the provided tooling support.

The competitiveness of the runtime performance is shown in relation to a popular and freely-

available system. A selection of case studies implemented with UIMA Ruta illustrates the

usefulness of the system in real-world scenarios.

1 Introduction

Information extraction addresses the identification of well-defined entities and

relations in unstructured data and especially in textual documents. Even if the

research in this task has a long history, it becomes more and more important

nowadays due to the increased availability of unstructured data. In order to

access the concealed information for analytic processes, it has to be transformed

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

2 P. Kluegl et al.

into a structured representation. Hence, information extraction has become a key

component in the integration of textual data and can be considered as an umbrella

term for many interesting tasks such as named entity recognition, sentiment analysis

or knowledge extraction. Two emerging and challenging trends in this area are

information extraction from social media, like blogs or tweets (Piskorski and

Yangarber 2013), and knowledge extraction from clinical notes (Savova et al. 2010).

Approaches to information extraction can roughly be divided into two main cate-

gories: Approaches based on handcrafted rules and approaches based on statistical

models trained in a supervised fashion. The latter models include classifiers or

probabilistic graphical models like Conditional Random Fields (Lafferty, McCallum

and Pereira 2001). There are of course no clear boundaries since hybrid information

extraction systems can apply components of both approaches, or the rules are not

written by a knowledge engineer, but they are automatically induced. While statistical

models dominate the research in academia, commercial applications are mostly

implemented as rule-based systems (Chiticariu, Li and Reiss 2013). This discrepancy

cannot be explained by the latency of translational efforts from research to industry.

Chiticariu et al. have investigated the reasons for this disconnect and noticed that

research and industry measure the costs and benefits of information extraction

differently (Chiticariu et al. 2013). Aside from many other reasons, rule-based systems

sometimes fit better in the requirements of real-world use cases, e.g., availability of

labeled data, stability of the specification, or traceability of results. Even though

statistical models often perform better in information extraction challenges, the

need for rule-based information extraction will not decrease in the foreseeable

future. The amount of publications about rule-based systems and approaches has

even been slightly increasing in the recent years (Doan et al. 2008). Approaches

for rule-based information extraction provide also advantages in combination with

statistical models. Rules can be applied for high-level feature extraction, for solving

different pre- and postprocessing tasks, and for semi-automatic creation of gold

standards. It is often faster to engineer one rule than to annotate repeating mentions

of a specific entity.

Rule-based information extraction systems mostly consist of a specification of

a text-based rule language and an interpreter, which is able to apply the rules

on documents in order to identify new information (Appelt and Onyshkevych

1998). The textual representation of rules leads to a development process where a

knowledge engineer manually writes rules. These rules are composed of a condition

part and an action part. The condition of the rule is a pattern of properties, which

need to be fulfilled by an interesting position in the document. The properties are

normally represented as annotations. These annotations assign a specific type and

possibly additional features to a span of text. Such features may be capitalization,

part of speech, formatting, or presence in a dictionary. Since the sequential order

of properties is very important for the specification of patterns, the condition

part often represents a regular expression over annotations possibly extended with

additional constraints. If the regular expression matches on a text position, then

the action part modifies the annotations. In the majority of cases, new annotations

are added, which represent interesting entities and relations, or complex properties.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 3

The matching algorithm of a set of rules (rule grammar) is often implemented

as a Finite State Transducer (FST), an automaton which traverses the annotation

lattices and creates or modifies annotations (Cunningham, Maynard and Tablan

2000; Drozdzynski et al. 2004; Boguraev and Neff 2010). The automaton processes

the document just once and does not react on its own modifications. A popular

strategy is the usage of cascaded rule grammars, where one grammar is based on the

results of previous grammars. This approach provides many engineering advantages,

for example, the easier specification of complex patterns by describing them as a

combination of simpler ones, or the clear separation of the stages of engineering

approaches and their contexts (Boguraev and Neff 2006).

The creation of rule-based information extraction applications is a knowledge

engineering process and its success depends on diverse factors. In contrast to

approaches based on machine learning techniques, the rules are normally written

by a human knowledge engineer, whose availability and training have major

influence on the quality of the application. Developing rule-based information

extraction applications can be a time-consuming and tedious task and a qualified

knowledge engineer is an expensive resource. Thus, she should be supported by a

compact rule representation and extensive tooling in order to guarantee a rapid and

efficient development process. The rule language itself needs to provide a level of

expressiveness that facilitates the effective specification of the patterns and actions.

Both factors are able to reduce development time and costs. Finally, applications

may require a certain order of runtime performance, which influences other factors.

This paper presents UIMA Ruta (Rule-based Text Annotation)1, a rule-based

tool that focuses especially on the rapid development of information extraction and

even general text processing applications. The system consists of a rule language

extended with scripting elements and a strong development support. The rule

language was designed to provide a compact and comprehensible representation

of patterns over annotations without restricting its expressiveness or area of use.

It covers almost all features of related rule languages for information extraction

while still introducing a few new ones. Although the rule language was optimized

for rapid development and not for runtime performance, it competes well with

similar rule-based systems concerning speed. The UIMA Ruta Workbench provides

a full-featured development environment for the UIMA Ruta language, which

exceeds the functionality of most related tools. It was developed to ease every

step in engineering rule-based applications and provides, in addition to classical

editing support like syntax checking, various useful tools. The system can generate a

complete explanation of each step of the rule inference, which enables the engineer

to adapt rules responsible for unintended behavior. The engineering process is

supported by tools for introspection, test-driven development, constraint-driven

evaluation, and automatic rule induction. The combination of the provided tooling

results in a rapid and agile development of well-maintained rule sets. UIMA Ruta

is an open source project with an industry-friendly license and is now being

1 An early version was published under the name TextMarker (Kluegl, Atzmueller and Puppe
2009d).

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

4 P. Kluegl et al.

developed by an active community. The project page2 contains further links to

the documentation, examples, and tutorials.

The rest of the paper is structured as follows: Section 2 gives an overview of

the related work in the area of rule-based information extraction systems. The

rule-based scripting language is introduced in Section 3. The syntax, semantics, and

the rule matching algorithm are explained in detail and illustrated with examples.

Furthermore, a selection of special features and different engineering approaches

complement the description of the language. Section 4 focuses on the development

environment and available tooling for improving the engineering experience. In

Section 5, a comparison of UIMA Ruta and related rule languages is provided.

Section 6 gives a short overview of case studies using UIMA Ruta and Section 7

concludes with a summary.

2 Related work

The related work can be divided into two main categories: systems that provide a

text-based rule language for information extraction tasks and development environ-

ments for supporting the engineering process. Rule-based information extraction is

a well-studied field. We do not provide an exhaustive overview of related systems,

but introduce only a selection of recent work. A comparison of UIMA Ruta to these

systems is given in Section 5. An introduction to the historical development in this

area can be found, for example, in Turmo, Ageno, and Català (2006). Before the

related work is described, the main concepts of the architecture underlying UIMA

Ruta are introduced as preliminaries for the next sections.

2.1 Architectures

Rule grammars for information extraction are often part of a larger pipeline of

components. The rules build upon annotations added by the previous components

most often for linguistic analysis of the document. These components include, for

example, tokenizers, sentence detectors, gazetteers, part-of-speech taggers, morpho-

logical analyzers, or parsers. Rule-based systems are therefore integrated in an

architecture or framework for natural language processing in the majority of cases.

The architectures provide uniform models for data exchange, component interfaces

and process control, which simplify the interoperability of the components and

facilitate the specification of complete pipelines. Two popular and freely available

architectures for natural language processing are the General Architecture for Text

Engineering (GATE) (Cunningham et al. 2011) and the Unstructured Information

Management Architecture (UIMA) (Ferrucci and Lally 2004). The contribution of

this work, UIMA Ruta, is integrated in UIMA, as the name already indicates. Since

UIMA Ruta makes extensive use of its main concepts, they are shortly introduced

in the following paragraph.

2 http://uima.apache.org/ruta.html

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 5

UIMA (Ferrucci and Lally 2004) is a flexible and extensible framework for

the analysis and processing of unstructured data and text in particular. It directs

its attention especially to the interoperability of components and the scale-out

functionality for vast amounts of data. The components of the framework are

called analysis engines and are specified in a descriptor that provides information

about their implementation, configuration, and capabilities. The analysis engines

communicate in a pipeline by adding or modifying the meta information stored in the

Common Analysis System (CAS), which contains the currently processed document.

This information is represented by typed feature structures and is ordered in indexes

for an efficient access. The type of the feature structure defines its semantic and its

additional features, which consist of primitive values or other feature structures. The

available set of types and their inheritance is specified in type system descriptors.

The most common type of a feature structure is the annotation that defines two

additional features, begin and end, assigning its type and additional features to a

span of text. Most analysis engines create new annotations or modify existing ones

in order to represent the result of their analysis.

UIMA is only a framework and does not ship a rich selection of components.

There are, however, component repositories like DKPro (Gurevych et al. 2007)

that provide analysis engines of well-known components for natural language

processing. Two prominent applications that built upon UIMA are the DeepQA

system Watson (Ferrucci et al. 2010) and the clinical Text Analysis and Knowledge

Extraction System (cTAKES) (Savova et al. 2010).

2.2 Rule languages

The Common Pattern Specification Language (CPSL) (Appelt and Onyshkevych

1998) is the result of the effort of different researchers for defining a system-

independent language for information extraction. It defines a common formalism

for the representation of finite-state grammars. The Java Annotation Patterns Engine

(JAPE) (Cunningham et al. 2000) provides FST over annotations based on regular

expressions. It is probably the most noted implementation of the CPSL specification

with a few differences and extensions. JAPE is part of the GATE ecosystem, which led

to its wide-spread use. Following the CPSL specification, a JAPE grammar consists

of a set of phases, which are sequentially executed. A phase itself is composed of

a set of rules that are compiled into one FST. The actual matching strategy of the

rules can be specified at the beginning of the phase by the control style, which uses

priorities to determine applicable rules and selects the next position after a match.

The spans of newly created annotations are determined by labels in the condition

part. The action part allows the inclusion of Java code in order to avoid limitations

of the CPSL specification.

SProUT (Drozdzynski et al. 2004) (shallow processing with unification and

typed feature structures) combines the ideas of FSTs, typed feature structures and

unification-based grammars. The rules defined in their language XTDL are regular

expressions over typed feature structures and allow to define coreference constraints

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

6 P. Kluegl et al.

between the different elements of the rule. The consequences of the rules can apply

externally defined operators. For execution, the rules are transformed into FSTs.

Boguraev and Neff (2010) presented an annotation-based finite-state transducer

(AFST), which is able to navigate in dense annotation lattices. It extends the

horizontal sequential patterns with navigation in the vertical direction, which enables

the user to specify more constraints for the relationship of overlapping annotations.

The system is completely based on UIMA and thus straightforwardly supports

patterns over typed feature structures. AFST interprets the matching process of

the FST as a linear path through the annotation lattice, which is based on the

indexes and iterators of UIMA. If several annotations start at the same offsets,

the annotation with the highest priority is selected. The exact matching behavior is

specified by grammar-wide declarations. The spans of newly created annotations are

determined with surrounding tags in the condition part. The AFST language also

provides a small set of additional predicates.

SystemT (Chiticariu et al. 2010) is a good example for current trends in research

about rule languages for information extraction. Its rule language AQL follows a

more declarative approach regarding the definition of patterns and provides a syntax

similar to SQL. The rules are not transformed into a FST but into an operator graph,

which allows the selection of an optimized execution plan. Breaking up the strict

left-to-right evaluation of the patterns, SystemT is able to achieve a much higher

runtime performance. The resulting annotators can be integrated into UIMA. An

investigation of the formal model underlying AQL can be found in Fagin et al.

(2013).

