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0. Introduction

First, we introduce the following condition (Cl) for semigroups S. Let
n,k be fixed positive integers such that n> k.

(Cl) For any given sequence xux2,---,xn of n elements of S, there exist
k elements x;i,xi2,•••,x,k, where 1 g i\ < i2---< ik ^ n, such that

x 1 x 2 - - - x n = x x ••• x i t ••• x i 2 - - - x i k - - - x n >

where
xl • • • xtl • • • xi2 • • • xik • • • xn

means
xl '" xii-lxii + l '" xii-lxi2+l '" Xik-l

Xi:<+l'" Xn •

For example, if n = 2, k = 1 then the condition (Cl) is " x ^ = x t x 2 or
xxx2 (that is, xtx2 = xt or x2) for any given x 1 ; x 2 " . The structure of semigroups
satisfying the condition "xxx2 = xx or x2 for any given x l 5 x 2 " was completely
determined by the author [8].

If n = 3 and k = 2, then the condition (Cl) means " x ^ X j = jqxjXj,
xxx2xz or X i i ^ j (that is, x ^ X j = xu x2 or x3) for any given xlt x2, x 3 "
Hewitt and Zuckerman [3] described explicitly the structure of semigroups
satisfying the condition "x!X2x3 = xt, x2 or x3 for any given x^ x2, x3".

Now, let us consider the case n = 3, k = 1. Then, the condition (Cl) means
the following:

(C2) XjX2x3 = xxx2, x2x3 or x t x 3 for any given x , , x 2 , x 3 .

The problem of describing all the semigroups satisfying the condition (C2)
is just the problem proposed by Schein in the Semigroup Forum, Vol. 1, p. 91.
We shall call a semigroup satisfying condition (C2) an exclusive semigroup.
The structure of commutative exclusive semigroups has been completely deter-

* An abstract of a part of this paper will appear in Semigroup Forum.
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mined by Tamura [6], and recently the author has heard that O'Carroll and
Schein [5] have completely solved the problem of constructing all exclusive
bands. In this paper, we deal with exclusive semigroups which are not necessarily
commutative and not necessarily bands. The paper is divided into four sections.
In the first two sections, the structure of exclusive semigroups whose non-zero
idempotents are primitive will be clarified. Next, we shall investigate a certain
class of exclusive semigroups called "exclusive homobands". In the final section
we shall deal with medial exclusive homobands and show how we can construct
them.

1. Exclusive (R)-semigroups

Let S be a semigroup with idempotents, for example, an exclusive semi-
group. We shall say that S is an (R)-semigroup if it satisfies the following:

(1.1) For any idempotents e and f, ef = fe implies e = f.

If S is an (K)-semigroup with zero 0, then S has no idempotent except 0.
Hence, in this case, S is a unipotent semigroup.(1) On the other hand, if S has no
zero element then S is clearly a primitive semigroup without z^ro.(2) Thus, any
exclusive (R)-semigroup must be either a unipotent exclusive semigroup or a
primitive exclusive semigroup without zero.

By using this result, we have

THEOREM 1.1. Let S be an exclusive semigroup, and E the set of idem-
potents of S. Then, the following conditions are equivalent:

(1) For any e,feE, ef' = fe implies e = / .
(2) E is a rectangular band.
(3) S is a unipotent exclusive semigroup or a primitive exclusive semi-

group without zero.

PROOF. (1) => (2): Let e,f be idempotents of S. Then, efeefe = (ef)e(fe) = efe.
Hence, efeeE. Now, (efe)e = e(efe) = efe. Therefore, efe = e. This means
that £ is a rectangular band.

(2) => (3): Suppose that S has a zero element 0. Then for any eeE, eOe = 0.
Since £ is a rectangular band, we have also eOe = e. Hence, e = 0. Therefore,
in this case, S is unipotent. Next, it is obvious that S is primitive if S has no
zero element.

(3) => (1): If S is a unipotent exclusive semigroup, then S clearly satisfies (1).
Therefore, assume that S is a primitive exclusive semigroup without zero. By the

(1) A semigroup is said to be unipotent if it has just one idempotent.
<2^ Let S be a semigroup with idempotents, and E the set of idempotents of S. Then a non-

zero element e e E is called primitive if ef = fe = / , fe E, implies / = 0 or e — f. If every non-
zero element in E is primitive, then S is called a primitive semigroup.
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same method as in (1) => (2), we can prove that efe is an idempotent for any
e,fe E. Let g, h be elements of £ such that gh = hg. Then since (ghg)g = g(ghg)
= ghg and since S is primitive, we have ghg = g. Hence gh = hg = g. Since S
is primitive, gh = hg = g implies g = h.

Now, let S be an exclusive semigroup and E the set of idempotents of S.
For each e e E, let
Then S. = {xeS:X> = e}.

THEOREM 1.2. (1) Se is a unipotent exclusive subsemigroup of S, and (2)
S = 2 {Se: eeE} (the disjoint sum of all Se). Hence, S is a disjoint sum of
unipotent exclusive semigroups.

PROOF. Let x, y be elements of Se. Then x2 = y2 = e. We shall show that
xyeSe. Since S is exclusive,

(xy)2 = xyxy = xyx, yxy or xy.

If (xy)2 = xyx, then

xyxy ~ (xyx)y = xyxy2 — xyx3 = xyx2 = xyy2 = xy3 = xy2 = x3 = x2 = e.

Therefore, xyeSe. Similarly if (xy)2 = yxy, then we have xyeSe. Assume
that (xy)2 # xyx, yxy. Then, (xy)2 = xy and hence xy is an idempotent. Put
xy = / . Then, fx = xyx = / , e or yx. It' fx = e, then fxy = ey and hence

/ = ey = y3 = y2 = e.

Therefore (xy)2 = e, and we have xyeSe. I f /x = / , then

f = fxy =fy = xyy = xe = x3 = x2 = e.

Therefore, (xy)2 = e and hence xyeSs. Finally let /x = yx. Then xyx = yx,
and hence x2yx = xyx. Therefore,

xyx = eyx = y3x = ex = x3 = e.

