# EXCLUSIVE SEMIGROUPS 

MIYUKI YAMADA*

(Received 8 October 1971)

Communicated by G. B. Preston

## 0. Introduction

First, we introduce the following condition (C1) for semigroups $S$. Let $n, k$ be fixed positive integers such that $n>k$.
(C1) For any given sequence $x_{1}, x_{2}, \cdots, x_{n}$ of $n$ elements of $S$, there exist $k$ elements $x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{k}}$, where $1 \leqq i_{1}<i_{2} \cdots<i_{k} \leqq n$, such that

$$
x_{1} x_{2} \cdots x_{n}=x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{2}} \cdots \hat{x}_{i_{k}} \cdots x_{n},
$$

where

$$
x_{1} \cdots \hat{x}_{i_{1}} \cdots \hat{x}_{i_{2}} \cdots \hat{x}_{i_{k}} \cdots x_{n}
$$

means

$$
x_{1} \cdots x_{i_{1}-1} x_{i_{1}+1} \cdots x_{i_{2}-1} x_{i_{2}+1} \cdots x_{i_{k}-1} x_{i_{k}+1} \cdots x_{n} .
$$

For example, if $n=2, k=1$ then the condition (C1) is " $x_{1} x_{2}=\hat{x}_{1} x_{2}$ or $x_{1} \hat{x}_{2}$ (that is, $x_{1} x_{2}=x_{1}$ or $x_{2}$ ) for any given $x_{1}, x_{2}$ '. The structure of semigroups satisfying the condition ' $x_{1} x_{2}=x_{1}$ or $x_{2}$ for any given $x_{1}, x_{2}$ ' was completely determined by the author [8].

If $n=3$ and $k=2$, then the condition (C1) means ' $x_{1} x_{2} x_{3}=\hat{x}_{1} \hat{x}_{2} x_{3}$, $\hat{x}_{1} x_{2} \hat{x}_{3}$ or $x_{1} \hat{x}_{2} \hat{x}_{3}$ (that is, $x_{1} x_{2} x_{3}=x_{1}, x_{2}$ or $x_{3}$ ) for any given $x_{1}, x_{2}, x_{3}$ " Hewitt and Zuckerman [3] described explicitly the structure of semigroups satisfying the condition ' $x_{1} x_{2} x_{3}=x_{1}, x_{2}$ or $x_{3}$ for any given $x_{1}, x_{2}, x_{3}$ '.

Now, let us consider the case $n=3, k=1$. Then, the condition (C1) means the following:

$$
\begin{equation*}
x_{1} x_{2} x_{3}=x_{1} x_{2}, x_{2} x_{3} \text { or } x_{1} x_{3} \text { for any given } x_{1}, x_{2}, x_{3} . \tag{C2}
\end{equation*}
$$

The problem of describing all the semigroups satisfying the condition (C2) is just the problem proposed by Schein in the Semigroup Forum, Vol. 1, p. 91. We shall call a semigroup satisfying condition (C2) an exclusive semigroup. The structure of commutative exclusive semigroups has been completely deter-

[^0]mined by Tamura [6], and recently the author has heard that O'Carroll and Schein [5] have completely solved the problem of constructing all exclusive bands. In this paper, we deal with exclusive semigroups which are not necessarily commutative and not necessarily bands. The paper is divided into four sections. In the first two sections, the structure of exclusive semigroups whose non-zero idempotents are primitive will be clarified. Next, we shall investigate a certain class of exclusive semigroups called "exclusive homobands'. In the final section we shall deal with medial exclusive homobands and show how we can construct them.

## 1. Exclusive (R)-semigroups

Let $S$ be a semigroup with idempotents, for example, an exclusive semigroup. We shall say that $S$ is an ( $R$ )-semigroup if it satisfies the following:

$$
\begin{equation*}
\text { For any idempotents } e \text { and } f, e f=f e \text { implies } e=f . \tag{1.1}
\end{equation*}
$$

If $S$ is an ( $R$ )-semigroup with zero 0 , then $S$ has no idempotent except 0 . Hence, in this case, $S$ is a unipotent semigroup. ${ }^{(1)}$ On the other hand, if $S$ has no zero element then $S$ is clearly a primitive semigroup without zuro. ${ }^{(2)}$ Thus, any exclusive ( $R$ )-semigroup must be either a unipotent exclusive semigroup or a primitive exclusive semigroup without zero.

By using this result, we have
Theorem 1.1. Let $S$ be an exclusive semigroup, and $E$ the set of idempotents of $S$. Then, the following conditions are equivalent:
(1) For any $e, f \in E$, $e f=f e$ implies $e=f$.
(2) $E$ is a rectangular band.
(3) $S$ is a unipotent exclusive semigroup or a primitive exclusive semigroup without zero.