Many other rule languages have been published in the recent years. CAFETIERE

(Black et al. 2005) combines the strict sequential execution of regular expressions

over annotations with basic coreference constraints. Its data model seems to allow

only a disjunct partitioning of the document. HIEL (IJntema et al. 2012) is built

upon JAPE and focuses on a compact rule representation for elements of an

ontology. Xlog (Shen et al. 2007) is a rule language based on Datalog with embedded

extraction predicates. It supports query optimization techniques for an improved

runtime performance. The declarative language in PSOX (Bohannon et al. 2009) is

based on an SQL-like syntax. The system focuses on the extensibility of its operator

model, the explainability, and a scoring model for social feedback.

2.3 Development support

Many of the rule-based systems described in the last section also provide some

development tools, which range from only basic syntax validation to editor support

or testing of rules. The most notable tool is probably the development environment

of SystemT (Chiticariu et al. 2011). It provides an editor with syntax highlighting and

hyperlink navigation, an annotation provenance viewer, a contextual clue discoverer,

a regular expression learner, and a rule refiner. In WizIE (Li et al. 2012), a process

model is introduced that guides the developer in the different steps and enables

novice developers to create high-quality applications (Yang et al. 2013).

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 7

The IBM Content Analytics Studio3 is a UIMA-based development environment

for the specification of rules in a drag and drop paradigm. ARDAKE4 provides

an environment for the integration of business and semantic rules in UIMA-based

annotators. RAD (Khaitan et al. 2008) is a tool for Rapid Annotator Development.

Its rules are based on inverted index operations (Ramakrishnan, Balakrishnan and

Joshi 2006), which allows for a quick feedback of rule modifications.

3 UIMA Ruta language

The UIMA Ruta language is primarily a rule-based language for specifying patterns

over annotations and additional consequences if the pattern successfully matches

on a text position. The rules are applied sequentially in the order specified by

the knowledge engineer. The language was incrementally extended with elements

uncommon to rule languages such as control structures and variables. These two

characteristics led to a perspective from which the UIMA Ruta language can be

interpreted as a scripting language.

This section provides an introduction to the UIMA Ruta language and its

rule matching process. The different aspects of the language and engineering

approaches are illustrated by examples. Additional information about the exact

syntax, provided language elements and further introductory examples can be found

in the documentation of the system5.

From a UIMA perspective, UIMA Ruta provides a generic analysis engine,

which interprets the rule-based script files. Before the rules are applied, a tokenizer

adds annotations to the document representing different classes of tokens such as

capitalized words (CW, e.g., ‘Peter’), numbers (NUM), different kinds of punctuation

marks (COMMA, PERIOD, . . .), and many more. These annotations can be utilized

to define some initial rules, which, for their part, create new annotations that will be

used by other rules. The types are part of a type hierarchy enabling the knowledge

engineer to refer to lexical properties on different levels of abstraction.

3.1 Syntax and semantics

The following sections first describe the actual executable resource, the script file,

before the syntax of rules in the UIMA Ruta language is defined. Along with

the grammars, examples for rules and scripts are given in order to illustrate valid

excerpts of the UIMA Ruta language.

3.1.1 Script definition

The general syntax of a UIMA Ruta script file is given in Grammar 1, which states

that a script consists of an optional specification of the package followed by an

3 formerly named IBM LanguageWare Resource Workbench: http://www.alphaworks.
ibm.com/tech/lrw

4 http://www.ardake.com/
5 http://uima.apache.org/d/ruta-current/tools.ruta.book.html

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

8 P. Kluegl et al.

optional list of import declarations and an optional list of statements. The language

supports four different kinds of imports: The keyword ‘TYPESYSTEM’ indicates

the import of a UIMA type system descriptor whereby its defined types are made

available in the script file. The keyword ‘SCRIPT’ includes an additional script and

its known types for further usage. The remaining two keywords ‘ENGINE’ and

‘UIMAFIT’ import analysis engines, which can then be executed from within the

script file. Following the imports, a list of statements constitutes the major part of

the script file and its actual functionality. Three different groups of statements can

be distinguished. Declarations define new UIMA types, new variables or external

dictionaries. The definition of new types serves only for rapid development in the

UIMA Ruta Workbench since it avoids switching to other tools. The other two

declarations define new elements of the UIMA Ruta language itself. The block

statement is a script-like control structure that provides special functionality for

the knowledge engineer such as procedures, definition by cases or restriction of the

window the rules are applied in. This construct and similar language elements are

described in Section 3.4. The remaining kind of statement, the rules, provides the

actual functionality of the script file and is described in the next section after an

example of a common composition of a script file.

Grammar 1. Simplified grammar of the script syntax.

〈script〉 ::= 〈package〉? 〈import〉* 〈statement〉*

〈import〉 ::= (’TYPESYSTEM’ | ’SCRIPT’ | ’ENGINE’ | ’UIMAFIT’)
〈identifier〉 ’;’

〈statement〉 ::= 〈declaration〉 | 〈rule〉 | 〈block〉

〈declaration〉 ::= 〈TypeDeclaration〉
| 〈VariableDeclaration〉
| 〈DictionaryDeclaration〉

〈block〉 ::= ’BLOCK’ ’(’ 〈identifier〉 ’)’ 〈ruleElement〉 ’{’ 〈statement〉+ ’}’

Example 1 contains a script with diverse language elements for parsing biblio-

graphic references. The example starts with a specification of the package of the

script file, which is applied for defining the namespace of newly defined types and

blocks. In lines 3 and 17, two comments provide an explanation of the corresponding

environment. From lines 4 to 8, different global imports are added starting with

importing a type system descriptor making its type definitions available. Then, three

additional scripts are included and finally an external analysis engine is imported

in line 8. Line 10 contains a type declaration. The following lines 11 to 15 provide

simple rules, which execute the imported analysis engine and script files on the

current document (e.g., Year as abbreviation of uima.ruta.example.Year). From line

18 onwards, a block declaration applies a rule for each annotation of the type

Reference. This example illustrates the usage of the UIMA Ruta rule language for

the definition of a pipeline with different components and some additional post-

processing. Solving different engineering tasks like the combination of components

or the declaration of new types is an important aspect for rapid development and

avoids switching to other tools.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 9

1
2 PACKAGE uima.ruta.example;
3
4 // import the types of this type system
5 TYPESYSTEM types.BibtexTypeSystem;
6 SCRIPT uima.ruta.example.Author;
7 SCRIPT uima.ruta.example.Title;
8 SCRIPT uima.ruta.example.Year;
9 ENGINE uima.ruta.example.SegmentationEngine;

10
11 DECLARE Reference;
12 Document{-> CALL(SegmentationEngine)};
13
14 Document{-> CALL(Year)};
15 Document{-> CALL(Author)};
16 Document{-> CALL(Title)};
17
18 // create bibtex annotation
19 BLOCK(forEach) Reference {} {
20 Document{-> CREATE(Bibtex , "author" = Author ,
21 "title" = Title , "year" = Year)};
22 }

Example 1. UIMA Ruta script pipeline for parsing bibliographic references.

3.1.2 Rule definition

The syntax of rules in the UIMA Ruta language is specified in Grammar 2. A rule

commonly consists of a sequence of rule elements followed by a semicolon indicating

the end of the rule. Simple regular expression rules and conjunctions of rules are

two special kinds of rules. A rule element itself consists of at least a mandatory

match reference, which creates a connection to the document by matching on a

text fragment. This connection can be specified by five different kinds of references.

A type expression represents a UIMA type and is the most common kind of

match reference. The rule element matches on the annotation of the given type

and, therefore, on the position covered by the annotation. The feature expression

is an extension of the type expression by adding additional constraints on the

feature values of the matched annotation or by referring to the annotations stored

as feature values. A string expression represents a character sequence and enables

the rule element to match directly on the text passage of the document with the

identical character sequence. The match reference of a rule element can also consist

of composed rule elements for a sequential, conjunctive or disjunctive grouping. The

last kind of match reference is the wildcard, which provides a placeholder for any

kind of text passage.

A rule element can be extended with several optional language elements. The

anchor marker ‘@’ in front of a rule element will be discussed in Section 3.2. The

optional quantifier part specifies how often the rule element may match or has to

match for a successful rule match. It supports the four most common quantifiers

known by regular expressions (‘?’, ‘*’, ‘+’, min/max), each in a greedy and reluctant

form. A rule element without a quantifier has to match exactly once.

After the optional quantifier, curly brackets contain lists of optional conditions

and actions, which are separated by an arrow ‘->’. Conditions are binary predicates

and specify additional constraints on the matched position that need to be fulfilled

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

10 P. Kluegl et al.

Grammar 2. Simplified grammar of the rule syntax.

〈rule〉 ::= (〈ruleElement〉+ | 〈regExpRule〉 | 〈conjunctRules〉) ’;’

〈ruleElement〉 ::= ’@’? 〈matchReference〉 〈quantifier〉? (’{’ 〈conditions〉?
’->’ 〈actions〉? ’}’)? 〈inlinedRules〉?

〈matchReference〉 ::= 〈typeExpression〉 | 〈stringExpression〉
| 〈featureExpression〉 | 〈composedRE〉 | 〈wildCard〉

〈composedRE〉 ::= ’(’ 〈ruleElement〉+ ’)’
| ’(’ 〈ruleElement〉 (’&’ 〈ruleElement〉)+ ’)’
| ’(’ 〈ruleElement〉 (’|’ 〈ruleElement〉)+ ’)’

〈quantifier〉 ::= ’?’ | ’??’ | ’*’ | ’*?’ | ’+’ | ’+?’
| ’[’ 〈numberExpression〉 ’,’ 〈numberExpression〉 ’]’
| ’[’ 〈numberExpression〉 ’,’ 〈numberExpression〉 ’]’ ’?’

〈conditions〉 ::= 〈condition〉 (’,’ 〈condition〉)*

〈actions〉 ::= 〈action〉 (’,’ 〈action〉)*

〈condition〉 ::= ConditionKeyword ’(’ 〈expression〉 (’,’ 〈expression〉)* ’)’

〈action〉 ::= ActionKeyword ’(’ 〈expression〉 (’,’ 〈expression〉)* ’)’

〈inlinedRules〉 ::= (’->’ | ’<-’) ’{’ 〈rule〉 + ’}’

for a successful match of the rule element. Actions represent the consequences of the

rule and are only applied if the complete rule matched successfully. Conditions and

actions both start with a keyword indicating its type followed by a list of expressions

in parentheses determining possible arguments and configurations. The last optional

part of a rule element, the inlined rules, is discussed in Section 3.4. Examples of rules

in different notations are given in the following. They are semantically identical, but

represent the preferences of different rule engineers.

1 // three notations of the same rule that matches on
2 // texts like ‘‘Dec. 2004’’, ‘‘July 85’’ or ‘‘11.2008’’
3 ANY{INLIST(MonthsList) -> MARK(Month), MARK(Date ,1 ,3)}
4 PERIOD? NUM{REGEXP(".{2 ,4}") -> MARK(Year)};
5
6 (ANY{INLIST(MonthsList) -> Month} PERIOD?
7 NUM{REGEXP(".{2 ,4}") -> Year}){-> Date};
8
9 ANY{INLIST(MonthsList)} PERIOD? NUM{REGEXP(".{2 ,4}")

10 -> MARK(Month ,1), MARK(Year ,3), MARK(Date ,1 ,3)};

Example 2. Three different notations of the same rule for detecting dates: old

fashioned (line 3+4), compact (line 6+7), and traditional (line 9+10). Years with

three digits are allowed.