Thus we have fx = e, and by the result above xy e Se. Since xy e Se for any
x, yeSe, Se is a subsemigroup. The second part (2) is obvious.

In particular, if S is an exclusive (i?)-semigroup then

THEOREM 1.3. (1) E is an ideal of S.

(2) Se is a unipotent exclusive semigroup. In particular, Se is a null semi-
group if there exists feE such that ef ^ e,f.

(3) S= I { S e : e e £ } .
(4) SfSh =fh iff, heE andfh *f, h.

PROOF. First, we prove part (4). Let x and y be elements of Sf and Sh, res-
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pectively. Since fyy = fy or y2 and since fh ^ / , h, we have fh =fy. Hence,

fh —fy — x2y = x2 or xy.

Since fh ^ / , we have//i = xj>. Thus, part (4) is proved. Part (2), except for the
latter half, is obvious by Theorem 1.2. Let e , / e £ be such that ef ^ e,/,and let
x, yeSe. Then, x/> = xf,fy or xy. Since, by part (4), xfy = e/e, x/ = e/and
fy =fe, we have xfy # x/and xfy^fy. Hence xfy = xy, and hence

e = efe = xfy = xy.

Therefore, Se is a null semigroup. Part (3) is obvious.
Next, we prove part (1). By Theorem 1.1, £ is a rectangular band. Let xe S

and e e E, and put x2 = / . We shall show that xe is an idempotent. First, we have

xexe = {xe or xex} = xe, ex or x2.

If xexe = x2, then xexe = xe(xexe)xe = xex3e = xe/e = xe.
If xexe = ex, then xexe = xe(xexe)xe = xex2e = xe/e = xe. Hence, xe is

an idempotent. Similarly, we can prove that ex is an idempotent. Therefore, E
is an ideal of S.

A band is said to be purely rectangular if it is rectangular but is neither a
left zero semigroup nor a right zero semigroup. Under this definition if S is an
exclusive semigroup in which the set E of idempotents is a purely rectangular
band, then

THEOREM 1.4. (1) Each Se is a null semigroup. (2) SfSh = fhfor allf, heE.
Accordingly, an exclusive (R)-semigroup whose idempotents E form a

purely rectangular band is an inflation of the band E.

PROOF. First, we prove part (1). Since £ is a purely rectangular band, for
e e £ there exists feE such that e /# e,f. Therefore, by Theorem 1.3, Se is a
null semigroup. Next, part (2) is proved as follows. Let a, b be elements of Sf, Sh

respectively. We need only show that ab = fh. If fh ¥=f,h, then by Theorem
1.3 we obtain ab = fh. Iff = h, then by part (1) we have ab =f = fh. Hence,
we assume that/ ^ h and fh = for h. Suppose thsXfh = / . In this case, hf = h.
Since £ is purely rectangular, there exist u,veE such that hv #h , v and/u # u,f.
Now, auvb = auv, uvb or ab. If auv = auvb, then fuv = fuvb and hence
fuvh = fuv. Since fuvh = fh and fuv = fv, we have fh = fv. Then, h = hfh = hv.
This contradicts hv # h. Similarly, if auvb = uvb then we have a contradiction.
Hence auvb = ab. Since au = fu and vb = vh,

fh =fuvh= auvb = ab

holds. In the case fh = h, we can also prove the relation ab = fh by the same
method.
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Thus, the problem of determining the structure of exclusive (/?)-semigroups
is reduced to that of exclusive (i?)-semigroups whose idempotents form a one-
sided zero semigroup. First, let us study unipotent exclusive semigroups.

Let M be a set, and X a subset of M (X might be empty). Let A be a subset
of M x M such that

(1) A$(a,a) for all aeM,
(2) if A 3(ahaj) for all i, j such that 1 :g i <j'• ̂  n (n arbitrary) and

^ if Aa(ak,v) and A3(v,ak+1) for an integer k such that l g l c g n - 1 ,
then A 3(at,v), (v,a,) for all f, s such that t ^ k and k + 1 <; s.

Then we have

THEOREM 1.5. S = A KJ X KJ {0} is a unipotent exclusive semigroup under
the multiplication o defined as follows:

(1) For all a e S , Oo a = ao 0 = 0,

(3) /or a e X and (ft, c) e ^4,

f(a,c), if(a,b), (a,c)<=A,
v [0, otherwise,

(4) for aeX and (b,c)eA,

(b, c) o a =
(0, otherwise,

(5)/or (a,ft), (c,d)eA,

Ua,d), if(a,c), (a,d), (b,c), (b,d)eA,
(a,b)o(c,d) = ,

(0, otherwise.

PROOF. TO prove that S(o) is a semigroup, we have to show that S(o) satis-
fies the associative law a o (j? o y) = (a o (1) o y. We shall check this equation
only in the most complicated case where all a, /?, y are elements of A since in the
other cases we can check the equation by similar methods.

Let

a = (a,b)eA, /? = (c,d)eA and y = (e,f)eA.

Suppose that (a,b)o ((c,d)o (e,f)) = 0. Then, at least one of

(c,e), (c,/), (d,e), (dj), (a,c), (a,f), (b,c), (b,f)

is not contained in A.
(i) Case (c,e)$A: If ((a,b)o (c,d))o (e,f) # 0, then

(a,c), (a,d), (b,c), (b,d) (a,e) (a,f), (d,e), (d,f)eA.
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Since (a,d), («,«), (a,f), (d,e), (d,f), (e,f)eA and (a,c), (c,d)eA, by the de-
finition of A we have (c, e) e A. Therefore,

(ii) Case (c,f)£A. In this case, we can prove {{a,b)o (c,d))o (e,f) = 0
by the same method as in (i).

(iii) Case (d,e)$A or (d,f)£A: If ((a, 6) o (c, d)) o (e, f) * 0, then

((a,ft)o (c,d))o («,/) = (a,d)o (e,/) # 0

and hence {d,e), {d,f)eA. Therefore,

((a,b)o(c,d))o(e,/) = 0.