Proof. (1) $\Rightarrow(2):$ Let $e, f$ be idempotents of $S$. Then, efeefe $=(e f) e(f e)=e f e$. Hence, efe $\in E$. Now, $(e f e) e=e(e f e)=e f e$. Therefore, $e f e=e$. This means that $E$ is a rectangular band.
(2) $\Rightarrow$ (3): Suppose that $S$ has a zero element 0 . Then for any $e \in E, e 0 e=0$. Since $E$ is a rectangular band, we have also $e 0 e=e$. Hence, $e=0$. Therefore, in this case, $S$ is unipotent. Next, it is obvious that $S$ is primitive if $S$ has no zero element.
(3) $\Rightarrow$ (1): If $S$ is a unipotent exclusive semigroup, then $S$ clearly satisfies (1). Therefore, assume that $S$ is a primitive exclusive semigroup without zero. By the

[^1]same method as in (1) $\Rightarrow(2)$, we can prove that efe is an idempotent for any $e, f \in E$. Let $g, h$ be elements of $E$ such that $g h=h g$. Then since $(g h g) g=g(g h g)$ $=g h g$ and since $S$ is primitive, we have $g h g=g$. Hence $g h=h g=g$. Since $S$ is primitive, $g h=h g=g$ implies $g=h$.

Now, let $S$ be an exclusive semigroup and $E$ the set of idempotents of $S$. For each $e \in E$, let

Then

$$
S_{e}=\left\{x \in S: x^{2}=e\right\} .
$$

THEOREM 1.2. (1) $S_{e}$ is a unipotent exclusive subsemigroup of $S$, and (2) $S=\Sigma\left\{S_{e}: e \in E\right\}$ (the disjoint sum of all $S_{e}$ ). Hence, $S$ is a disjoint sum of unipotent exclusive semigroups.

Proof. Let $x, y$ be elements of $S_{e}$. Then $x^{2}=y^{2}=e$. We shall show that $x y \in S_{e}$. Since $S$ is exclusive,

$$
(x y)^{2}=x y x y=x y x, y x y \text { or } x y .
$$

If $(x y)^{2}=x y x$, then
$x y x y=(x y x) y=x y x y^{2}=x y x^{3}=x y x^{2}=x y y^{2}=x y^{3}=x y^{2}=x^{3}=x^{2}=e$. Therefore, $x y \in S_{e}$. Similarly if $(x y)^{2}=y x y$, then we have $x y \in S_{e}$. Assume that $(x y)^{2} \neq x y x, y x y$. Then, $(x y)^{2}=x y$ and hence $x y$ is an idempotent. Put $x y=f$. Then, $f x=x y x=f, e$ or $y x$. If $f x=e$, then $f x y=e y$ and hence

$$
f=e y=y^{3}=y^{2}=e
$$

Therefore $(x y)^{2}=e$, and we have $x y \in S_{e}$. If $f x=f$, then

$$
f=f x y=f y=x y y=x e=x^{3}=x^{2}=e
$$

Therefore, $(x y)^{2}=e$ and hence $x y \in S_{\imath}$. Finally let $f x=y x$. Then $x y x=y x$, and hence $x^{2} y x=x y x$. Therefore,

$$
x y x=e y x=y^{3} x=e x=x^{3}=e .
$$

Thus we have $f x=e$, and by the result above $x y \in S_{e}$. Since $x y \in S_{e}$ for any $x, y \in S_{e}, S_{e}$ is a subsemigroup. The second part (2) is obvious.

In particular, if $S$ is an exclusive ( $R$ )-semigroup then
Theorem 1.3. (1) $E$ is an ideal of $S$.
(2) $S_{e}$ is a unipotent exclusive semigroup. In particular, $S_{e}$ is a null semigroup if there exists $f \in E$ such that ef $\neq e, f$.
(3) $S=\Sigma\left\{S_{e}: e \in E\right\}$.
(4) $S_{f} S_{h}=f h$ if $f, h \in E$ and $f h \neq f, h$.

Proof. First, we prove part (4). Let $x$ and $y$ be elements of $S_{f}$ and $S_{h}$, res-
pectively. Since $f y y=f y$ or $y^{2}$ and since $f h \neq f, h$, we have $f h=f y$. Hence,

$$
f h=f y=x^{2} y=x^{2} \text { or } x y
$$

Since $f h \neq f$, we have $f h=x y$. Thus, part (4) is proved. Part (2), except for the latter half, is obvious by Theorem 1.2. Let $e, f \in E$ be such that $e f \neq e, f$, and let $x, y \in S_{e}$. Then, $x f y=x f, f y$ or $x y$. Since, by part (4), $x f y=e f e, x f=e f$ and $f y=f e$, we have $x f y \neq x f$ and $x f y \neq f y$. Hence $x f y=x y$, and hence

$$
e=e f e=x f y=x y
$$

Therefore, $S_{e}$ is a null semigroup. Part (3) is obvious.
Next, we prove part (1). By Theorem 1.1, $E$ is a rectangular band. Let $x \in S$ and $e \in E$, and put $x^{2}=f$. We shall show that $x e$ is an idempotent. First, we have

$$
x e x e=\{x e \text { or } x e x\}=x e, e x \text { or } x^{2}
$$

If xexe $=x^{2}$, then xexe $=x e(x e x e) x e=x e x^{3} e=x e f e=x e$.
If xexe $=e x$, then $x e x e=x e(x e x e) x e=x e x^{2} e=x e f e=x e$. Hence, $x e$ is an idempotent. Similarly, we can prove that ex is an idempotent. Therefore, $E$ is an ideal of $S$.