The first rule in Example 2 (lines 3 and 4) consists of three rule elements. The

first one (ANY. . .) matches on every token, which covers text that occurs in the

word list MonthsList. The second rule element (PERIOD?) is optional and does

not need to be fulfilled, which is indicated by its quantifier ‘?’. The last rule element

(NUM. . .) matches on numbers that fulfill the regular expression REGEXP(‘.{2,4}’)
and have a length of at least two characters to a maximum of four characters. If

this rule successfully matches on a text passage, then its three actions are executed:

An annotation of the type Month is created for the first rule element, an annotation

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 11

Conditions AFTER, AND, BEFORE, CONTAINS, CONTEXTCOUNT, COUNT, CURRENTCOUNT, ENDSWITH,
FEATURE, IF, INLIST, IS, LAST, MOFN, NEAR, NOT, OR, PARSE, PARTOF, PARTOFNEQ,
POSITION, REGEXP, SCORE, SIZE, STARTSWITH, TOTALCOUNT, VOTE

Actions ADD, ADDFILTERTYPE, ADDRETAINTYPE, ASSIGN, CALL, CLEAR, COLOR, CONFIGURE,
CREATE, DEL, DYNAMICANCHORING, EXEC, FILL, FILTERTYPE, GATHER, GET, GETFEATURE,
GETLIST, GREEDYANCHORING, LOG, MARK, MARKFAST, MARKFIRST, MARKLAST, MARKONCE,
MARKSCORE, MARKTABLE, MATCHEDTEXT, MERGE, REMOVE, REMOVEDUPLICATE,
REMOVEFILTERTYPE, REMOVERETAINTYPE, REPLACE, RETAINTYPE, SETFEATURE, SHIFT,
TRANSFER, TRIE, TRIM, UNMARK, UNMARKALL

Fig. 1. (Colour online) List of conditions and actions currently available in UIMA Ruta.

of the type Year is created for the last rule element, and an annotation of the type

Date is created for the span of all three rule elements. If the word list contains the

correct entries, then this rule matches on strings like ‘Dec. 2004’, ‘July 85’ or ‘Nov.

2008’ and creates the corresponding annotations.

The language also supports syntactic sugar that allows one to specify conditions

and actions using expressions without keywords. The knowledge engineer can use

boolean expressions, such as boolean variables, or feature-match expressions in order

to formulate compact conditions. As for actions, a type expression is able to replace

a MARK action and feature-assignment expressions are able to modify the values

of matched feature structures. The second rule in Example 2 (lines 6 and 7) provides

an alternative of how the first rule can be rewritten without MARK actions.

Usually, the conditions and actions are clearly separated in well-known rule

languages. While the conditions make up the left-hand part, the actions follow in a

right-hand part after a distinctive separator. In the UIMA Ruta language, actions

can occur at each rule element after the list of conditions and are not located solely at

the end of the rule as it would be expected. Allowing actions to be attached to the rule

element, which supplies the context for its consequences, provides various advantages

and results in a more compact rule representation. However, the actions can be de-

tached and listed at the last rule element in most situations, simulating the traditional

composition. The third rule in Example 2 (lines 9 and 10) provides an example of

how the first rule can be rewritten with the actions located at the end of the rule.

The conditions and actions in the previous examples reflect only a small sample

of the available constructs. The language provides more than 25 different conditions

and more than 40 different actions, which enables the knowledge engineer to

tackle different annotation tasks efficiently. An overview of the available actions

and conditions is given in Figure 1. Actions, for example, cannot only add new

annotations, but are also able to remove (UNMARK) or modify existing ones

(SHIFT), or execute other components (EXEC). Special actions are also applied

for creating relations between entities or simply copying feature values as shown in

Example 3.

1 Token{-> CREATE(Container , "pos" = Token.posTag , "lemma" = Lemma.value ,
2 "token" = Token)};

Example 3. A simple rule for copying feature values and assigning annotations to

features. A new annotation of the type Container is created, which stores different

information of the underlying annotations as feature values.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

12 P. Kluegl et al.

The rule creates a new annotation of the type Container for each Token

annotation. Furthermore, three features are automatically filled with values: The

value of the feature ‘posTag’ of the Token annotation is assigned to the feature ‘pos’

of the Container annotation. The value of the feature ‘value’ of a Lemma annotation

with the same offsets as the matched Token annotation is assigned to the feature

‘lemma’ of the Container annotation. Finally, the complete Token annotation is

stored in the feature ‘token’.

Different users have different use cases and require specialized language constructs

for efficiently implementing their rule-based applications. UIMA Ruta provides

a plugin concept for extending the language by additional actions, conditions,

functions, and even blocks, which modify rule execution. The knowledge engineer is

not restricted to the available list of language elements, but can adapt and optimize

the language for her use cases.

3.2 Inference

The description of the syntax and semantics in the last section provided an overview

on the specification of valid rules and their meaning. This section now considers

how the rules are applied. Before the matching algorithm is introduced, the order of

rule application is discussed.

3.2.1 Rule execution

UIMA Ruta rules are applied in an imperative manner, one rule after another, in the

same order they occur in the script file. This leads to an interpretation of the language

as cascaded FSTs, whereas each transducer corresponds to one rule. Other rule-based

languages for information extraction compile the rules of one phase into one FST in

order to avoid unnecessary and duplicate inference steps. Although sequential execu-

tion provides some disadvantages, the advantages prevail in the focus of the system,

which is rapid development of rule-based information extraction applications.

The disadvantages consist mainly in the possibility of a decreased performance

for large rule sets and in the missing truth maintenance between rules. However,

truth maintenance is hardly supported by automata-based languages in general. The

performance issue compared to rules compiled in one single FST occurs especially

if many rules start with the same match reference resulting in a variety of identical

and redundant operations. If, however, the rules have no joint match references, the

performance differs only marginally since the rules share no states in the automaton.

The absence of truth maintenance potentially leads to an increased number of

rules. If a rule activates or negates the preconditions of previous rules, then their

postconditions are not automatically executed or revoked. The knowledge engineer

has to add additional rules for propagating the desired effect like in other languages.

The advantages of this kind of imperative rule execution can particularly be found

in its simplicity, which is important for rapid development of rule sets and can be

essential for inexperienced users or users not familiar with rule-based systems.

The user does not have to consider side effects to previous rules and snares of

dependent rules. Due to the missing truth maintenance, the rules of a script have

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 13

to be structured correspondingly to their dependencies, which results in a clear

and comprehensive set of rules. The absence of truth maintenance also implies an

improved performance because the match references and conditions of other rules do

not need to be reevaluated after a rule added or removed annotations. Furthermore,

the ability to revoke the postconditions of rules either confines the rule language

or increases its complexity. The usage of rule scripts with truth maintenance as a

prototyping language for the definition of pipelines, for example, is only possible if

the operations of arbitrary components can be taken back. The linear execution of

rules makes the definition of pipelines possible in the first place. Another advantage

consists in an easier explanation of the rule inference, which enables the user to

identify the causes of undesired rule behavior quickly.

3.2.2 Rule matching

Rules in UIMA Ruta are atomic statements concerning the inference, as pointed

out in the last section. A rule itself can be interpreted as a FST. For the description

of the rule matching in UIMA Ruta a pseudo code algorithm is utilized.

Algorithm 1 Pseudo-code of the rule matching algorithm in UIMA Ruta.

procedure startMatch

rule element e ← identify starting rule element
continueMatch(e)

end procedure

procedure continueMatch(rule element e, optional position p, optional rule match o)
if position p is given then

anchors a ← all valid positions next to position p
else

anchors a ← all valid positions for the rule element e
end if
for all positions i of anchors a do

rule match m ← new alternative of rule match o or new rule match
validate match reference and conditions of e on position i for rule match m
rule element n ← nextElement(rule element e, rule match m)
continueMatch(rule element n, position i, rule match m)

end for
end procedure

function nextElement(rule element e, rule match m)
if quantifier of e indicates further repetition then

return rule element e
else

rule element n ← identify rule element next to e
if rule element n exists and rule match m is valid then

return rule element n
else

doneMatching(rule match m)
end if

end if
end function

procedure doneMatching(rule match m)
if rule match m is valid then

apply all actions of rule
end if

end procedure

The rule matching of UIMA Ruta is specified in Algorithm 1. The rule starts

to match by calling the procedure startMatch. First of all, the rule element

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

14 P. Kluegl et al.

is determined, which initiates the rule matching process. Normally, this is the

first rule element of the rule resulting in a left-to-right match. If the match

reference of the selected rule element consists of a composed rule element, then the

starting rule element is determined in the list of contained elements. The beginning

rule element is requested to continue the matching process with the procedure

continueMatch.

The procedure continueMatch provides one to three arguments: the current

rule element, an optional position and an optional rule match. If this method is

called by the procedure startMatch, then only one argument is given. First of all,

valid positions for the rule element are determined. Either all valid positions, e.g.,

annotations of the type of the match reference, are listed, or only valid positions

next to the provided position in the arguments are listed. The strategy for selecting

the next position can be configured. For each possible position of this list, several

operations are performed. First, a new rule match is created, which stores the

current state of the matching process, e.g., already evaluated positions. If a rule

match was provided by the arguments of the procedure, then a copy is created,

representing a new alternative rule match. The position is validated concerning the

match reference, the conditions and the additional rules inlined as conditions. UIMA

Ruta is, therefore, able to handle positions where multiple annotations begin. If the

rule element matched successfully, then the next rule element is identified by using

the function nextElement. The next rule element is then requested to continue with

the matching process at the new position.

The function nextElement not only provides the next rule element, but also

terminates the matching process if no remaining rule elements can be found. The

function initially checks whether the quantifier of the rule element allows repetitions,

and returns the current one as appropriate. Reluctant and optional quantifiers

are neglected in the pseudo code for simplicity. If the rule element has matched

sufficiently, then the next rule element is determined. This is usually the rule element

following the current one. The last procedure doneMatching simply validates if

the current rule match was successful and then applies all actions and additional

rules inlined as actions on the positions stored in the rule match. The matching

algorithm tracks a rule match until it terminates and possibly applies the actions

before an alternative match is considered. This facilitates the specification of useful

rules.

The description of the matching algorithm mentioned that the starting rule

element is normally the first rule element of the rule, which can decrease the

performance of the matching process for certain rules to some extent. This prob-

lem is illustrated with two rules in Example 4 that match on the second last

token.

1 ANY LastToken;
2 ANY @LastToken;

Example 4. Two simple rules that match on a token followed by a LastToken

annotation. While the first rule has to investigate every token, the second rule starts

to match with the second rule element and requires less index operations.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 15

The first rule investigates each token of the document starting with the first one,

which results in many unnecessary rule matches. The second rule provides a start

anchor, indicated by the symbol ‘@’. This optional symbol enables the user to

manually specify the starting rule element. The rule begins with the annotation of

the type LastToken and continues the match with the previous rule element, which

results in a right-to-left matching and in only one rule match. The UIMA Ruta

language also provides an option called ‘dynamic anchoring’ that automatically

determines the starting element using a heuristic applied on the amount of involved

annotations. The option can be activated in the configuration parameters or by

other rules in the script. The possible occurrences of matching references of the rule

elements are compared and the rule element with the least amount of initial matches

is selected. The heuristic also includes the quantifier and composed rule elements.

Furthermore, a penalty for the reverse matching direction can be specified. Dynamic

anchoring is a newer feature and thus not yet activated by default.

As a special kind of match reference, the wildcard ‘#’ can be used to optimize the

rule matching performance further. The two rules in Example 5 create an annotation

of the type Sentence for all text passages that are surrounded by periods. While the

first rule matches on one token (ANY) after another until the next occurrence of

a period, the second rule matches directly on the next period found in the UIMA

index. This reduces the amount of considered positions and also provides a compact

representation.

1 PERIOD ANY+?{-> Sentence} PERIOD;
2 PERIOD #{-> Sentence} PERIOD;

Example 5. Two equivalent rules for annotating text between two periods. While the

first rule needs to match on each token (ANY), the second rule just searches for the

next period resulting in less UIMA index operations.

The general performance concerning execution time of the UIMA Ruta rule-based

script mainly depends on the amount of index operations in the UIMA framework,

and, related to this, on the amount of rule matches and the involved conditions.

Similar to programming languages, it is possible to implement slow and fast rule

sets for solving the same problem. Since the language was especially designed to

support rapid development, the user normally does not stress performance issues in

the first place. If, however, the execution time of a rule script needs improvement,

many possibilities exist.