(iv) Case (a,f)$A: In this case, we can prove

((fl,6)o(c,d))o(c,/) = 0

by the same method as in (iii).

(v) Case {a,c)$ A or (b,c)$A: In this case, (a,b)o (c,d) = 0. Hence,

{(a,b)o(c,d))o(e,f) = 0.

(vi) Case (b,f)$A: If ((a,b)o (c,d))o (e,/) ^ 0, then (a,d)o(ej) # 0.

H e n C e (a, d), (a, e), (a . / ) , (d, e), (d , / ) , (e,f)eA

and (a,ft), (b,d)eA. Therefore, by the definition of A, {b,f)zA. Thus,

((a,6)o(c,d))o(e,/) = 0.
By (iHvi),

(a,6)o ((c,d)o (c,/)) = 0 implies ((a, b) D (c,d)) o (e,/) = 0.

Conversely, by the same method we can prove that

((a,fc)o (c,d))o ( e j ) = 0 implies (a,6)o ((c,d)o (e,/)) = 0.

Next, let us consider the case where

(a,b)o ((c,d)o(e,f)) ± 0 and ((O,&)D (c,d)) 3 (e,f) # 0.

In this case,

(a,b)o ((c,d)o (e,/)) = (a,/) = ((fl,6)o (c,d))o (e,/).

Hence, in all cases the associativity equation

{a,b)o ((c,d)o (e,/)) = ((fl,6)o (c,d))o (e,/)
is satisfied.
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Next we must also check the exclusiveness of S. We check this also only
in the most complicated cases where the three elements are contained in A,
because in the other cases we can easily check it by simpler methods.

At first, let us consider the case (a,b)o (c,d)o (e,f) = 0. Then, at least
one of

{c,e), (c,/), (d,e), (d,f),(a,c),(a,f),{b,c),(b,f)

is not contained in A. For example, let (c, e) $ A. Then (c, d) o (e,f) = 0. Hence,

(a,b)o (c,d)o (e,f) = (c,d)o (e,f).
In the other cases, we can also prove by the same method that (a, b) o (c, d) o (e,f)
coincides with one of

(a,b)o (c,d), (a,b)o (e,f) and (c,d)o (ej).

Next, consider the case (a,b)o (c,d)o (e,f) # 0. In this case,

(a,b)o(c,d)o(e,f) = (a,f).

Now, (a,b)o (c,d)o (e,f) = (a,b)o (c,/) since (c,d)o (e,f) = (c,/). Since

(a, b), (a, c), (a,f), (b, c),{b,f), (c,f) e A

and (c,e), (e,f)eA, it follows that (a,e),(b,e)eA. Therefore, (a,b)o (e,f)
= (a,f). Thus

(a,b)o (c,d)o (e,f) = (a,b)o (e,f).

We shall denote the unipotent exclusive semigroup S = i U l u { 0 } of
Theorem 1.5 by F(X,A;M).

LEMMA 1.1. In a unipotent exclusive semigroup, aia2---an # 0 implies
a-fij # 0 for all i <j.

PROOF. If n = 2 or 3, then the assertion is clearly satisfied. Suppose that
n > 3, and then use mathematical induction with respect to n. Since

it follows that

a1(a2--aB_1) ¥=0, axan # 0 and (a2---an_1)an ^ 0.

Hence, by the induction hypothesis, ataj ^ 0 for all i <j.

THEOREM 1.6. Any homomorphic image of F(X,A;M) is a unipotent ex-
clusive semigroup. Conversely, any unipotent exclusive semigroup can be ob-
tained as a homomorphic image of some F(X,A;M).

PROOF. It is obvious that any homomorphic image of an exclusive semigroup
is exclusive. Hence to prove the first part of the theorem it is sufficient to show
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that any homomorphic image of a unipotent exclusive semigroup is unipotent.
Let S be a unipotent exclusive semigroup, and 0: S -* Ta homomorphism of S
onto an exclusive semigroup T. For the zero element 0 of S, 00 is of course an
idempotent of T. Suppose that

(x0)2 = x0, xeS.

Then 00 = x20 = (x0)2 = x<j>. Hence, T has no idempotent except 00. Next,
the second part can be proved as follows. Let S be a unipotent exclusive semi-
group. Let M = S, and put

S\S2 = X and {(a,b):ab ^ 0 in S,a,beM} = A.

Then, A clearly satisfies (1) of the condition (1.2). Further, A satisfies the second
condition (2). For, suppose that

A3(ahaj) (i<j, i = l , 2 , - - , n - 1, j = 2,3,••-,«)

and (ahv), (v, ai+1)eA. Since atv # 0, vai+l # 0, and ata: + l # 0 it follows
that a-val+l # 0 and a;a;+1 = atvai+1. Let /c, f be integers such that 1 :£ t ^ i
and i + 1 ^ fc ^ n. Then

a1a2---a,---aiai + 1---ak---an ^ 0

since a,ar # 0 for all s<r. Therefore,

ala2---at---aivai+1---ak---an ^ 0

since ajai+1= aft;a1 + 1 . By Lemma 1.1, this implies that a,v # 0 and va,c # 0,
that is, (a, ,v)eA and (v, ak)eA. Now, we can consider F(X,A;M). Define
4>:F(X,A;M) -> S by 00= 0, a<j) = a for o e l , (b,c)0 = fee for ( i i . c j e l
Then, it is easy to see that 0 is a homomorphism of F{X,A;M) onto S. For
example, we can check (ajS)0 = (a0)(/?0) in the case <x, fie A as follows: Let

(a,b), (c,d)eA.

((a, b) o (c, d))0 = f £ **• .tf (fl' C ) > ( f l ' d ) ' ( f c ' C ) ' (*> * £ ^w v //-r ^Q^^ otherwise.

Consider the first case. In this case, abed / 0 in S since ab, ac, ad, be, bd, cd
are all not 0. Hence a(bc)d = ad. Therefore

((a,6)o (c,rf))0 = (a,d)0 = ad =

Consider next the second case. If afced # 0, then by Lemma 1.1 the elements
ab, ac, ad, be, bd, cd are all not 0. Hence

(a,c), (a,d), (b,c), {b,d)eA.