A band is said to be purely rectangular if it is rectangular but is neither a left zero semigroup nor a right zero semigroup. Under this definition if $S$ is an exclusive semigroup in which the set $E$ of idempotents is a purely rectangular band, then

Theorem 1.4. (1) Each $S_{e}$ is a null semigroup. (2) $S_{f} S_{h}=$ fh for all $f, h \in E$.
Accordingly, an exclusive (R)-semigroup whose idempotents $E$ form a purely rectangular band is an inflation of the band $E$.

Proof. First, we prove part (1). Since $E$ is a purely rectangular band, for $e \in E$ there exists $f \in E$ such that $e f \neq e, f$. Therefore, by Theorem $1.3, S_{e}$ is a null semigroup. Next, part (2) is proved as follows. Let $a, b$ be elements of $S_{f}, S_{h}$ respectively. We need only show that $a b=f h$. If $f h \neq f, h$, then by Theorem 1.3 we obtain $a b=f h$. If $f=h$, then by part (1) we have $a b=f=f h$. Hence, we assume that $f \neq h$ and $f h=f$ or $h$. Suppose that $f h=f$. In this case, $h f=h$. Since $E$ is purely rectangular, there exist $u, v \in E$ such that $h v \neq h, v$ and $f u \neq u, f$. Now, $a u v b=a u v, u v b$ or $a b$. If $a u v=a u v b$, then $f u v=f u v b$ and hence $f u v h=f u v$. Since $f u v h=f h$ and $f u v=f v$, we have $f h=f v$. Then, $h=h f h=h v$. This contradicts $h v \neq h$. Similarly, if $a u v b=u v b$ then we have a contradiction. Hence $a u v b=a b$. Since $a u=f u$ and $v b=v h$,

$$
f h=f u v h=a u v b=a b
$$

holds. In the case $f h=h$, we can also prove the relation $a b=f h$ by the same method.

Thus, the problem of determining the structure of exclusive ( $R$ )-semigroups is reduced to that of exclusive ( $R$ )-semigroups whose idempotents form a onesided zero semigroup. First, let us study unipotent exclusive semigroups.

Let $M$ be a set, and $X$ a subset of $M$ ( $X$ might be empty). Let $A$ be a subset of $M \times M$ such that
(1) $A \nexists(a, a)$ for all $a \in M$,
(2) if $A \ni\left(a_{i}, a_{j}\right)$ for all $i, j$ such that $1 \leqq i<j \leqq n$ ( $n$ arbitrary) and if $A \ni\left(a_{k}, v\right)$ and $A \ni\left(v, a_{k+1}\right)$ for an integer $k$ such that $1 \leqq k \leqq n-1$, then $A \ni\left(a_{t}, v\right),\left(v, a_{\mathrm{s}}\right)$ for all $t, s$ such that $t \leqq k$ and $k+1 \leqq s$.
Then we have
Theorem 1.5. $S=A \cup X \cup\{0\}$ is a unipotent exclusive semigroup under the multiplication $\circ$ defined as follows:
(1) For all $\alpha \in S, 0 \circ \alpha=\alpha \circ 0=0$,
(2) for $a, b \in X, a \circ b= \begin{cases}(a, b), & \text { if }(a, b) \in A, \\ 0, & \text { otherwise },\end{cases}$
(3) for $a \in X$ and $(b, c) \in A$,

$$
a \circ(b, c)= \begin{cases}(a, c), & \text { if }(a, b),(a, c) \in A \\ 0, & \text { otherwise }\end{cases}
$$

(4) for $a \in X$ and $(b, c) \in A$,

$$
(b, c) \circ a= \begin{cases}(b, a), & \text { if }(b, a),(c, a) \in A \\ 0, & \text { otherwise }\end{cases}
$$

(5) for $(a, b),(c, d) \in A$,

$$
(a, b) \circ(c, d)= \begin{cases}(a, d), & \text { if }(a, c),(a, d),(b, c),(b, d) \in A \\ 0, & \text { otherwise } .\end{cases}
$$

Proof. To prove that $S(0)$ is a semigroup, we have to show that $S(0)$ satisfies the associative law $a \circ(\beta \circ \gamma)=(\alpha \circ \beta) \circ \gamma$. We shall check this equation only in the most complicated case where all $\alpha, \beta, \gamma$ are elements of $A$ since in the other cases we can check the equation by similar methods.