This section introduced a few options to reduce the amount of rule matches or

index operations. The user can also make use of efficient dictionaries or can profile

the rule execution in order to identify bottlenecks (cf. 4.2).

3.2.3 Beyond sequential matching

The matching process described so far only considers rule elements as sequential

patterns. The language also supports rule elements that need to match on the same

position. As introduced in Section 3.1.2, composed rule elements are not only able

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

16 P. Kluegl et al.

to specify sequential patterns, but also disjunctive and conjunctive rule elements.

The list of disjunctive rule elements separated by the symbol ‘|’ specify that at least

one of the rule elements needs to match in order to obtain a successful match of the

composed rule element. Analogously, all of the conjunctive rule elements separated

by the symbol ‘&’ need to match in order to continue the matching process. These

language elements can be applied for verifying different aspects on the same position

that cannot be represented by a combination of conditions.

Another language construct that does not represent a strict sequential pattern is

specified by the symbol ‘%’, which is applied for connecting two rules. The resulting

rule builds a conjunction of both rules and its actions are only applied if both rules

have successfully matched. While conjunctive rule elements (‘&’) have to match on

the same position, the connected rules may match independently of each other on

different positions in the current window or document.

The rule in Example 6 consists of two connected rules and matches only if there

is an arbitrary capitalized word followed by a number in the document and if there

is also some arbitrary lower-cased word followed by a number.

1 CW NUM % SW NUM;

Example 6. A conjunction of two simple rules. The complete rule matches only if

both rules are able to match independently of each other.

3.3 Visibility and filtering

The UIMA Ruta language and its inference are designed to provide an instrument

for solving different text processing and information extraction tasks. One step

in this direction is the possibility of defining patterns not only over token but

over arbitrary types of annotations. Rules can, therefore, be applied for matching

sequences of tokens, but also sequences of paragraphs. Another feature provided by

UIMA Ruta is the specification of the visibility that determines which kinds of text

passages represented by annotations are accessible by the rules. While one type of

text is important in one use case, it should be ignored in other applications. If the

rules are applied, for example, to label sequences of tokens, then the whitespaces

between tokens are of minor interest and the user should be able to ignore them

in the definition of the rule set. However, if the rules are built in order to parse

identifiers or indentation of tables, whitespaces are essential and need to be included

in the pattern. Another example is the processing of headlines in a document. In

a sequential pattern over headline annotations, the paragraphs do not need to be

considered in the specifications of rules.

Rule-based languages often specify the types available in a phase whereas

annotations of other types are automatically skipped. The UIMA Ruta language

provides a more complex and dynamic concept of visibility. Here, text positions

covered by annotations of specific types are invisible. This leads to a coverage-based

visibility concept instead of a type-based one. All annotations and their covered

text passages that start or end with a type specified in the set of filtered types are

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 17

not accessible by the rules. This means that these invisible positions will be skipped

when the next position for the rule match is determined. The set is calculated using

three lists. The default list is specified in the configuration parameters and generally

contains types for whitespace and markup. The elements of the filtered list are added

to this list. Afterwards, the elements of the retained list are removed. The filtered

and retained lists can be modified by actions so that the knowledge engineer is able

to adapt the rule inference to her current requirements directly in a UIMA Ruta

script. The exact behavior of rules facing invisible annotations is explained with

Examples 7 and 8.

1 W NUM;
2 Document{-> RETAINTYPE(SPACE ,MARKUP)};
3 W NUM;

Example 7. Two identical rules that match on different text positions due to the

changed filtering settings in the second rule. The second rule is sensible to markup

and whitespaces in its sequential constraint.

The first rule in Example 7 matches on text fragments like ‘Dec
2004’,

‘May1999’, or ‘July 85’ since whitespaces and markup are filtered by default. The

second rule (line 2) changes the filtering settings by adding the types for space and

markup annotations to the retained list, which makes them visible again. The last

rule is identical to the first one, but matches only on the text fragment ‘May1999’

since the matching process was unable to find a valid subsequent position.

1 Sentence;
2 Document{-> RETAINTYPE(MARKUP)};
3 Sentence;
4 Document{-> FILTERTYPE(Headline)};
5 Sentence;
6 Document{-> RETAINTYPE , FILTERTYPE };

Example 8. Three rules for matching on sentences. The other rules change the

filtering setting resulting in different matches on sentences.

Example 8 contains three identical rules that match on a sentence and three rules

that change the filtering settings. The first rule matches on sentences that do not

start with a whitespace or markup annotation due to the default filtering settings.

The second rule enables matching on markups. The third rule (line 3) also matches

on sentences that start with a markup element. The fourth rule hides headlines and,

thus, the fifth rule is not able to match on sentences that start with or are part of a

headline. The last rule resets the filtering settings to its default values.

3.4 Blocks and inlined rRules

The implementation of annotation tasks using only a plain rule language often leads

to rule sets that are hard to interpret by a human. This is caused by the lack of

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

18 P. Kluegl et al.

control structures, which are compensated by additional conditions or activation

rules. Control structures can be very useful in rule-based information extraction

applications. Examples for those elements are the restriction of the rule match to

a certain window, further modularization, conditioned execution of rule sets or

application of rules for each occurrence of an annotation.

The UIMA Ruta language provides the BLOCK construct for these use cases.

The syntax of blocks was already specified in Section 3.1.1. A block construct starts

with the keyword ‘BLOCK’ followed by an identifier that is utilized in case the

block is invoked by another rule. The main part, the head, is a rule element, which

specifies the functionality of the block. The body of the construct finally contains

a list of statements, e.g., rules. The rules within the block are only applied in the

context of the matches of the rule element in the head. If the rule element did

not match, then the contained rules are not applied at all, which corresponds to a

conditioned statement. If the rule element matches on several annotations, then the

contained rules are applied once for each matched annotation and only within this

annotation, which corresponds to an iteration over the annotations and a restriction

of the context. These use cases are illustrated with examples.

1 BLOCK(German) Document{FEATURE("language", "de")} {
2 // rules for german documents
3 }

Example 9. A conditioned statement using the block construct. The contained rules

are only applied if the language of the document is set to ‘de’.

Example 9 provides a block construct that applies the contained rules only if the

language of the document was set to ‘de’.

1 BLOCK(ForEach) Sentence {} {
2 // ... do something
3 }

Example 10. Iteration over annotations of the type Sentence. The contained rules

are applied for each sentence and only in the window of the current sentence.

The block in Example 10 applies the contained rules on each sentence. Rules that

try to match over the boundaries of a sentence will automatically fail. Within the

body of the block, the type Document refers to the current sentence rather than to

the whole document.

Another language element that provides similar functionality is an extension of

a rule element, the so-called inlined rules (cf. Section 3.1.2). These occur in two

manifestations, either interpreted as consequences indicated by the symbol ‘->’ or

as preconditions (‘<-’). The former kind provides similar functionality as the block

element, but can directly be utilized in more complex rules. If the rule matched

successfully, then the inlined rules are applied in the context of the match of the

rule element. The latter provides functionality for expressing more complex, nested

conditions. Here, the rule itself matches successfully in the first place if one of the

contained rules was able to match. Both extensions enable the knowledge engineer

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 19

to specify complex patterns in a compact representation. Their syntax and semantics

are illustrated with two examples.

The rule in Example 11 matches on an annotation of the type Prefix followed by

a sentence annotation. If this match was successful, then the rule in line 2 is applied

in the context of the matched sentence annotation. It creates an annotation of the

type SentNoLeadingNP with the offsets of the matched sentence, if the sentence

does not start with an annotation of the type NP.

1 Prefix Sentence ->{
2 Document{-STARTSWITH(NP) -> SentNoLeadingNP };
3 };

Example 11. An example of an inlined rule interpreted as a postcondition. An

annotation is created for each sentence if additional requirements are fulfilled.

Example 12 contains a rule element extended with an inlined rule interpreted as a

precondition. The rule tries to match on each annotation of the type Sentence, but

only succeeds if this sentence contains an annotation of the type NP followed by

another NP.

1 Sentence{-> SentenceWithNPNP }<-{
2 NP NP;
3 };

Example 12. An example of a rule element with an inlined rule interpreted as a

precondition. An annotation is created only if the sentence contained two subsequent

noun phrases.

3.5 Engineering approaches

The support of different engineering approaches for solving an annotation task is

an important characteristic of a generic rule-based information extraction system.

The formalization of rules based on only one engineering perspective may lead

to inconvenient representations. The UIMA Ruta language was in particular

designed to provide a generic pattern formalism that enables the user to solve

annotation tasks with different approaches. Among other things, it is achieved

with special conditions and actions that encapsulate the necessary functionality. In

the following, a selection of approaches are discussed and illustrated with examples.

These approaches do not have to be applied separately, but can also be mixed at each

stage.

3.5.1 Classical approaches

Many classical approaches for rule-based information extraction can be identified.

The simplest one is called candidate classification, which generates possible candidate

annotations and then assigns a specific type if the candidate holds certain prop-

erties. The rule in Example 13 considers each annotation of the type paragraph

and labels it as a headline if it is mostly bold, underlined and ends with a

colon.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

20 P. Kluegl et al.

1 Paragraph{CONTAINS(Bold , 90, 100, true),
2 CONTAINS(Underlined , 90, 100, true), ENDSWITH(COLON)
3 -> MARK(Headline)};

Example 13. Candidate classification with UIMA Ruta rules. The rule classifies a

paragraph as a headline if it is ninety to hundred percent covered by Bold and

Underlined annotations, and ends with a colon

Annotations of interest can be approached in a bottom-up or a top-down manner.

The former approach starts by identifying small parts of the targeted annotations

and successively composes them until the desired annotation can be specified.

The latter approach starts with more general annotations and refines or reduces

the considered positions until the annotations of interest are found. Example 14

provides an example for labeling the author section of a scientific reference using

a bottom-up approach. The first rule creates annotations for name initials, which

consist only of one upper-case letter followed by a period. The second rule specifies

names as a capitalized word followed by a comma and a list of name initials. The

last rule finally combines a listing of names to the annotations of the type Author.

1 (CW{REGEXP(".")} PERIOD){-> Initial };
2 (CW COMMA Initial+){-> Name};
3 (Name (COMMA Name)*){-> Author};

Example 14. Bottom-up approach for labeling author sections. The first rule detects

initials, the second rule identifies names, and the third rule combines names to

authors.

Rules that consider the content of an annotation are sometimes hard to specify.

However, the boundaries of the targeted annotation are possibly easier to identify

without facing the variety of patterns occurring within that annotation. An example

of this boundary matching approach is given in Example 15. The first rule identifies

the start of the author part of a reference and the second rule detects possible ends

of the author section. The third rule creates an annotation for spans that starts with

an annotation of the type AuthorStart and ends with an annotation of the type

AuthorEnd.

1 Reference{-> MARKFIRST(AuthorStart)};
2 COLON{-> AuthorEnd} CW;
3 (AuthorStart # AuthorEnd){-> Author};

Example 15. Boundary matching approach for labeling author sections. First rule

detects the start position, the second rule identifies the end position, and the third

rule combines both for the complete annotation.

3.5.2 Transformation-based rules

Transformation-based rules are applied on already existing annotations and try to

correct specific errors or defects. The usage of transformations can greatly ease the

definition of patterns and accelerate the development of rule sets. The inclusion of all

possible exceptions or negative preconditions in the rule that creates the interesting

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 21

annotations leads to confusing rule constructs. These exceptions can be neglected

initially, if later transformation-based rules remove annotations that should have

been excluded. The transformation-based approach can also be beneficial in many

other scenarios. One example is the usage of transformations for domain adaptation

or improving the accuracy of arbitrary models.