This is a contradiction. Therefore abed — 0 in S, and hence
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((a,b)o (cdM = 0<t> = abed =((a,b)<j>))((c,d)<j>).

For the other cases, we can also prove (aP) <f> — (a</)) (|3$) by simpler methods.
Further, it is obvious that <p is onto.

Next, we investigate exclusive semigroups whose idempotents form a one-
sided zero semigroup. Let S be an exclusive semigroup in which the set E of idem-
potents is a left zero subsemigroup. Then S is an (R)-semigroup, so E is an ideal
of S, and we can consider the Rees factor semigroup S/E of S mod E. The
semigroup T = S/E is of course a unipotent exclusive semigroup, and accordingly
S is an ideal extension of a left zero semigroup by a unipotent exclusive semigroup.
From this point of view, we obtain the following theorem by slightly modifying
Theorem 4.21 of [2]:

THEOREM 1.7. Let E be a left zero semigroup, and T a unipotent exclusive
semigroup. Let A be the left translation semigroup of E, and put T\0 = T*
(where 0 is the zero element ofT). Let {Te: eeE} be a family of subsemigroups
Te ojT(Te might consist ofonly the single element 0) such that T= u {Te:eeE},
TenTf = 0 and TeTf = 0 for e # / . Let 6 be a partial anti-homomorphism
of T* into A such that (1) XAXB = Xt, where t = eXB, (where X, is the inner left
translation induced by t) if BA = 0 in T and if Ae Te, (2) fXA=f if AeTf,
and (3) fXBXA=fXB or fXA if AB * 0, where XA = A9.w Then S = T*+ E
(disjoint sum) becomes an exclusive semigroup whose idempotents form a left
zero semigroup, under the multiplication o defined as follows:

AB if AB / 0 in T,
eXA i/AB = 0, BeTe,

(2) Aof = fXA, (3) /o A = / , (4) e o / = ef.

Further, every exclusive semigroup whose idempotents form a left zero semi-
group is constructed in this fashion.

PROOF. First, we shall show that S( o ) is an ideal extension of E by T. By
assumption, 6: T* -> A is a partial anti-homomorphism. The right translation
semigroup P of E consists of only the identity mapping 1 of E. Define
v: T* -> P by Av = 1 for all A. Define

<t):{(A,B):A,BeT, AB = 0} -* E

by (A,B)</> = eXA if Be Te. Then, these 6, v, (/> satisfy the conditions (C1)-(C3)
given in Theorem 4.21 of [2]. Hence, S(o) becomes an ideal extension of £ by T.
Next, we shall prove the exclusiveness of S. We divide the proof up into several
cases:

(3) Capital letters A, B, etc. will denote elements of T, while small letters e./.etc. will denote
elements of E. For A, B e T*, (AB)d = (BO) (Ad) if AB is defined in T*. For given T and E, there
exist such a family {Te: ee£} and such a partial anti-homomorphism 0.
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(i) Ao eo B = Ao e;
(ii) eoAoB = eoA;

(iii) Case Ao Bo e. If AB^ 0 in T, then

Ao Bo e = {AB) o e = eXAB = eXBXA = {eXB or eXA} = Bo e or Ao e.

If AB = 0 in T, then

Ao Bo e = (A,B)4>o e= {A,B)<f> = Ao B;

(iv) eofo A = eo/;
(v) c o i o / = eo / ;
(vi) i4oeo/= i o e/=yloe;
(vii) eofo h = efh = e = e/ = eo/;

(viii) Case Ao Bo C. If ABC ^ 0 in T, then

Ao Bo C= ABC =AC = Ao C.

If ABC = 0 in T, then AB, BC or 4C = 0. If AB = 0, then

{Ao B)o C = Ao B.

Hence, we can assume that AB =£ 0. If AC ̂  0, then J5C = 0 and hence

Ao {Bo C) = Ao ekB (where CeTe) = eXBXA =eXB or eAx.
Since AB ̂  0, the elements A, B, AB are contained in the same 7}. If e ̂  / ,
then .4C = 0 (since TfTe = 0). This is a contradiction, and e =/must be satis-
fied. Therefore, A, B, C e Te and hence

eA^ = eXB = e = Bo C.

Thus, v4o Bo C = Bo C. Next, let AC= 0. If BC # 0, then

i o B o C = 4o(£C) =fXA (where 5, C e 7 » = Ao C

since ^C = 0. Finally, consider the case where AB # 0, AC = 0 and BC = 0.
In this case,

{A o B) o C = (4B) o C= / ^ B (where Ce 7>) = fXBXA = {/AB or/A^} = B o C

or Ao C.

Therefore, in any case we have Ao Bo C = Ao B, Ao C ox Bo C.
Next, we shall show that every exclusive semigroup whose idempotents form

a left zero semigroup can be obtained in this way. Suppose that S is an exclusive
ideal extension of a left zero semigroup £ by a unipotent exclusive semigroup T.
Let 0 be the zero element of T. We can assume that T = SjE, Let

Se = {xeS:x2 = e},
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and put (Se\JE)/E = Te. Then, (1) T = u {Te: eeE}, (2) Ter\Tf = O for
e # / , and (3) TeTf = 0 for e =£ f. (Let a,b be elements of Se, Sf respectively.
af'= ab2 = ab or b2 . If a / = b2, then a/ = / and hence e /= a 2 / = af = f.
Hence, e = ef = f, which contradicts our assumption e # / . Therefore, af = aft
e £ . Thus, aeTe and fee 7} imply ab = 0 in 7\) Put T \0 = T*, and define
a partial anti-homomorphism 0: T* -> A, where A is the left translation semi-
group of E, as follows: A9 = XA, where XA is the left translation defined by
eXA = Ae, eeE (capital letters A, B, C, etc. denote elements of T* and small
letters e,f, etc. denote elements of £). It is easy to see that the family {lA:Ae T*}
satisfies the conditions (l)-(3) of the theorem. Hence, we can consider the ex-
clusive ideal extension S(o) of E by T in which the multiplication is given by
(l)-(4) of the theorem. Now, it is easily proved that this S(o) coincides with S.