Let

$$
\alpha=(a, b) \in A, \beta=(c, d) \in A \text { and } \gamma=(e, f) \in A
$$

Suppose that $(a, b) \circ((c, d) \circ(e, f))=0$. Then, at least one of

$$
(c, e),(c, f),(d, e),(d, f),(a, c),(a, f),(b, c),(b, f)
$$

is not contained in $A$.
(i) Case $(c, e) \notin A$ : If $((a, b) \circ(c, d)) \circ(e, f) \neq 0$, then

$$
(a, c),(a, d),(b, c),(b, d)(a, e)(a, f),(d, e),(d, f) \in A
$$

Since $(a, d),(a, e),(a, f),(d, e),(d, f),(e, f) \in A$ and $(a, c),(c, d) \in A$, by the definition of $A$ we have $(c, e) \in A$. Therefore,

$$
((a, b) \circ(c, d)) \circ(e, f)=0
$$

(ii) Case $(c, f) \notin A$. In this case, we can prove $((a, b) \supset(c, d)) \supset(e, f)=0$ by the same method as in (i).
(iii) Case $(d, e) \notin A$ or $(d, f) \notin A$ : If $((a, b) \supset(c, d)) \circ(e, f) \neq 0$, then

$$
((a, b) \circ(c, d)) \circ(e, f)=(a, d) \circ(e, f) \neq 0
$$

and hence $(d, e),(d, f) \in A$. Therefore,

$$
((a, b) \circ(c, d)) \circ(e, f)=0
$$

(iv) Case ( $a, f$ ) $\notin A$ : In this case, we can prove

$$
((a, b) \circ(c, d)) \circ(e, f)=0
$$

by the same method as in (iii).
(v) Case $(a, c) \notin A$ or $(b, c) \notin A$ : In this case, $(a, b) \circ(c, d)=0$. Hence,

$$
((a, b) \circ(c, d)) \circ(e, f)=0
$$

(vi) Case $(b, f) \notin A$ : If $((a, b) \circ(c, d)) \circ(e, f) \neq 0$, then $(a, d) \supset(e, f) \neq 0$.

Hence

$$
(a, d),(a, e),(a, f),(d, e),(d, f),(e, f) \in A
$$

and $(a, b),(b, d) \in A$. Therefore, by the definition of $A,(b, f) \in A$. Thus,

$$
((a, b) \circ(c, d)) \supset(e, f)=0
$$

By (i)-(vi),

$$
(a, b) \circ((c, d) \circ(e, f))=0 \text { implies }((a, b) \supset(c, d)) \supset(e, f)=0 .
$$

Conversely, by the same method we can prove that

$$
((a, b) \circ(c, d)) \circ(e, f)=0 \text { implies }(a, b) \circ((c, d) \circ(e, f))=0
$$

Next, let us consider the case where

$$
(a, b) \circ((c, d) \supset(e, f)) \neq 0 \text { and }((a, b) \supset(c, d)) \supset(e, f) \neq 0
$$

In this case,

$$
(a, b) \circ((c, d) \circ(e, f))=(a, f)=((a, b) \circ(c, d)) \circ(e, f)
$$

Hence, in all cases the associativity equation

$$
(a, b) \circ((c, d) \circ(e, f))=((a, b) \circ(c, d)) \circ(e, f)
$$

is satisfied.

Next we must also check the exclusiveness of $S$. We check this also only in the most complicated cases where the three elements are contained in $A$, because in the other cases we can easily check it by simpler methods.

At first, let us consider the case $(a, b) \circ(c, d) \circ(e, f)=0$. Then, at least one of

$$
(c, e),(c, f),(d, e),(d, f),(a, c),(a, f),(b, c),(b, f)
$$

is not contained in $A$. For example, let $(c, e) \notin A$. Then $(c, d) \circ(e, f)=0$. Hence,

$$
(a, b) \circ(c, d) \circ(e, f)=(c, d) \circ(e, f)
$$

In the other cases, we can also prove by the same method that $(a, b) \circ(c, d) \circ(e, f)$ coincides with one of

$$
(a, b) \circ(c, d),(a, b) \circ(e, f) \text { and }(c, d) \circ(e, f)
$$

Next, consider the case $(a, b) \circ(c, d) \circ(e, f) \neq 0$. In this case,

$$
(a, b) \circ(c, d) \circ(e, f)=(a, f)
$$

Now, $(a, b) \circ(c, d) \circ(e, f)=(a, b) \circ(c, f)$ since $(c, d) \circ(e, f)=(c, f)$. Since

$$
(a, b),(a, c),(a, f),(b, c),(b, f),(c, f) \in A
$$

and $(c, e),(e, f) \in A$, it follows that $(a, e),(b, e) \in A$. Therefore, $(a, b) \circ(e, f)$ $=(a, f)$. Thus

$$
(a, b) \circ(c, d) \circ(e, f)=(a, b) \circ(e, f)
$$

We shall denote the unipotent exclusive semigroup $S=A \cup X \cup\{0\}$ of Theorem 1.5 by $F(X, A ; M)$.

Lemma 1.1. In a unipotent exclusive semigroup, $a_{1} a_{2} \cdots a_{n} \neq 0$ implies $a_{i} a_{j} \neq 0$ for all $i<j$.