The UIMA Ruta language provides several actions for modifying existing an-

notations. The action UNMARK removes annotations of the given type, the action

SHIFT changes the offsets of an annotation dependent on the other rule elements

and the action TRIM reduces the span of an annotation. The first rule in Example 16

removes annotations of the type Headline, if they contain no words at all. A previous

rule identified headlines using the layout of the document, but did not include a

condition validating their contents. If only one rule was responsible for annotating

headlines, the additional precondition is easily added. If the annotations of the type

Headline are, however, created by twenty different rules, then the additional condition

has to be added twenty times, which decreases the readability and aggravates possible

refactorings of the script. The second rule in Example 16 expands the span of an an-

notation of the type Person if it is preceded by the word ‘Mr’ and an optional period.

1 Headline{-CONTAINS(W) -> UNMARK(Headline)};
2 "Mr" PERIOD? @Person{-> SHIFT(Person ,1 ,3)};

Example 16. Two examples for transformation-based rules. The first rule deletes

headlines without words and the second rule includes text like ‘Mr.’ in Person

annotations.

3.5.3 Scoring rules

It is sometimes not possible to specify a combination of properties in one rule.

In some situations the knowledge engineer wants to weight different aspects for

dealing with uncertainty. The UIMA Ruta language provides a special action and

condition for such use cases. The action MARKSCORE adds a heuristic score for a

certain kind of annotation and the condition SCORE is able to evaluate this score

for further processing. While scoring rules can help to solve problematic tasks in

a compact manner, larger sets of scoring rules get increasingly hard to maintain.

Example 17 contains a small example for the identification of headlines.

1 STRING s;
2 Paragraph{CONTAINS(W,1,5)-> MARKSCORE(5, HeadlineInd)};
3 Paragraph{CONTAINS(W,6,10)-> MARKSCORE(2, HeadlineInd)};
4 Paragraph{CONTAINS(Bold ,80,100, true)->MARKSCORE(7, HeadlineInd)};
5 Paragraph{CONTAINS(Bold ,30,80,true)->MARKSCORE(3, HeadlineInd)};
6 Paragraph{CONTAINS(CW ,50,100,true)->MARKSCORE(7, HeadlineInd)};
7 Paragraph{CONTAINS(W,0,0)-> MARKSCORE (-50, HeadlineInd)};
8 HeadlineInd{SCORE(10)->MARK(Headline)};
9 HeadlineInd{SCORE(5,10)-> MATCHEDTEXT(s),

10 LOG("Maybe a headline: " + s)};

Example 17. Scoring rules for weighting different aspects of headlines. The rules

create an annotation of the type Headline for paragraphs like ‘Diagnoses:’ since the

first (line 2) and fifth rule (line 6) increase the score resulting in an overall score of

12. The rule in line 8 evaluates the score and creates a new annotation.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

22 P. Kluegl et al.

The rules from lines 2 to 7 weight different aspects indicative of headlines and

assign a score to the annotation HeadlineInd. The first two rules specify that a

paragraph with fewer words is more likely to be a headline. The third and fourth

rules investigate the layout and the fifth rule assigns higher scores to paragraphs

with many capitalized words. The sixth rule reduces the score for paragraphs that

contain no words at all. The remaining rules evaluate the score and either create a

new annotation of the type Headline, if the score exceeded the threshold of 10, or

emit a message for less certain positions using a string variable defined in line 1.

In summary, the UIMA Ruta language facilitates the quick specification of com-

prehensible extraction knowledge. It supports a compact representation while still

providing a high level of expressiveness for solving diverse tasks.

4 UIMA Ruta workbench

The development of rule-based applications for information extraction is first of all

an engineering task. It can be a difficult, tedious and time consuming task, which

depends on human resources and their qualification. Qualified rule engineers are

potentially an expensive resource or only available to a limited extent. The engineers

should therefore be supported by tools that ease the access to the rule-based

systems and that improve the engineering experience in general. While improvements

of the usability and an extensive documentation weaken the learning curve, the

development environment should provide features that decrease the time and labor

enabling the rapid development of rule sets. A (nonexhaustive) list of those features

for supporting the rule engineer can be identified:

Clear visualization of different language elements The visualization of language ele-

ments by highlighting different syntactic constructs provides a clear overview

of the rule set. Semantic highlighting of the occurrences of some language

elements further improves readability.

Direct feedback on defective rules Writing rules is an error-prone process. The de-

velopment environment should notify the user instantly about syntax errors,

typing errors and misplaced constructs. The engineering process is decelerated

if feedback about erroneous rules is not given before the rules are applied.

Shortcuts for editing The development environment should provide functionality for

recurring elements either by completion of the statements of the user or by

templates for favored constructs. In general, the effort of writing rules should

be minimized.

Adaptable to process model of user The rule engineering task can be approached

with different process models. The user should be able to adapt and optimize

the development environment to her own process model.

Easy introspection of results When the engineered rules are applied on exemplary

documents, the resulting annotations should be visualized in an clear and

accessible way. The user should be able to directly investigate different aspects

of the annotated documents.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 23

Explanation of rule execution The application of rules on a document should not

be opaque. The user should be able to comprehend and track every step of

the rule inference in order to identify and correct undesired behavior.

Automatic validation of the rule set’s correctness Manual verification of rules and

validation of their results is tedious and time consuming and potentially has

to be performed every time the rule set is extended or refined. This task

should be automated by specifying test cases, and informative reports should

be provided to the user.

Support for automatic induction of rules The development environment should sup-

port the user in the specification of rule sets. In case additional data is available,

it can be utilized in order to propose rules that solve a specific annotation

task.

The UIMA Ruta Workbench tries to provide a development environment and

additional tooling, which cover all of these features. It is implemented as a rich

client application extending the Eclipse platform6, which allows the user to arrange

the different features and tools according to her preferences. The available tooling

of the Eclipse platform can be directly utilized in the UIMA Ruta Workbench, e.g.,

version control of script files, which allows collaborative development7. Figures 2–

4 depict various tools in a compact layout. The large amount of features and

additional tooling leads to an increased complexity of the system. Thus, the UIMA

Ruta Workbench is not easily accessible for inexperienced users, but favors trained

engineers, who are able to take advantage of all features for an increased productivity.

The following sections highlight how a strong tooling support can render the rapid

development of rule-based information extraction systems possible, and refer to the

figures in order to illustrate the different tooling support.

4.1 Basic development support

A development environment for rule-based information extraction applications

should provide at least some basic features in the opinion of the authors, like

the option to create and modify rules, the execution of these rules on a set of

documents and the visualization of the annotations created by the rules. The central

parts of the Workbench are the workspace with UIMA Ruta projects, the full-

featured editor, the launch capacity for executing script files and the visualization of

annotated documents based on the CAS Editor8, which can also be used to create

new annotations, e.g., for gold standard documents.

Figure 2 provides a screenshot of some views of the default perspective of the

UIMA Ruta Workbench. Part (A) contains the list of UIMA Ruta projects in the

workspace. A UIMA Ruta project applies a distinct folder layout: the script folder

6 http://www.eclipse.org/
7 If different rule engineers work on the same script files, then they require tools for sharing

and investigating the performed changes. The UIMA Ruta Workbench is compatible with
all prevalent SCM integrations like SVN or Git.

8 http://uima.apache.org/d/uimaj-2.6.0/tools.html#ugr.tools.ce

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

24 P. Kluegl et al.

Fig. 2. (Colour online) The UIMA Ruta Workbench: (A) Script Explorer with a UIMA

Ruta project. (B) Full-featured editor for specifying rules. (C) CAS Editor for visualizing the

results. (D) Overview of annotations sorted by type. (E) Annotations overlapping the selected

position in the active CAS Editor.

contains the rule-based script files, the descriptor folder the descriptor files of UIMA

analysis engines and type systems, and the resources folder contains dictionaries and

word lists. The Workbench automatically generates an analysis engine and type

system descriptor for each script file. These descriptors can be utilized in arbitrary

UIMA applications. When executing a script file, the documents in the input folder

are processed by default and their results are stored in the output folder.

The user is able to add dependencies in a UIMA Ruta project pointing to other

projects of the workspace. A dependency to a UIMA Ruta project enables the user

to refer to its script files and leads to reusable subprojects. The Workbench takes care

of the correct configuration of the generated analysis engines descriptors. A UIMA

Ruta project can, however, also have dependencies to Java projects in the workspace.

When a UIMA Ruta script is launched, then the classpath is automatically expanded

by the dependencies, and analysis engines implemented in the same workspace can

be utilized in a script file. This enables rapid prototyping across languages.

Part (B) in Figure 2 shows the full-featured editor. It provides editing support

known by common programming development environments, especially syntax

highlighting, semantic highlighting, syntax checking, auto-completion, template-

based completion and more. Thereby, the user is optimally supported in writing

or editing rules. Defective rules are instantly highlighted in the editor and the

auto-completion proposes suitable language elements based on the current editing

position.

For visualizing the results of the rule execution, the UIMA Ruta Workbench

utilizes the CAS Editor (C) extended with additional views for an improved access

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 25

Fig. 3. (Colour online) The UIMA Ruta Workbench: (A+B+C+D) A selection of views

for the explanation of the rule execution: (A) The Applied Rules view for detailed report

with profiling information. (B+C) Successful and failed matches. (D) The Rule Elements view

displaying matches of rule elements and results of conditions. (E) The Ruta Query view for

introspection in a collection of documents.

to the annotations. The Annotation Browser view (D) lists the annotations of

a document sorted by their types. The Selection view (E) lists all annotations

overlapping the position that is currently selected in the CAS Editor. Both views

provide additional filtering options and enable the user to obtain a fast overview

of the results of the rule execution and to investigate overlapping annotations at

specific positions.

4.2 Explanation of rule execution

The explanation of rule execution is an essential feature for rule-based systems in

general. Writing new rules is laborious, especially if the newly written rules do not

behave as intended. The user has to be able to comprehend and track the behavior of

the rules especially in order to identify undesired rule behavior. Answers to different

questions need to be provided to the user: Did the rule match at all? Where did the

rule match successfully or where did it failed to match? Why did a rule match or fail

to match? The UIMA Ruta Workbench provides several views in order to answer

these questions. The whole rule execution is protocolled and stored in the document

represented as annotations, if the user executes the script in the debug mode.

The main view for the explanation is the Applied Rules view. It displays structured

information about all rules that tried to match on the document (cf. Figure 3(A)).

The view shows how often a rule tried to match in total and how often it succeeded.

This information is given in brackets at the beginning of each rule entry. The rule

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

26 P. Kluegl et al.

itself is given afterwards. Additionally, some profiling information, providing details

about the absolute and relative execution time within the current block is added at

the end of each rule entry.

The Matched view and Failed view display rule matches for rules selected in the

Applied Rules view (cf. Figure 3 (B+C)). The views contain the covered text spans in

order to provide a quick overview to the user. She can see, which positions have been

successfully matched and which positions have been unsuccessfully investigated by

the rules.

The Rule Elements view (D) finally displays the exact covered text for each match

reference and the evaluation results for each condition. This enables the user to

quickly identify the causes for a successful or failed rule match.

So far, the views for the explanation of the rule execution present a well-structured

report if the user tries to inspect the behavior of specific rules. If, however, several

rules create a certain type of annotation, then the user has to investigate each of

these rules in order to identify the reasons for an erroneous annotation. The Created

By view solves this deficiency by displaying the rule that was responsible for the

creation of a specific annotation that has been selected in the Annotation Browser

view.

The UIMA Ruta Workbench additionally provides several other views that help

the user to investigate the rule execution. Among these are views that visualize the

rule matches on specific positions or the rule matches of rules containing specific

language elements, as well as the Statistics view, which provides a compact report

of the execution time of the conditions and actions.

4.3 Introspection by querying

The engineered rules are not only applied on a single document during the

development process, but on a collection of documents. In order to investigate the

resulting annotations, the user typically has to inspect each document separately.