2. Primitive exclusive semigroups with zero

In section 1, the structure of primitive exclusive semigroups without zero
has been clarified. In this section, we shall deal with primitive exclusive semi-
groups with zero.

Let S be a primitive exclusive semigroup with zero 0. Let

So = {xeS:x2 = 0}.

Then it is obvious from (1) of Theorem 1.2 that So is a unipotent exclusive sub-
semigroup of S. Further, we have

THEOREM 2.1. (1) So is an ideal of S;
(2) T = SjS0 (the Rees factor semigroup ofS mod So) is a primitive exclusive

semigroup with zero 0 such that
(i) the set B of idempotents of T is a subsemigroup of T, and
(ii) T0={aeT:oi2=0}={0};
(3) the set B\0 = the set £\0, where E is the set of idempotents of S.

PROOF. First, we shall show that So is an ideal of S. Take elements x, y from
So and S respectively. By using the exclusiveness of S, it can be shown that
xyx = 0. Hence (xy)2 = 0, and hence xyeS0. Similarly, yxeS0. Thus, So

is an ideal of S. It is obvious that T = S/So is a primitive exclusive semigroup
with zero 0 and satisfies (3) and (ii) of (2). Hence, we need to prove only part
(i) of (2). Let a, ft be non-zero idempotents of T. Then there exist e, fe E such that
e ^ 0 , / ^ 0 , a = e and ft = / , where a means the congruence class containing
a modS0. It is easy to see that efe is an "idempotent of S. Hence efe = 0 or e.
If efe = e, then efef = ef and accordingly ef is an idempotent. Therefore, in
this case a/? is an idempotent. If efe = 0, then (ef)2 = 0 and hence efe So.
Therefore, a/? = 0 and accordingly a/? is an idempotent. Thus, in any case aft
must be an idempotent. Therefore, B is a subsemigroup of T.
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A primitive exclusive semigroup Twith zero is called a basic primitive ex-
clusive semigroup if T satisfies (i), (ii) of Theorem 2.1. Under this definition,
we can say that a primitive exclusive semigroup S with zero is an exclusive ideal
extension of a unipotent exclusive semigroup by a basic primitive exclusive semi-
group. Further, it is easily seen that the converse of this result is also satisfied.
That is, we have

THEOREM 2.2. A semigroup S with zero is primitive exclusive if and only
if S is an exclusive ideal extension of a unipotent exclusive semigroup by a
basic primitive exclusive semigroup.

The structure of unipotent exclusive semigroups has been clarified in section 1.
We shall next investigate the structure of basic primitive exclusive semigroups T.
Since the set B of idempotents of T is a primitive regular subsemigroup of T, it
follows from Preston [4] that there exists a family {By:yeF} of rectangular
subsemigroups By of B such that (i)

B= Z{By:yeT}+{0}

(where S, + denote the disjoint sum and 0 denotes the zero element of T) and (ii)

BtBp = 0 for all a, p e T, a ^ J?.

For each yeT, put {aeT:a2eBy} = Ty. First, we shall show that each Ty

is a subsemigroup of T. Now,

Ty= Y,{Te:eeBy},

where Te = {aeT: a2 = e}. Let x,yeTr There exist e, feBy such that Tcsx
and Tf3y. If e = / , then xye Te = T} c Ty follows from (1) of Theorem 1.2.
Assume that e •£ f. It is easily seen by simple calculation that xffx, ey and ye
are idempotents. Since ef # / or ^ e suppose, without loss of generality, that
ef # / . If xf = f, then x2f = xf and hence ef = f. This contradicts our assump-
tion. Therefore, we have xf / / . Hence xf = xyy = xy. If xfe Bp, /? # y, then
xffeBpBy = 0, i.e. xf = 0. Hence, ef=x2f=0. This contradicts the fact that
By is a rectangular band ^ 0 and e,feBy. Therefore xfeBy, and accordingly
xyeBy. Thus, Ty is a subsemigroup of T. Next, let xeTa and yeTp, <x #/?.
Since x2 = eeBx and y2 =feBfl, we have ef= 0. Since ef = x2y2 = xy, e
or / and since e/= 0, we have xy = 0. Thus, TxTp = 0. It is obvious that Tx

is of course an exclusive (R)-subsemigroup of T. Therefore, we have

THEOREM 2.3. Let T be a basic primitive exclusive semigroup, and 0 the
zero element of T. Then there exists a family {Ty:yer} of exclusive (R)-sub-
semigroups Ty$0 such that T = E {7;: yeT} + {0} and TaTp = 0 for all
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The structure of exclusive (/?)-semigroups has been completely determined
in section 1. Conversely, let {Ty: y e F} be a family of exclusive (K)-semigroups Ty.
Then, it is easily checked that T = X {Ty: y e F} + {0} becomes a basic primitive
exclusive semigroup under the multiplication o defined by

(1) 0 o a - a o 0 = 0 for all a e T,
(2) aob = 0 for aeTx, beTp,a^P,
(3) ao b = ab (the product of a,b in TJ for a,beTx, a e F . Accordingly,

the structure of basic primitive exclusive semigroups has now been also clarified.
Thus, by Theorem 2.2, the problem of constructing all primitive exclusive semi-
groups with zero is reduced to the problem of determining all possible exclusive
ideal extensions of S by Tfor a given unipotent exclusive semigroup S and a given
basic primitive exclusive semigroup T. This problem can be solved by slightly
modifying Theorem 1.1 of Yoshida [10], which shows how to construct all the
ideal extensions of S by Tfor a given semigroup S and a given semigroup T with
zero, but it is too complicated and is somewhat tedious to give all the details of
this approach. Therefore, we shall give here only the result, without a proof.
Let S and T be a unipotent exclusive semigroup and a basic primitive exclusive
semigroup respectively. Let 0, 0 be the zero elements of S, T. Put T\0 = T*.
Hereafter, for every notation and symbol the reader is referred to [10].