Proof. If $n=2$ or 3 , then the assertion is clearly satisfied. Suppose that $n>3$, and then use mathematical induction with respect to $n$. Since

$$
a_{1}\left(a_{2} \cdots a_{n-1}\right) a_{n} \neq 0
$$

it follows that

$$
a_{1}\left(a_{2} \cdots a_{n-1}\right) \neq 0, a_{1} a_{n} \neq 0 \text { and }\left(a_{2} \cdots a_{n-1}\right) a_{n} \neq 0
$$

Hence, by the induction hypothesis, $a_{i} a_{j} \neq 0$ for all $i<j$.
Theorem 1.6. Any homomorphic image of $F(X, A ; M)$ is a unipotent exclusive semigroup. Conversely, any unipotent exclusive semigroup can be obtained as a homomorphic image of some $F(X, A ; M)$.

Proof. It is obvious that any homomorphic image of an exclusive semigroup is exclusive. Hence to prove the first part of the theorem it is sufficient to show
that any homomorphic image of a unipotent exclusive semigroup is unipotent. Let $S$ be a unipotent exclusive semigroup, and $\phi: S \rightarrow T$ a homomorphism of $S$ onto an exclusive semigroup $T$. For the zero element 0 of $S, 0 \phi$ is of course an idempotent of $T$. Suppose that

$$
(x \phi)^{2}=x \phi, x \in S
$$

Then $0 \phi=x^{2} \phi=(x \phi)^{2}=x \phi$. Hence, $T$ has no idempotent except $0 \phi$. Next, the second part can be proved as follows. Let $S$ be a unipotent exclusive semigroup. Let $M=S$, and put

$$
S \backslash S^{2}=X \text { and }\{(a, b): a b \neq 0 \text { in } S, a, b \in M\}=A
$$

Then, $A$ clearly satisfies (1) of the condition (1.2). Further, $A$ satisfies the second condition (2). For, suppose that

$$
A \ni\left(a_{i}, a_{j}\right)(i<j, i=1,2, \cdots, n-1, j=2,3, \cdots, n)
$$

and $\left(a_{i}, v\right),\left(v, a_{i+1}\right) \in A$. Since $a_{i} v \neq 0, v a_{i+1} \neq 0$, and $a_{i} a_{i+1} \neq 0$ it follows that $a_{i} v a_{i+1} \neq 0$ and $a_{i} a_{i+1}=a_{i} v a_{i+1}$. Let $k, t$ be integers such that $1 \leqq t \leqq i$ and $i+1 \leqq k \leqq n$. Then

$$
a_{1} a_{2} \cdots a_{t} \cdots a_{i} a_{i+1} \cdots a_{k} \cdots a_{n} \neq 0
$$

since $a_{5} a_{r} \neq 0$ for all $s<r$. Therefore,

$$
a_{1} a_{2} \cdots a_{t} \cdots a_{i} v a_{i+1} \cdots a_{k} \cdots a_{n} \neq 0
$$

since $a_{i} a_{i+1}=a_{i} v a_{i+1}$. By Lemma 1.1, this implies that $a_{t} v \neq 0$ and $v a_{k} \neq 0$, that is, $(a, v) \in A$ and $\left(v, a_{k}\right) \in A$. Now, we can consider $F(X, A ; M)$. Define $\phi: F(X, A ; M) \rightarrow S$ by $0 \phi=0, a \phi=a$ for $a \in X,(b, c) \phi=b c$ for $(b, c) \in A$. Then, it is easy to see that $\phi$ is a homomorphism of $F(X, A ; M)$ onto $S$. For example, we can check $(\alpha \beta) \phi=(\alpha \phi)(\beta \phi)$ in the case $\alpha, \beta \in A$ as follows: Let

$$
\begin{aligned}
& (a, b),(c, d) \in A . \\
& \quad((a, b) \circ(c, d)) \phi=\left\{\begin{array}{l}
(a, d) \phi, \text { if }(a, c),(a, d),(b, c),(b, d) \in A \\
0 \phi, \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Consider the first case. In this case, $a b c d \neq 0$ in $S$ since $a b, a c, a d, b c, b d, c d$ are all not 0 . Hence $a(b c) d=a d$. Therefore

$$
((a, b) \circ(c, d)) \phi=(a, d) \phi=a d=a b c d=((a, b) \phi)((c, d) \phi)
$$

Consider next the second case. If $a b c d \neq 0$, then by Lemma 1.1 the elements $a b, a c, a d, b c, b d, c d$ are all not 0 . Hence

$$
(a, c),(a, d),(b, c),(b, d) \in A
$$

This is a contradiction. Therefore $a b c d=0$ in $S$, and hence

$$
((a, b) \circ(c, d)) \phi=0 \phi=a b c d=((a, b) \phi))((c, d) \phi)
$$

For the other cases, we can also prove $(\alpha \beta) \phi=(\alpha \phi)(\beta \phi)$ by simpler methods. Further, it is obvious that $\phi$ is onto.