The UIMA Ruta Workbench provides an additional view for the introspection in

collections of annotated documents by querying. The Ruta Query view contains

different text fields for specifying the folder containing the queried documents, the

necessary type system and a set of UIMA Ruta rules (cf. Figure 3(E)). The view

applies the rules on the collection of documents and presents the matches of the

rules to the user. The rules can thus be interpreted as a query statement. The view

can be applied in many scenarios during the development process. The user can,

for example, obtain an overview of the occurrences of certain types of annotations

or even patterns of annotations. This includes useful activities like investigating

if a pattern of annotations has been or has not been annotated with a specific

type. In contrast to work like Cunningham (2005) and Greenwood, Tablan, and

Maynard (2011) on querying and retrieval, this view is only intended to support the

knowledge engineer since no indexing is applied and the query does not scale for

other applications.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 27

Fig. 4. (Colour online) The UIMA Ruta Workbench: Different views for automatic validation.

(A) The Annotation Testing view for gold standard evaluation. (B) Results of constraint-driven

evaluation. (C) Detailed results of specific constraints. (D) Collection of expectations.

4.4 Automatic validation

The manual validation of the results of a currently developed rule set can be tedious

and time consuming, especially if several documents have to be inspected. The user

has to perform this task potentially each time the rule set is extended or refined

in order to ensure the correct processing of the documents. Hence, an automatic

validation of the rule set’s correctness is one of the most important features of a

development environment for rule-based information extraction. The UIMA Ruta

Workbench provides tools for the automatic validation of rule sets using labeled

and unlabeled documents.

4.4.1 Gold standard evaluation

The user should be able to define test cases that are utilized to validate the rule set.

In the context of information extraction applications, the test cases are equivalent

to a set of documents containing annotations of interesting types. The rules are

applied on the raw documents and the resulting annotations created by the rules are

then compared to the given gold annotations. The differences are used to calculate

an evaluation score, e.g., the F1 score.

The UIMA Ruta Workbench provides this functionality with the Annotation

Testing view. Figure 4(A) contains a screenshot of this view, which consists of the

list of tested documents on the left side and the results for the currently selected

document on the right side. Additionally, the user is able to select different evaluators

resulting in different F1 scores, e.g., based on annotations, tokens or features. The

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

28 P. Kluegl et al.

usefulness of this functionality can be summarized with the description of three use

cases:

Goal-oriented development A real-world scenario for the development of a rule-

based information extraction system often includes a quality threshold specified

by a contractee. Given a set of annotated documents, the developed rules have

to achieve a previously defined evaluation score in order to be accepted for

deployment. This use case is directly supported by the UIMA Ruta Workbench

and the user is able to continuously compare the current state of the application

to the desired targets.

Test-driven development Test-driven development (Janzen and Saiedian 2005) is a

programming process model where first test cases for specific parts of func-

tionality are defined before the actual program code is written. The developed

code is then continuously validated during development in order to ensure

the correctness of different parts of the software. Test-driven development

has proven itself as an effective process model (Maximilien and Williams

2003). This process model can also be applied to the development of rule-

based information extractions systems. First, a set of documents is manually

annotated, which provides a best possible coverage of different challenges. The

rules are then developed against these test cases until the performance of the

rules is sufficient. A methodology and detailed process model for test-driven

development of rule-based information extraction systems has been published

by Kluegl, Atzmueller, and Puppe (2009b).

Regression testing Another reliable process model for developing rules can be

summarized as follows. The rule engineer considers one document after

each other and creates new rules, or refines old rules. Starting with the

first document, she creates an initial set of rules, which extracts interesting

information within this document. After the rules are applied on the document,

it is either perfectly annotated or manually corrected, and is stored as a test

case. The rule engineer continues with the second document and extends,

modifies and refactors the rule set until the annotations in the second document

are correctly identified. During these modifications of the rules set, however,

the test case of the first document is continuously validated in order to ensure

that the rules still provide the necessary functionality for the first document.

This procedure is iterated for the complete collection of documents until all

documents are sufficiently processed by the created rules.

4.4.2 Constraint-driven evaluation

One of the advantages of rule-based information extraction approaches is that annot-

ated documents are not strictly necessary for application development. Nevertheless,

they are very beneficial for rule-based systems, e.g., for accelerating the development

or quality maintenance. There is a natural lack of labeled data in most application

domains and its creation is error-prone, cumbersome and time-consuming as is

the manual validation of the extraction results by a human. A human is able to

validate the created annotations in those documents using background knowledge

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 29

and expectations on the domain. An automatic estimation of the rule set’s quality

in unseen and unlabeled documents using this kind of knowledge provides many

advantages and greatly improves the engineering experience.

The Constraint-driven Evaluation (CDE) framework (Wittek et al. 2013) is a

combination of the testing framework and the querying functionality, and greatly

improves the engineering process in the opinion of the authors. It allows the user to

specify expectations about the domain in form of constraints. These constraints are

applied on documents with annotations, which have been created by a set of rules.

The results of the constraints are aggregated to a single cde score, which reflects

how well the created annotations fulfill the user’s expectations and thus provide a

predicted measurement of the rule set’s quality for these unlabeled documents. The

documents can be ranked according to the cde score, which provides an intelligent

report about the well and poorly processed examples. Figure 4 (B+C+D) provides

a screenshot of different views to formalize the set of constraints and to present the

predicted quality of the model for the specified documents.

Compared to the test-driven development in the last section, this approach

facilitates a constraint-driven development, which requires no annotated data. This

process is illustrated with an simple example for identifying one specific person

name in each document of a larger collection. The knowledge engineer specifies her

background knowledge and expectations about the domain using rules. These rules

cover, for example, that each document should contain exactly one annotation of

the type Name. After the actual extraction rules are applied on the large set of

documents, the expectations are compared to the Name annotations created by the

rules. Using the cde score, the documents are ranked where documents that violate

the expectations are listed first. The knowledge engineer is now able to investigate

these problematic documents where the rule obviously failed either by finding no

name or by labeling multiple names. After the rule set is refined or extended,

this process is iterated. More information about this tool can be found in Wittek

et al. (2013).

4.5 Supervised rule induction

All development support described until now has focused on the manual engineering

of rule-based information extraction systems. The user defines the set of rules in

an ecosystem of tools, which facilitate the writing or enable an improved quality

maintenance. Besides that, the development environment can also support the user

in the construction of new rules. Given a set of annotated documents, machine

learning algorithms can be applied in a supervised fashion in order to propose new

rules. The user can then inspect the proposed rules for insights in possibly interesting

patterns of annotations. Furthermore, she can extend her rule set with a selection

of the proposed rules, which can again be extended or adapted.

The UIMA Ruta Workbench provides the TextRuler framework for the supervised

induction of rules. The TextRuler view allows the user to specify the training data, the

interesting types of annotations and the preferred learning algorithm. The induced

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

30 P. Kluegl et al.

rules for each algorithm are presented in a separate view. Currently, four different

algorithms are available.

LP2 The two implementations of this rule learner, naive and optimized, are adapt-

ations of the original algorithm published by Ciravegna (2003). LP2 induces

three different kinds of rules. Tagging rules identify the boundaries of the

annotations, context rules shift misplaced boundaries and correction rules

finally are able to remove boundaries again. Correction rules are, however, not

yet supported by our implementations.

WHISK The two implementations of this rule learner, token and generic, are

adaptations of the algorithm published by Soderland, Cardie, and Mooney

(1999). The Whisk algorithm induces rules in the form of modified regular

expressions. In contrast to the original algorithm, our implementations do not

directly support multi-slot rules.

KEP The name of the rule learner KEP (knowledge engineering patterns) is

derived from the idea that humans use different engineering patterns to write

annotation rules. Our algorithm implements simple rule induction methods

for some patterns, such as boundary detection or annotation-based restriction

of the context. The results are then combined in order to take advantage of

the interaction of different kinds of induced rules. Since the single rules are

constructed according to how humans engineer rules, the resulting rule set

resembles more handcrafted rule sets. Furthermore, by exploiting synergy of

patterns, the patterns for some annotations are much simpler.

TraBaL Our TraBaL algorithm (Eckstein, Kluegl and Puppe 2011) is able to induce

transformation-based error-driven rules. The basic idea is similar to the Brill

Tagger (1995), but the template generation is more generic and can also handle

arbitrary annotations instead of tags of tokens. This algorithm was built in

order to learn how to correct the annotations of arbitrary models or human

annotators.

A methodology and process model for the semi-automatic development of rule-

based information extraction systems where the human engineer is supported and

completed by rule induction algorithms has been published in Kluegl et al. (2009a).

4.6 Semi-automatic creation of gold documents

A popular approach for creating annotated documents is the semi-automatic

annotation using rules. The labeling of a large collection of documents is time

consuming, but can be accelerated if recurring annotations are automatically created.

The rule engineer defines a few rules that are able to create correct annotations

instead of manually specifying them one after each other. Afterwards, the created

annotations need to be verified, whereas missing annotations are added and defective

annotations are removed. This functionality is already covered by the default tooling

of the UIMA Workbench in combination with the CAS Editor. The approach

can, however, be improved if the user is supported in the manual verification of

the annotations. The UIMA Ruta Workbench provides the additional view Check

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 31

Macro: AMOUNT_NUMBER
({Token.kind == number}
(({Token.string == ","} |

{Token.string == "."})
{Token.kind == number})*

)
Rule: Money1
(

(AMOUNT_NUMBER)
(SpaceToken.kind == space)?
({Lookup.majorType == currency_unit})

)
:money -->

:money.Number = {kind = "money", rule = "Money1"}

(NUM (("," | ".") NUM)*)
{-> AmountNumber };

(AmountNumber SPACE? CurrencyUnit)
{-> Money};

Fig. 5. An excerpt of an exemplary JAPE macro and rule (Cunningham et al. 2000) (left) for

the detection of ‘money’ entities and their UIMA Ruta equivalents (right).

Annotations for this use case, which enables the user to efficiently accept, reject or

replace the proposed annotations. The view lists all annotations of types selected by

the user, which can quickly classify these annotations as correct or erroneous.

In summary, the UIMA Ruta Workbench provides a large amount of useful tooling

that helps to improve the engineering experience and lowers the overall development

time and costs.

5 Comparison to related systems

We compare UIMA Ruta to a representative selection of related systems and

highlight different aspects of rule representation and execution, expressiveness of the

language, runtime performance, and available tooling for development support. A

special focus is laid on the concise representation of rules, which is one important

aspect for rapid development. The less text the knowledge engineer has to write for

achieving the same functionality, the better. The compactness and expressiveness of

the UIMA Ruta language is illustrated in Figures 5, 7, and 8. Each figure depicts a

representative example of a related language taken from the respective publication

and its equivalent in the UIMA Ruta language.

Figure 5 contains an example of a JAPE macro and rule (Cunningham et al.

2000) and their equivalents in UIMA Ruta. UIMA Ruta does not enforce a clear

separation of conditions and actions and thus does not need to support labels. Java

code cannot directly be included in UIMA Ruta rules, but the language itself can

be extended and arbitrary Java code wrapped in additional analysis engines can be

executed. This integration of functionality implemented in Java is, however, more

complex compared to JAPE, but allows tooling like explanation and editing support.

JAPE specifies the accessible types for each phase, whereas UIMA Ruta applies a

more complex and dynamic paradigm of coverage-based visibility controlled by

the annotations themselves. In contrast to JAPE, which compiles all rules of a

phase into one FST, UIMA Ruta applies the rules sequentially in the order they are

specified, supports variable matching direction, and is able to match on all disjunctive

alternatives. Overall, the UIMA Ruta language provides almost all features of JAPE

together with a more concise representation. The development of JAPE grammars

is barely supported by tooling to the best knowledge of the authors. The GATE

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

32 P. Kluegl et al.

Fig. 6. (Colour online) Average processing time for documents of different sizes.

framework provides, however, a rich selection of tools like ANNIC (Cunningham

2005) for discovering new patterns.