If a mapping £ of a semigroup M into M satisfies (st)£ = sf, rf or st for all
s, teM, then £ is said to be semi-identity. Let

[{204):AeT*}, {p(A):AeT*},<fl

be a system of mappings A(A), p(A)(Ae T*), <j> satisfying (C1)-(C5) of Theorem
1.1 of [10] and the following conditions I-IV:

I. Each X(A) and each p(A) are semi-identity mappings.
II. For any seS,

(i) sp(A)p(B) = (A,B)<t>, sp(A) or sp(B),
(ii) sk(A)X(B) = {B,A)4>,sX{A) or sl(B),
(iii) sp(B)X(A) (= sX(A)p(B)) =(A,B)(f>, sX(A) or sp(B).

III. For any s, teS,

sp(A) ^ 0, tX(A) ^ 0 implies sp{A)t (= s(tX(A)) =st.

IV. (i) (A,B)<f>p(Q = (A,B)4>,(B,C)<I>, or {A,C)(j>, if AB = 0,
(ii) {B,C)4>KA) = (A,B)<j>, (B,C)4>, or {A,C)4>, if BC = ^ ,
(iii) {AB,C)4> (= (A,BC)<p) = G4,C)0, if ylB * 0 and BC * 0.

Then, £ = S+T* becomes an exclusive ideal extension of S by T under the
multiplication o defined by (N1)-(N4) of Theorem 1.1 of [10]. Further, every
exclusive ideal extension of S by Tcan be constructed in this fashion. It is also
noted that for given S, T there exists at least one sucb system
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t{KA):AsT*}, {p(Ay.AeT*},4i]

satisfying I-IV above and (C1)-(C5) of Theorem 1.1 of [10]. For example, for
every AeT* define X(A), p(A) as follows: sX(A)= 0 and sp(A) = 0 for all
seS. Define <j> by (A,B)<f> = 0 for A, Be T*, AB= 0. Then, the system

l{X(A):AeT*}, {p(A): AeT*},<fi

satisfies the conditions I-IV and the conditions (C1)-{C5) of Theorem 1.1 of [10].

3. Exclusive homobands

We have already seen that if S is an exclusive (i?)-semigroup whose idem-
potents form a purely rectangular band, then the set E of idempotents of S is
an ideal of S and S satisfies the following condition:

(3.1) (xy)2 = x2y2 for all x,y.

It is easy to see that, for exclusive semigroups, the condition (3.1) is equi-
valent to the following:

(3.1)* (xy)"= x"y" for all n ^ 1 and for all x,y.

Further, we have

THEOREM 3.1. For an exclusive semigroup S, the condit on (3.1) (hence
(3.1)*) is equivalent to the following:

(3.2) The set E of idempotents of S is a band, and there exists a homomor-
phism £,: S -* E such that et, = efor all eeE.

PROOF. (3.1) => (3.2): Take two idempotents e,f. Then, (ef)2 = e2f2 = ef.
Hence efis an idempotent. Let £: S -> E define by x^ =x2,xeS. Then,

(xy)i = (xy)2 = * V = (xO(yO-

Hence £, is a homomorphism. It is obvious that e£, = e for all idempotents ef.

(3.2) => (3.1): For any xe S, x2 = x2£ = (x£)2 = x£. Hence, (xy)2 =

An exclusive semigroup S is called an exclusive homoband if S satisfies
condition (3.1) and the following condition:

(3.3) The set E of idempotents of S is an ideal of S.

REMARK. In an exclusive semigroup, the set of idempotents is not necessarily
a subsemigroup. This can be seen from the example given by O'Carroll and
Schein [5]. Also, the set of idempotents is not necessarily an ideal even when it
is a subsemigroup.
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This can also be seen from Tamura's paper [6]. Therefore, each of our con-
ditions (3.1) and (3.3) seems to be strong. However, in general, for any two idem-
potents e,/of an exclusive semigroup at least one of efandfe is an idempotent.
Further, both a commutative semigroup and a completely non-commutative
semigroup(4) satisfy the condition (3.1). Moreover, it is easily seen that in an ex-
clusive semigroup S whose idempotents form a band, for any x, ye S the relation
(xy)2 = x2y2 is satisfied except in the case x2 = e, y2 = / , ef = e or f, e # / .
It is also easily proved that for any idempotent/and any element x of an exclusive
semigroup S, at least one of xf and fx is contained in the set E of idempotents
of S except in the case x2 = e, ef = fe = e, e # / . Therefore, the conditions
(3.1) and (3.3) are not such strong conditions for the class of exclusive semigroups
as at first appears.

Now, we have

THEOREM 3.2. Let S be an exclusive homoband, and E the band of idem-
potents of S. Let Se = {xeS:x2 = e}, eeE. Then,

(1) S = I.{Se:eeE},
(2) SeSf = effor all e, fe E, e # / ,
(3) Se is a unipotent exclusive semigroup, and in particular Se is a null

semigroup if there exists feE such that efe = e, ef^e and fe ^ e,
(4) E is an exclusive band.

PROOF. Parts (1), (4) and the first half of (3) are obvious. Therefore, next
we prove the latter half of (3). Let e,/be idempotents such that efe = e, ef ^ e
and/e # e. Take any elements x, y of Se. Then,

xfy = xf, fy or xy.

Since xfy — efe, xf — ef and fy— fe, we have xfy # xf and xfy # fy. Hence

e = efe = xfy = xy.

This means that Se is a null semigroup. Finally, we prove part (2). Since ef # e
or ef # / , we can assume that ef ^ e without loss of generality. Take any elements
x,y from Se,Sf, respectively. Then,

(ey)2 = e2y2 = ef

by condition (3.1). Since eyeE, (ey)2 = ey. Hence ey = ef. Therefore,

ef= ey = xxy = x2 or xy.