Next, we investigate exclusive semigroups whose idempotents form a onesided zero semigroup. Let $S$ be an exclusive semigroup in which the set $E$ of idempotents is a left zero subsemigroup. Then $S$ is an ( $R$ )-semigroup, so $E$ is an ideal of $S$, and we can consider the Rees factor semigroup $S / E$ of $S \bmod E$. The semigroup $T=S / E$ is of course a unipotent exclusive semigroup, and accordingly $S$ is an ideal extension of a left zero semigroup by a unipotent exclusive semigroup. From this point of view, we obtain the following theorem by slightly modifying Theorem 4.21 of [2]:

Theorem 1.7. Let $E$ be a left zero semigroup, and $T$ a unipotent exclusive semigroup. Let $\Lambda$ be the left translation semigroup of $E$, and put $T \backslash 0=T^{*}$ (where 0 is the zero element of $T$ ). Let $\left\{T_{e}: e \in E\right\}$ be a family of subsemigroups $T_{e}$ of $T\left(T_{e}\right.$ might consist of only the single element 0$)$ such that $T=\cup\left\{T_{e}: e \in E\right\}$, $T_{e} \cap T_{f}=0$ and $T_{e} T_{f}=0$ for $e \neq f$. Let $\theta$ be a partial anti-homomorphism of $T^{*}$ into $\Lambda$ such that (1) $\lambda_{A} \lambda_{B}=\lambda_{t}$, where $t=e \lambda_{B}$, (where $\lambda_{t}$ is the inner left translation induced by $t$ ) if $B A=0$ in $T$ and if $A \in T_{e}$, (2) $f \lambda_{A}=f$ if $A \in T_{f}$, and (3) $f \lambda_{B} \lambda_{A}=f \lambda_{B}$ or $f \lambda_{A}$ if $A B \neq 0$, where $\lambda_{A}=A \theta^{(3)}$ Then $S=T^{*} \dot{+} E$ (disjoint sum) becomes an exclusive semigroup whose idempotents form a left zero semigroup, under the multiplication o defined as follows:

$$
A \circ B= \begin{cases}A B & \text { if } A B \neq 0 \text { in } T  \tag{1}\\ e \lambda_{A} & \text { if } A B=0, B \in T_{e}\end{cases}
$$

$$
\begin{equation*}
A \circ f=f \lambda_{A}, \text { (3) } f \circ A=f, \text { (4) } e \circ f=e f \tag{2}
\end{equation*}
$$

Further, every exclusive semigroup whose idempotents form a left zero semigroup is constructed in this fashion.

Proof. First, we shall show that $S(0)$ is an ideal extension of $E$ by $T$. By assumption, $\theta: T^{*} \rightarrow \Lambda$ is a partial anti-homomorphism. The right translation semigroup $P$ of $E$ consists of only the identity mapping 1 of $E$. Define $v: T^{*} \rightarrow P$ by $A v=1$ for all $A$. Define

$$
\phi:\{(A, B): A, B \in T, A B=0\} \rightarrow E
$$

by $(A, B) \phi=e \lambda_{A}$ if $B \in T_{e}$. Then, these $\theta, v, \phi$ satisfy the conditions (C1)-(C3) given in Theorem 4.21 of [2]. Hence, $S(\circ)$ becomes an ideal extension of $E$ by $T$. Next, we shall prove the exclusiveness of $S$. We divide the proof up into several cases:
(3) Capital letters $A, B$, etc. will denote elements of $T$, while small letters $e, f$, etc. will denote elements of $E$. For $A, B \in T^{*},(A B) \theta=(B \theta)(A \theta)$ if $A B$ is defined in $T^{*}$. For given $T$ and $E$, there exist such a family $\left\{T_{e}: e \in E\right\}$ and such a partial anti-homomorphism $\theta$.
(i) $A \circ e \circ B=A \circ e$;
(ii) $e \circ A \circ B=e \circ A$;
(iii) Case $A \circ B \circ e$. If $A B \neq 0$ in $T$, then
$A \circ B \circ e=(A B) \circ e=e \lambda_{A B}=e \lambda_{B} \lambda_{A}=\left\{e \lambda_{B}\right.$ or $\left.e \lambda_{A}\right\}=B \circ e$ or $A \circ e$.
If $A B=0$ in $T$, then

$$
A \circ B \circ e=(A, B) \phi \circ e=(A, B) \phi=A \circ B ;
$$

(iv) $e \circ f \circ A=e \circ f$;
(v) $e \circ A \circ f=e \circ f$;
(vi) $A \circ e \circ f=A \circ e f=A \circ e$;
(vii) $e \circ f \circ h=e f h=e=e f=e \circ f$;
(viii) Case $A \circ B \circ C$. If $A B C \neq 0$ in $T$, then

$$
A \circ B \circ C=A B C=A C=A \circ C .
$$

If $A B C=0$ in $T$, then $A B, B C$ or $A C=0$. If $A B=0$, then

$$
(A \circ B) \circ C=A \circ B .
$$

Hence, we can assume that $A B \neq 0$. If $A C \neq 0$, then $B C=0$ and hence

$$
A \circ(B \circ C)=A \circ e \lambda_{B}\left(\text { where } C \in T_{e}\right)=e \lambda_{B} \lambda_{A}=e \lambda_{B} \text { or } e \lambda_{A} .
$$