For a comparison of the runtime performance, we utilized the Named Entity

Recognition component in GATE without the part-of-speech tagger and applied

only the gazetteers and the first three phases of the JAPE grammar with overall

58 rules. A manual translation of these rules to UIMA Ruta resulted in about 44

rules, which can be considered as created by an inexperienced knowledge engineer.

They do not include UIMA Ruta specific optimizations. Both systems are applied

on nine sets of documents each containing 10,000 documents and providing an

increasing document size, taken from the Enron email dataset9. Startup time of the

frameworks and Java can be neglected, because we evaluated the first batch twice, but

only measured the second run. Figure 6 depicts the average runtime for components

based on the JAPE implementation, the optimized JAPE Plus implementation10,

UIMA Ruta and UIMA Ruta with activated dynamic anchoring11. UIMA Ruta is

able to compete well for all sizes of documents, although the rules are not optimized

at all, and they sequentially apply 44 phases in contrast to three phases of JAPE.

Dynamic anchoring improves the performance only slightly since the patterns have

not been engineered accordingly and considerable processing time is caused by the

gazetteers.

The UIMA Ruta language provides a higher expressiveness than AFST (Boguraev

et al. 2010), which is limited to a linear path through the annotation lattices. Each

special functionality in AFST (honor, focus, advance, . . .) is available in UIMA

Ruta using the corresponding language constructs. Figure 7, for example, contains

exemplary rules for vertical navigation in AFST and UIMA Ruta. The AFST rule

starts by matching on a PName annotation and then steps into this annotation

indicated by the operator ‘@descend’. The next element ‘Title[string==‘General’]’

specifies that the PName annotation has to start with a Title annotation with

the covered text ‘General’. A period between two elements indicates a sequential

constraint. The vertical navigation is repeated for the Name annotation, which has

to contain a Last annotation with the covered text ‘Grant’. The elements First and

Middle are optional, but required for the linear path through the annotation lattices.

9 https://www.cs.cmu.edu/ enron/
10 http://gate.ac.uk/sale/tao/splitch8.html#sec:jape:plus
11 We applied GATE 7.1 and UIMA Ruta 2.2.0.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 33

findG = PName[@descend] .
Title[string=="General"] .
Name[@descend] .

First[]|<E> . Middle[]|<E>
. Last[string=="Grant"] .

Name[@ascend] .
PName[@ascend] ;

PName <-{
Title{REGEXP("General")}
Name <-{

Last{REGEXP("Grant")};
};

};

Fig. 7. (Colour online) An exemplary AFST rule (Boguraev et al. 2010) (left) for vertical

matching in ‘PName’ annotations and its UIMA Ruta equivalent (right). The rules match on

text passages like ‘General Ulysses S. Grant’ if the corresponding annotations are present.

The optional patterns for the First and Middle annotations are not necessary in UIMA Ruta.

create view CapsLast as
select CombineSpans(C.name, L.name) as name
from Caps C, Last L
where FollowTok(C.name, L.name, 0 0);
...
create view PersonAll as

(select R.name from FirstLast R) union all ...
... union all (select R.name from CapsLast R);

create view Person as select * from PersonAll R
consolidate on R.name using ’ContainedWithin’;

(Caps Last){-> Person };
Person{PARTOFNEQ(Person)

-> UNMARK(Person)};
Person{CONTAINS(Person ,2 ,100)

-> UNMARK(Person)}

Fig. 8. (Colour online) Excerpt of exemplary AQL rules (Chiticariu et al. 2010) (left) for the

detection of persons and their UIMA Ruta equivalents (right). The last two UIMA Ruta

rules are only necessary for the consolidate statement.

AFST includes a small set of additional predicates, whereas UIMA Ruta ships

an extensive set of conditions and actions. The Domain Adaptation Toolkit (Bogur-

aev and Neff 2006) provides grammar development functionality and is able

to create type system descriptors based on the grammars like the UIMA Ruta

Workbench.

SystemT criticizes three aspects of rule languages based on the CPSL specific-

ation: Lossy sequencing, rigid matching priority and limited expressiveness in rule

patterns (Chiticariu et al. 2010). None of these properties can be observed in UIMA

Ruta. The rule language of SystemT, AQL, is a declarative relational language

similar to SQL and thus does not provide a compact representation. Especially since

the modification of the content of a view enforces the specification of another view.

While the syntax is accessible to programmers, it might appear counterintuitive for

users not familiar with SQL. Most of the features of AQL are also supported in

the UIMA Ruta language. Figure 8 provides an excerpt of an AQL grammar for

the detection of persons and the UIMA Ruta rules with the same functionality.

Broadly speaking, AQL rules typically consist of a create view statement that

specifies the created type of annotation, select and from statement for specifying

the input and output, and a where statement for the pattern. The first UIMA Ruta

rule is equivalent to the first create view statement in the AQL example. There

is no need for the second create view statement in UIMA Ruta since the rules

are able to operate on the same types of annotations. The second and third UIMA

Ruta rules emulate the last create view statement, which consolidates overlapping

annotations.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

34 P. Kluegl et al.

Fig. 9. (Colour online) Excerpts of exemplary documents processed in the case studies:

German clinical letters (A), curricula vitae (B), and scientific references (C).

The rule execution of SystemT is not based on FSTs, but applies an optimized

operator plan for the execution of rules. The rules in UIMA Ruta are also not limited

to a left-to-right matching, which can greatly improve the runtime performance. The

automatic selection of the starting rule element (dynamic anchoring) is a first step

toward an optimized execution plan. UIMA Ruta was developed for the rapid

development of rules and cannot (yet) compete with SystemT concerning runtime

performance.

SystemT provides the best tools for development support of all related systems,

to the best knowledge of the authors. Most of the features are also supported in a

similar form by the UIMA Ruta Workbench. The development support of UIMA

Ruta provides more possibilities to automatically estimate the quality of the rules,

e.g., also on unlabeled documents, which is an essential assistance for developing

rules. Another development environment for creating rules is the IBM Content

Analytics Studio, which propagates a drag-and-drop paradigm for specifying patterns

instead of a textual language. In contrast to UIMA Ruta, the system provides a

more sophisticated dictionary support, but lacks many advantages of flexible rule

languages. In our experience, trained knowledge engineers are faster in specifying

rule sets in a textual form.

6 Case studies

This section describes a selection of information extraction applications implemented

by the authors of this paper with UIMA Ruta. All case studies process domains with

semi-structured texts. Examples of these documents are given in Figure 9. Table 1

provides an overview of the case studies’ key figures. UIMA Ruta is not restricted

to these kinds of documents, but can also be applied for structured documents, free

texts or other tasks.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 35

Table 1. Key figures of case studies: amount of involved rules, effort spent for rule
development, size (#documents) of development and test set, and F1 score on unseen
test set. *Confidential project with industrial partner where effort and F1 score are not
available, but the company confirmed an increase of efficiency by 100%

#rules effort #documents F1 score

(dev/test) (test set)

Curricula vitae (Section 6.1) 25 1 h 5/10 0.979

Clinical letters (Section 6.1) 102 <2 h 15/126 0.972

References (Section 6.2) 1884 <6 h 12/21 0.997

Curricula vitae (Section 6.3) ≈1000 n/a n/a n/a*

Clinical letters (Section 6.4) 463 n/a 500/200 0.992

6.1 Increasing recall in precision-driven prototyping

The two case studies published in Kluegl, Atzmueller, and Puppe (2009c) are both

proof-of-concept prototypes using UIMA Ruta. They apply precision-driven rules,

which are able to identify confident information, and then find additional information

using the regularities in the document. The first case study identifies companies in

English curricula vitae with dictionaries and some simple rules for projection of

consistent compositions (cf. Figure 9(B)). About 25 rules have been specified for this

task without any specific process model. The second case study detects headlines

in clinical letters for further segmentation and classification of their contents (cf.

Figure 9(A)). The rules first extract confident headlines and then find the remaining

headlines using the layout of the known headlines (cf. Section 6.4). Overall, the rule

set contains 102 rules. The applied datasets for the development and evaluation of the

prototypes consist of 15 curricula vitae with 72 companies and 141 letters with 1515

headlines whereas thirty and ten percent have been utilized as a development set.

Both rule sets achieve an F1 score of over 0.97 on the remaining unseen documents

and have been created in less than 2 h.

6.2 Segmentation of references

The rules in the case study of Kluegl, Hotho, and Puppe (2010) have been engineered

to extract the BibTeX entities Author, Title, Editor, and Date/Year in references of

scientific publications (cf. Figure 9(C)). The approach is implemented with three

sets of rules, which have been engineered using 223 labeled references in 12 and

a combination of test-driven development and regression testing. The first set of

rules serves as a simple base component, which already extracts the targeted entries,

but was created with minimal effort. The second set analyzes the boundaries of the

entries and creates a model of the consistencies of the document by investigating the

dominant composition of entities. The third set finally consists of transformation

rules, which change the type and offsets of the entries dependent on the model

of local consistencies. Overall, the application consists of 1884 rules, which have

been engineered in less than 6 h. The approach achieves remarkable results in the

limited scenario of 299 unseen and well-formatted references in 21 documents with

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

36 P. Kluegl et al.

an average F1 score of 0.997. Processing a reference section with 20 references takes

in average 0.418 seconds. The F1 score of the base component is 0.983. Example 18

contains a transformation-based rule that corrects Author annotations dependent

on the consistencies.

1 Author ->{#{-> SHIFT(Author ,1 ,2)} EndOfAuthor ANY[0 ,4]? ConflictAtEnd ;};

Example 18. Example of a transformation-based rule for correcting Author

annotations dependent on a type variable (EndOfAuthor), which stores the dominant

ending of authors, and an additional annotation (ConflictAtEnd) that points out

discrepancies to the local model.

6.3 Template extraction in curricula vitae

UIMA Ruta was applied for template extraction in German curricula vitae (cf.

Figure 9(B)). An early version is described in Atzmueller, Kluegl, and Puppe (2008).

The goal was to detect the projects including the start and end date, the employer,

the title and the important skills. The application utilized rules that imitate the

perception of humans in order to identify the project segments. This is achieved

by modeling different layers of perceptible text fragments (paragraph, table, line)

and finding minimal structures with multiple dates and maximal structures with

exactly one date. This process is extended with patterns for repetitive fragments.

Then, extensive dictionaries and contextual rules are applied for the extraction

of interesting information within these segments. The application consists of about

1,000 rules engineered using a methodology similar to regression testing, but without

a labeled dataset. It was still necessary to manually validate the extraction results,

but the application was able to double the efficiency of the division that populates

databases with the extracted information.

6.4 Segmentation of clinical letters by headline identification

The application described in Beck (2013) provides a real-world implementation for

the segmentation of clinical letters mentioned in Section 6.1 (cf. Figure 9(A)). The

goal is the recognition and classification of different sections, such as diagnosis,

history, various kinds of examinations, therapy and epicrisis. These sections are

then processed by further information extraction applications in order to populate

a clinical data warehouse. The rules have been engineered using 500 labeled letters

using the test-driven development methodology. The script files consist overall of 463

rules and 217 other statements for blocks, declarations and imports. First, the rules

extract the headlines in the document and then use the headlines for the identification

and categorization of the sections. Headlines are detected using different approaches

based on the formatting, semantic keywords, or consistencies within the letter. By

combining these approaches, the application is able to achieve an F1 score of 0.993

on 200 unseen documents. Our baseline similar to a component of cTAKES (Savova

et al. 2010) using only keywords and regular expressions resulted in an F1 score of

0.912.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 37

7 Conclusions

UIMA Ruta is a useful tool for rule-based information extraction in the ecosystem

of UIMA. The system was designed with a special focus on rapid development in

order to reduce development time and costs. The rule language can be applied for

solving various use cases, but still provides a compact representation. It covers most

functionality of related languages and still introduces a few new features that ease

the specification of complex patterns. The UIMA Ruta Workbench adds another

important aspect for rendering rapid development possible. It provides extensive

tooling support for all tasks that a knowledge engineer has to perform when

creating rule-based information extraction applications. UIMA Ruta is currently

unique concerning the combination of integration in UIMA, expressiveness of its

language and industry-friendly open source license.