Since ef ^ e we have xy = ef. Thus, SeSf = ef.
By using the theorem above, we have

(4) A semigroup S is said to be completely non-commutative if it satisfies the following con-
dition : For any x, y s S, xy = yx implies x = v.
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THEOREM 3.3. Let E be an exclusive band. For every eeE let Se be a uni-
potent exclusive semigroup having e as its zero element, and moreover let Se
be a null semigroup having e as its zero element if there exists feE such that
efe = e, ef ^ e andfe ^ e. Then S = £{S e : eeE} becomes an exclusive homo-
band having E as the band of its idempotents under the multiplication o defined
by

i xy if x, y e Se for some eeE,
(3.4) xoy= \

\ ef if xeSe, yeSf and e # / .

Further, every exclusive homoband is constructed in this fashion.

PROOF. First, we prove that S(o) is a semigroup. Take any x, y, z from
Se, Sf, Sh respectively. If e = f = h, then

(x o y) o z = (xy)z = x(yz) = x o (y o z).

Hence in this case, the associative law

(x o y) o z = x o (y o z)

is satisfied. Next, consider the case where one of e, / , h is different from each of
the others. In this case,

x o (y o z) = efh — (x o y) o z.

Therefore, S(o) is a semigroup. Next, we prove the exclusiveness of S(o). Take
x, y, z from Se) Sf, Sh, respectively,

(i) The case e = / = h: In this case

xo yo z = xo y , xo z o r yoz,

as is obvious.

(ii) The case where two of e, f h are same and one of e, f h is different
from the other two elements: In this case,

xo yo z = efh.

If e = fandf^ h, then efh = eh. Hence

xo yo z — yoz.

lff=h and/^ e, then efh = ef. Hence

xo yo z = xo y.

If e = ft and e # / , then efh = ef, fhore. In the case efh = ef, we have

xo yo z = xo y.

If efh = fh; then we have
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xo y o z = y o z.

Finally in the case efe ( = efh) # ef, efe ^ fe and efe = e, by the hypothesis

Se is a null subsemigroup. Therefore, xoyoz = e = xz = xoz.

(iii) The case where e, f h are distinct: In this case,

x o y o z = xoy, yozoxxoz

is easily verified since efh = ef, fh or eh and since xo y = ef, yoz=fh and
xo z = eh.

Thus, in any case

xo yo z = x o y , yozorxoz

is satisfied. The latter half of the theorem is obvious from Theorem 3.2.

COROLLARY. / / S is an exclusive homoband and if the idempotents E of S
form a semilattice of purely rectangular bands, then S is an inflation of E.
Conversely, if a semigroup S is an inflation of an exclusive band E then S is
an exclusive homoband having E as the band of its idempotents.

PROOF. Obvious from Theorems 1.4 and 3.3.
From the theorem above, the problem of describing the structure of exclusive

homobands is reduced to that of exclusive bands. Recently, the author heard
that O'Carroll and Schein [5] have completely described the structure of exclu-
sive bands. They have also independently obtained Theorem 1.2 and the parts
(2)-(4) of Theorem 1.3 and Theorems 4.1 and 4.2 below.

4. Medial exclusive semigroups

If a [left, right] normal band S (see [7], [8]) is exclusive, then S is called a
[left, right] normal exclusive band.

For left [right] normal bands we have

THEOREM 4.1. Let S be a left [right] normal band, and S ~ Z{Sy: y e F}
the structure decomposition of S (see [7], [8]). Let £1 = {i/^ia ^ /?,a,/?eF}
be the characteristic family of S (where a ^ fi if and only if aft = /fa = ft)
(see [7], [8]). Then S is exclusive if and only if

(1) F is exclusive, and
(2) for a, /?, yeT such that <xfi, fiy, ytx are mutually distinct

sA"py = Sp\l/^y = Syi//lPy = a single element.

PROOF. First we prove the "only if" part. Since F is a homomorphic image
of 5, it is also exclusive. To prove part (2), let a, /?, y be elements of F such that
afi, fiy, ya are all mutually distinct. Since F is exclusive, a/fy = a/?, fly or ay. We
can assume without loss of generality that a/fy = fly, because, for example, if

https://doi.org/10.1017/S1446788700013252 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013252


[18] Exclusive semigroups 349

a/Jy = ay then this implies /fay = ay. For any axeSx, bpeSfi and cyeSy, we
have aabpCy = bfcr Hence

Similarly, axcybp = cybfi implies aai//"fy = cy^lPr Therefore,

This implies
S^lfy = S^%y = Syrl/lfiy = a single element.

Next, we prove the "if" part. Since F is exclusive, a/Jy = a/?, /fy or ay. Let ax, bp, cy

be elements of Sa, Sp, Sy respectively, and consider aabpcy.
(i) Case a/fy = aj?: a^b^c,, = axbp(axbficy) = axbf (by the left normality of S).

(ii) Case a/fy = ay: a.fyc,, = axcybfi (by the left normality of S) = aacy

(by (i)).
(iii) Case ajSy ^ a^, ay: In this case, it is easy to see that a/?y = /?y and

a/?, /Jy, ay are mutually distinct. Now,

aabfcy = a^Zfy = b/^ify (by condition (2)) = b^f
ty= bpcy.

Thus S is exclusive.
Next, let TV be a normal band. Then N is isomorphic to a spined product

of a left normal band L and a right normal band R with respect to a semilattice F :
that is, N s L >< K (F) (see [7], [8]). Let

L ~ S { L ? : y e F } , tf ~ Z{/?7: y e F }

be the structure decompositions of L, R respectively, and let

n = { ^ : a g j S , a, jSeF}, A = { # : a ^ /J, a, )S6F}

be the characteristic families of L, J?.
Then, we have

THEOREM 4.2. N is exclusive if and only if
(1) F is exclusive,
(2) if Pe F is fjof a minimal element, then L$ — a single element or Rp =

a single element, and
(3) for a, /}, y e F such that a/?, fly, ya arc mutually distinct,

element

and Ra4>*fy = ^ ^ , = -Ry^y = a singr/e element.