Since $A B \neq 0$, the elements $A, B, A B$ are contained in the same $T_{f}$. If $e \neq f$, then $A C=0$ (since $T_{S} T_{e}=0$ ). This is a contradiction, and $e=f$ must be satisfied. Therefore, $A, B, C \in T_{e}$ and hence

$$
e \lambda_{A}=e \lambda_{B}=e=B \circ C .
$$

Thus, $A \circ B \circ C=B \circ C$. Next, let $A C=0$. If $B C \neq 0$, then

$$
\left.A \circ B \circ C=A \circ(B C)=f \lambda_{A} \text { (where } B, C \in T_{f}\right)=A \circ C
$$

since $A C=0$. Finally, consider the case where $A B \neq 0, A C=0$ and $B C=0$. In this case,
$(A \circ B) \circ C=(A B) \circ C=f \lambda_{A B}\left(\right.$ where $\left.C \in T_{f}\right)=f \lambda_{B} \lambda_{A}=\left\{f \lambda_{B}\right.$ or $\left.f \lambda_{A}\right\}=B \circ C$ or $A \circ C$.

Therefore, in any case we have $A \circ B \circ C=A \circ B, A \circ C$ or $B \circ C$.
Next, we shall show that every exclusive semigroup whose idempotents form a left zero semigroup can be obtained in this way. Suppose that $S$ is an exclusive ideal extension of a left zero semigroup $E$ by a unipotent exclusive semigroup $T$. Let 0 be the zero element of $T$. We can assume that $T=S / E$. Let

$$
S_{e}=\left\{x \in S: x^{2}=e\right\},
$$

and put $\left(S_{e} \cup E\right) / E=T_{e}$. Then, (1) $T=\cup\left\{T_{e}: e \in E\right\}$, (2) $T_{e} \cap T_{f}=0$ for $e \neq f$, and (3) $T_{e} T_{f}=0$ for $e \neq f$. (Let $a, b$ be elements of $S_{e}, S_{f}$ respectively. $a f=a b^{2}=a b$ or $b^{2}$. If $a f=b^{2}$, then $a f=f$ and hence $e f=a^{2} f=a f=f$. Hence, $e=e f=f$, which contradicts our assumption $e \neq f$. Therefore, $a f=a b$ $\in E$. Thus, $a \in T_{e}$ and $b \in T_{f}$ imply $a b=0$ in $T$.) Put $T \backslash 0=T^{*}$, and define a partial anti-homomorphism $\theta: T^{*} \rightarrow \Lambda$, where $\Lambda$ is the left translation semigroup of $E$, as follows: $A \theta=\lambda_{A}$, where $\lambda_{A}$ is the left translation defined by $e \lambda_{A}=A e, e \in E$ (capital letters $A, B, C$, etc. denote elements of $T^{*}$ and small letters $e, f$, etc. denote elements of $E$ ). It is easy to see that the family $\left\{\lambda_{A}: A \in T^{*}\right\}$ satisfies the conditions (1)-(3) of the theorem. Hence, we can consider the exclusive ideal extension $S(\circ)$ of $E$ by $T$ in which the multiplication is given by (1)-(4) of the theorem. Now, it is easily proved that this $S(0)$ coincides with $S$.

## 2. Primitive exclusive semigroups with zero

In section 1 , the structure of primitive exclusive semigroups without zero has been clarified. In this section, we shall deal with primitive exclusive semigroups with zero.

Let $S$ be a primitive exclusive semigroup with zero 0 . Let

$$
S_{0}=\left\{x \in S: x^{2}=0\right\} .
$$

Then it is obvious from (1) of Theorem 1.2 that $S_{0}$ is a unipotent exclusive subsemigroup of $S$. Further, we have

Theorem 2.1. (1) $S_{0}$ is an ideal of $S$;
(2) $T=S / S_{0}$ (the Rees factor semigroup of $S \bmod S_{0}$ ) is a primitive exclusive semigroup with zero $0 \underset{\sim}{0}$ such that
(i) the set $B$ of idempotents of $T$ is a subsemigroup of $T$, and
(ii) $T_{0}=\left\{\alpha \in T: \alpha^{2}=\underset{\sim}{0}\right\}=\{\underset{\sim}{0}\}$;
(3) the set $B \backslash \underset{\sim}{0}=$ the set $E \backslash 0$, where $E$ is the set of idempotents of $S$.