The future work in the development of UIMA Ruta is mainly driven by the

requirements of the community. In order to establish the system further and to

improve its acceptance in the community, more examples and ready-to-use rule

sets will be provided in the future. Since UIMA Ruta has put its focus on rapid

development, there remain many opportunities to enhance the runtime performance.

Two directions can be identified: the introduction of language elements that compile

multiple rules into one automaton and the intensified usage of optimized execution

plans. Even if the language specification of UIMA Ruta is already compact and

expressive, it still can be extended to cover different use cases more efficiently. One

example is the incorporation of unification-based techniques for coreference tasks.

Java code directly embedded in rules would allow experienced users to close gaps of

functionality with the cost of reduced tooling support. Ontologies are not yet directly

supported, but can improve information extraction applications. Finally, advanced

rule induction algorithms and similar tools will be able to support the knowledge

engineer further in the creation of information extraction applications.

Acknowledgments

This work was supported by the Competence Network Heart Failure, funded by the

German Federal Ministry of Education and Research (BMBF01 EO1004).

References

Appelt, D. E., and Onyshkevych, B. 1998. The common pattern specification language.

In Proceedings of a Workshop on Held at Baltimore, Maryland: October 13–15, 1998,

(TIPSTER ’98), Stroudsburg: ACL, pp. 23–30.

Atzmueller, M., Kluegl, P., and Puppe, F. 2008. Rule-based information extraction for

structured data acquisition using TextMarker. In Baumeister and Atzmueller (ed.) LWA-

2008 (Special Track on Knowledge Discovery and Machine Learning), Würzburg, Germany,

pp. 1–7.

Beck, P.-D. 2013. Identifikation und Klassifikation von Abschnitten in Arztbriefen (in German).

Master Thesis, University of Würzburg.

Black, W. J., McNaught, J., Vasilakopoulos, A., Zervanou, K., Theodoulidis, B., and Rinaldi,

F. 2005. CAFETIERE: conceptual annotations for facts, events, terms, individual entities

and RElations. Technical Report TR–U4.3.1. Parmenides Technical Report.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

38 P. Kluegl et al.

Boguraev, B., and Neff, M. 2006. An annotation-Based finite-state system for UIMA: pattern

matching over annotations. Technical Report, IBM T.J. Watson Research Center.

Boguraev, B., and Neff, M. 2010. A framework for traversing dense annotation lattices.

Language Resources and Evaluation 44(3): 183–203.

Bohannon, P., Merugu, S., Yu, C., Agarwal, V., DeRose, P., Iyer, A., Jain, A., Kakade,

V., Muralidharan, M., Ramakrishnan, R., and Shen, W. 2009. Purple SOX extraction

management System. SIGMOD Record 37(4): 21–27

Brill, E. 1995. Transformation-based error-driven learning and natural language processing:

a case study in part-of-speech tagging. Computational Linguistics 21(4): 543–565.

Chiticariu, L., Chu, V., Dasgupta, S., Goetz, T. W., Ho, H., Krishnamurthy, R., Lang, A., Li, Y.,

Liu, B., Raghavan, S., Reiss, F. R., Vaithyanathan, S., and Zhu, H. 2011. The systemT IDE:

an integrated development environment for information Extraction rules. In Proceedings

of the 2011 ACM SIGMOD International Conference on Management of Data, New York:

ACM, pp. 1291–1294.

Chiticariu, L., Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F. R., and Vaithyanathan, S.

2010. SystemT: an algebraic Approach to declarative information extraction. In Proceedings

of the 48th Annual Meeting of the Association for Computational Linguistics, Stroudsburg:

ACL, pp. 128–137.

Chiticariu, L., Li, Y., and Reiss, F. R. 2013. Rule-based information extraction is dead! Long

live rule-based information extraction systems! In Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing, Stroudsburg: ACL, pp. 827–832.

Ciravegna, F. 2003. (LP)2, rule induction for information extraction using linguistic

constraints. Technical Report CS–03–07, Department of Computer Science, University

of Sheffield.

Cunningham, H. 2007. Indexing and querying linguistic metadata and document content. In

Recent Advances in Natural Language Processing IV: Selected papers from RANLP 2005.

292, pp. 35–44. Amsterdam: John Benjamins Publishing Company.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell,

G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H.,

Petrak, J., Li, Y., and Peters, W. 2011. Text Processing with GATE (Version 6). Murphys,

CA: Gateway Press.

Cunningham, H., Maynard, D., and Tablan, V. 2000. JAPE: a java annotation patterns engine

(Second Edition). Research Memorandum CS–00–10, Department of Computer Science,

University of Sheffield, Sheffield.

David J., and Hossein S. 2005. Test-driven development: concepts, taxonomy, and future

direction. Computer 38(9): 43–50.

Doan, A., Granavo, L., Ramakrishnan, R., and Vaithyanathan, S. 2008. Special Issue on

Managing Information Extraction. New York: ACM.

Drozdzynski, W., Krieger, H.-U., Piskorski, J., Schäfer, U., and Xu, F. 2004. Shallow processing

with unification and typed feature structures - foundations and applications. Künstliche

Intelligenz 18(1): 17–23.

Eckstein, B, Kluegl, P., and Puppe, F. 2011. Towards learning error-driven transformations

for information extraction. In Workshop Notes of the LWA 2011 - Learning, Knowledge,

Adaptation, Magdeburg, Germany, pp. 199–204.

Fagin, R., Kimelfeld, B., Reiss, F., and Vansummeren, S. 2013. Spanners: a formal framework

for information extraction. In Proceedings of the 32nd Symposium on Principles of Database

Systems, New York: ACM, pp. 37–48.

Ferrucci, D., and Lally, A. 2004. UIMA: An architectural approach to unstructured

information processing in the corporate research environment. Natural Language

Engineering 10(3/4): 327–348.

Ferrucci, D. A., Brown, E. W., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A.,

Murdock, J. W., Nyberg, E., Prager, J. M., Schlaefer, N., and Welty, C. A. 2010. Building

Watson: an overview of the DeepQA project. AI Magazine 31(3): 59–79.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

UIMA Ruta 39

Greenwood, M. A., Tablan, V., and Maynard, D. 2011. GATE Mmir: answering

questions Google Cant. In Proceedings of the 10th International Semantic Web Conference

(ISWC2011). Lecture Notes in Computer Science, vol. 7031. Springer.

Gurevych, I., Mühlhäuser, M., Müller, C., Steimle, J., Weimer, M., and Zesch, T. 2007.

Darmstadt knowledge processing repository based on UIMA. In Proceedings of the First

Workshop on Unstructured Information Management Architecture at Biannual Conference of

the Society for Computational Linguistics and Language Technology, Heidelberg: Springer.

IJntema, W., Sangers, J., Hogenboom, F., and Frasincar, F. 2012. A lexicosemantic pattern

language for learning ontology instances from text. Web Semantics: Science, Services and

Agents on the World Wide Web, vol. 15. Amsterdam: Elsevier, pp. 37–50.

Khaitan, S., Ramakrishnan, G., Joshi, S., and Chalamalla, A. 2008. RAD: a scalable

framework for annotator development. In Alonso, Blakeley and Chen (ed.), ICDE, Los

Alamitos, CA: IEEE Computer Society Press, pp. 1624–1627.

Kluegl, P., Atzmueller, M., Hermann, T., and Puppe, F. 2009a. A framework for semi-automatic

development of rule-based information extraction applications. In Hartmann and Janssen

(ed.), Proceedings LWA 2009 (KDML - Special Track on Knowledge Discovery and Machine

Learning), Darmstadt, Germany, pp. 56–59.

Kluegl, P., Atzmueller, M., and Puppe, F. 2009b. Test-driven development of complex

information Extraction systems using TextMarker. In Naplepa and Baumeister (ed.),

4th International Workshop on Knowledge Engineering and Software Engineering (KESE

2008), 31th German Conference on Artificial Intelligence (KI-2008), Darmstadt, Germany,

pp. 19–30.

Kluegl, P., Atzmueller, M., and Puppe, F. 2009c. Meta-level information extraction. In 32nd

Annual German Conference on Artificial Intelligence (KI 2009), Berlin: Springer, pp. 233–

240.

Kluegl, P., Atzmueller, M., and Puppe, F. 2009d. TextMarker: a tool for rule-based information

Extraction. In Chiarcos, Eckart de Castilho and Stede (ed.), Proceedings of the Biennial

GSCL Conference 2009, 2nd UIMA@GSCL Workshop, Tübingen: Gunter Narr Verlag,

pp. 233–240.

Kluegl, P., Hotho, A., and Puppe, F. 2010. Local adaptive extraction of references. In 33rd

Annual German Conference on Artificial Intelligence (KI 2010), Berlin: Springer, pp 40–47.

Lafferty, J., McCallum, A., and Pereira, F. 2001. Conditional random fields: probabilistic

models for segmenting and labeling sequence data. In Proceedings 18th International

Conference on Machine Learning, San Francisco: Morgan Kaufmann, pp. 282–289.

Li, Y., Chiticariu, L., Yang, H., Reiss, F. R., and Carreno-fuentes, A. 2012. WizIE: a best

practices guided development environment for information extraction. In Proceedings of

the ACL 2012 System Demonstrations, ACL ’12, Stroudsburg: ACL, pp. 109–114.

Maximilien, E. M., and Williams, L 2003. Assessing test-driven development at IBM. In

ICSE ’03: Proceedings of the 25th International Conference on Software Engineering, Los

Alamitos: IEEE Computer Society Press, pp. 564–569.

Piskorski, J., and Yangarber, R. 2013. Information extraction: past, present and future. In

Poibeau, Saggion, Piskorski and Yangarber (ed.), Multi-source, Multilingual Information

Extraction and Summarization, Theory and Applications of Natural Language Processing,

Berlin: Springer, pp. 23–49.

Ramakrishnan, G., Balakrishnan, S., and Joshi, S. 2006. Entity Annotation based on inverse

index operations. In Jurafsky and Gaussier (ed.), EMNLP, Stroudsburg: ACL, pp. 492–

500.

Savova, G. K., Masanz, J. J., Ogren, P. V., Zheng, J., Sohn, S., Kipper-Schuler, K. C.,

and Chute, C. G. 2010. Mayo clinical text analysis and knowledge extraction system

(cTAKES): architecture, component evaluation and applications. Journal of the American

Medical Informatics Association: JAMIA 17(5): 507–513.

Shen, W., Doan, A., Naughton, J. F., and Ramakrishnan, R. 2007. Declarative information

extraction using datalog with embedded extraction predicates. In Proceedings of the 33rd

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

40 P. Kluegl et al.

International Conference on Very Large Data Bases, (VLDB ’07), VLDB Endowment,

pp. 1033–1044.

Soderland, S., Cardie, C., and Mooney, R. 1999. Learning information extraction rules for

semi-structured and free text. Machine Learning 34: 233–272.

Turmo, J., Ageno, A., and Català, N. 2006. Adaptive information extraction. ACM Computing

Surveys 38(2): 1–47.

Wittek, A., Toepfer, M., Fette, G., Kluegl, P., and Puppe, F. 2013. Constraint-driven evaluation

in UIMA Ruta. In Kluegl, Eckart de Castilho and Tomanek (ed.), UIMA@GSCL, CEUR

Workshop Proceedings, vol. 1038. CEUR-WS.org, pp. 58–65.

Yang, H., Pupons-Wickham, D., Chiticariu, L., Li, Y., Nguyen, B., and Carreno-Fuentes,

A 2013. I can do text analytics!: Designing development tools for novice developers. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (CHI ’13),

New York: ACM, pp. 1599–1608.

https://doi.org/10.1017/S1351324914000114 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324914000114