PROOF. First we prove the "only if" part. Conditions (1), (3) follow from
Theorem 4.1 and the fact that F, L, R are homomorphic images of the exclusive
band N. Hence, we need only prove (2). Let ^ G F be not a minimal element.
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Then, there exists a e F such that tx<p. Take any

ax,cxeLx, bpeLfi, ax, c'xeRx, b'p e R p .

Consider the three elements (ax,a'x), (bp,b'p), (cx,cx)eLtx! R(F). Since

(ax, a'J(bp, b'fXca, O = (a,, a'Jibp, b'p) or (bt, b'p)(cx,ca),

we have (axbpcx,axbpc'J = (axbp, a'ab'f) or (bficx, b'pc'J. On the other hand,

{aJbfC., a'xbpc'x) = (a.b,,, b'/J

since La/;, R^ are a left zero semigroup and a right zero semigroup, respectively.
If K V b'/J = (axbfi,axb'0), then cffi = b't.

If (a.fy.tyO = (V«*ici)» then fl«^ = V
Hence, we have ax\l/%= bfi or c^0| = fr^. Suppose that each of Lfi and i?#

contains at least two elements. Then, there exist dfieL0, d'peRfi such that
dp ^ bp and ^ ' ^ b'fi.By the same method, we have

aM = de or C'M = 4 -
Therefore, either

" f l > | = ^ and ci0J = 4 " or " « > / = d, and ca '^ = ^ " .

Suppose that ax\//p = bp and cx(j>p — dp. Then,

(ax,a'x)(dp,bp)(cxX) = («.d/i,«i&J) or (dpCx,b'pc'x).

On the other hand, (aadpca,a'abj,c'a) = (axdp,bpc'J. Hence,

aa^; = dp or c>£ = bp'.

' "This is a contradiction. Similarly, if we assume "ax\l/p = rf^ and ĉ </>| = b
then we also get a contradiction. Therefore, Lp = a single element or Rf = a
single element. Since the "if" part can be proved by a method almost identical
to that of the proof of the "if" part of Theorem 4.1, we omit its proof.

COROLLARY. If a normal exclusive band S is a semilattice of purely rectan-
gular bands, then S is necessarily a purely rectangular band.

PROOF. Obvious from the theorem above.

Since the structure of exclusive semilattices has been completely described
by [6], the structure of normal exclusive bands is now also clarified by the theorem
above. A semigroup is said to be medial if it satisfies the identity xyzw =xzyw(5).
It is easy to see that a medial exclusive archimedean semigroup (see [1]) is a
medial exclusive homoband whose idempotents form a rectangular band. Next,
we shall study the structure of medial exclusive homobands.

(5) Hence, a medial band is just the same as a normal band.
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THEOREM 4.3. Let E be a normal exclusive band, and E ~ ~L{Ey:yeT}
the structure decomposition of E (see [7], [8]). For every eeE, let Se be a uni-
potent medial exclusive semigroup having e as its zero element. Moreover,
let Se be a null semigroup having e as its zero element if there exists feE such
that efe = e, ef ^ e and fe # e. Then, S = l,{Se:eeE} becomes a medial
exclusive homoband under the multiplication o defined by

(4.1) x o y = j
xy if x, ye Se for some eeE,

ef if xeSe, yeSf and e ^ f.

Further, every medial exclusive homoband can be constructed in this fashion.

PROOF. Obvious from Theorem 3.3 and the fact that every subsemigroup
of a medial semigroup is medial.

Thus the problem of describing the structure of medial exclusive homobands
is reduced to that of describing the structure of unipotent medial exclusive semi-
groups. Next, we consider this problem.

Let X be a set, and A a subset of X x X — {(x,y): x,yeX} such that

r(l) A$(a,a) for all aeX,
J (2) A 3 (x, y), (y,z), (x,z) implies that

K ' } | (i) (x,v)$A or (v,y)$A for all veX, and
^ (ii) (y,w)$A or (w,z)$A for all weX.

Then, of course A satisfies condition (1.2). Hence, S = A U X U {0} becomes
a unipotent exclusive semigroup under the multiplication o defined by

(4.3)

(1) for a, beX, ao b = (a,b) if (a,b)eA;
(2) for aeX and (b,c)eA, ao (b,c) = (a,c)

if (a,b), (a,c)eA;
(3) for ceX and (a,b)eA, (a,b)o c = (a,c)

if (a,c), (b,c)eA;
.(4) a o jS = 0 otherwise (where a, jSe S).

Further, S(o) is medial For, let a, /?, y, 8 be any elements of S(o). Then,

and each of a o p and y o 8 is 0 or an element of A. Hence, by the definition of
the multiplication in S, we have

(a o P) o (y o 8) = 0.

Similarly, ao 70 /Jo 8= 0. Therefore, S(o) is medial. We shall denote this
S(o) by FM(X,A).

Then, we have
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THEOREM 4.4. Any homomorphic image of FM(X,A) is a unipotent medial
exclusive semigroup. Conversely, every unipotent medial exclusive semigroup
can be obtained as a homomorphic image of some FM{X,A).

PROOF. The first half of the theorem follows from Theorem 1.6 and the fact
that any homomorphic image of a medial semigroup is medial. To prove the latter
half, let S be a unipotent medial exclusive semigroup, and put

S\S2 = X and {(x,y):xy ^ 0 in S,x,yeX} = A.

Then, it is easy to see that A satisfies condition (4.2). Therefore, we can consider
FM(X,A). Now, define <f>: FM(X,A) -> S by 0<j> = 0, x(j> = x for xeX and
(x,y)<j> = xy for (x,y)eA. Then, this </> is a homomorphism of FM{X,A)
onto S.

REMARK. Let S be a unipotent medial exclusive semigroup. Then by the
theorem above, S is a homomorphic image of some FM{X, A). Since for any
a, fi,y,5e FM(X, A) ixflyd = 0 is satisfied as was seen above, the relation abed = 0
is also satisfied for any a, b, c, d of S. Hence, we have: If S is a unipotent medial
exclusive semigroup, then abed = 0, for all a, b, c, deS.
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