Proof. First, we shall show that $S_{0}$ is an ideal of $S$. Take elements $x, y$ from $S_{0}$ and $S$ respectively. By using the exclusiveness of $S$, it can be shown that $x y x=0$. Hence $(x y)^{2}=0$, and hence $x y \in S_{0}$. Similarly, $y x \in S_{0}$. Thus, $S_{0}$ is an ideal of $S$. It is obvious that $T=S / S_{0}$ is a primitive exclusive semigroup with zero 0 and satisfies (3) and (ii) of (2). Hence, we need to prove only part (i) of (2). Let $\alpha, \beta$ be non-zero idempotents of $T$. Then there exist $e, f \in E$ such that $e \neq 0, f \neq 0, \alpha=\bar{e}$ and $\beta=\bar{f}$, where $\bar{a}$ means the congruence class containing $a \bmod S_{0}$. It is easy to see that efe is an idempotent of $S$. Hence efe $=0$ or $e$. If $e f e=e$, then $e f e f=e f$ and accordingly $e f$ is an idempotent. Therefore, in this case $\alpha \beta$ is an idempotent. If efe $=0$, then $(e f)^{2}=0$ and hence $e f \in S_{0}$. Therefore, $\alpha \beta=\underset{\sim}{0}$ and accordingly $\alpha \beta$ is an idempotent. Thus, in any case $\alpha \beta$ must be an idempotent. Therefore, $B$ is a subsemigroup of $T$.

A primitive exclusive semigroup $T$ with zero is called a basic primitive exclusive semigroup if $T$ satisfies (i), (ii) of Theorem 2.1. Under this definition, we can say that a primitive exclusive semigroup $S$ with zero is an exclusive ideal extension of a unipotent exclusive semigroup by a basic primitive exclusive semigroup. Further, it is easily seen that the converse of this result is also satisfied. That is, we have

Theorem 2.2. A semigroup $S$ with zero is primitive exclusive if and only if $S$ is an exclusive ideal extension of a unipotent exclusive semigroup by $a$ basic primitive exclusive semigroup.

The structure of unipotent exclusive semigroups has been clarified in section 1. We shall next investigate the structure of basic primitive exclusive semigroups $T$. Since the set $B$ of idempotents of $T$ is a primitive regular subsemigroup of $T$, it follows from Preston [4] that there exists a family $\left\{B_{\gamma}: \gamma \in \Gamma\right\}$ of rectangular subsemigroups $B_{\gamma}$ of $B$ such that (i)

$$
B=\Sigma\left\{B_{\gamma}: \gamma \in \Gamma\right\} \mp\{0\}
$$

(where $\Sigma, \dot{+}$ denote the disjoint sum and 0 denotes the zero element of $T$ ) and (ii)

$$
B_{\alpha} B_{\beta}=0 \text { for all } \alpha, \beta \in \Gamma, \alpha \neq \beta
$$

For each $\gamma \in \Gamma$, put $\left\{a \in T: a^{2} \in B_{\gamma}\right\}=T_{\gamma}$. First, we shall show that each $T_{\gamma}$ is a subsemigroup of $T$. Now,

$$
T_{\gamma}=\Sigma\left\{T_{e}: e \in B_{\gamma}\right\}
$$

where $T_{e}=\left\{a \in T: a^{2}=e\right\}$. Let $x, y \in T_{\gamma}$. There exist $e, f \in B_{\gamma}$ such that $T_{c} \ni x$ and $T_{f} \ni y$. If $e=f$, then $x y \in T_{e}=T_{j} \subset T_{\gamma}$ follows from (1) of Theorem 1.2. Assume that $e \neq f$. It is easily seen by simple calculation that $x f, f x, e y$ and $y e$ are idempotents. Since $e f \neq f$ or $\neq e$ suppose, without loss of generality, that $e f \neq f$. If $x f=f$, then $x^{2} f=x f$ and hence $e f=f$. This contradicts our assumption. Therefore, we have $x f \neq f$. Hence $x f=x y y=x y$. If $x f \in B_{\beta}, \beta \neq \gamma$, then $x f f \in B_{\beta} B_{\gamma}=0$, i.e. $x f=0$. Hence, ef $=x^{2} f=0$. This contradicts the fact that $B_{\gamma}$ is a rectangular band $\nexists 0$ and $e, f \in B_{\gamma}$. Therefore $x f \in B_{\gamma}$, and accordingly $x y \in B_{\gamma}$. Thus, $T_{\gamma}$ is a subsemigroup of $T$. Next, let $x \in T_{\alpha}$ and $y \in T_{\beta}, \alpha \neq \beta$. Since $x^{2}=e \in B_{\alpha}$ and $y^{2}=f \in B_{\beta}$, we have $e f=0$. Since $e f=x^{2} y^{2}=x y$, $e$ or $f$ and since $e f=0$, we have $x y=0$. Thus, $T_{\alpha} T_{\beta}=0$. It is obvious that $T_{\alpha}$ is of course an exclusive ( $R$ )-subsemigroup of $T$. Therefore, we have

Theorem 2.3. Let $T$ be a basic primitive exclusive semigroup, and 0 the zero element of $T$. Then there exists a family $\left\{T_{\gamma}: \gamma \in \Gamma\right\}$ of exclusive $(R)$-subsemigroups $T_{\gamma} \nexists 0$ such that $T=\Sigma\left\{T_{\gamma}: \gamma \in \Gamma\right\} \dot{+}\{0\}$ and $T_{\alpha} T_{\beta}=0$ for all $\alpha, \beta \in \Gamma, \alpha \neq \beta$.

The structure of exclusive ( $R$ )-semigroups has been completely determined in section 1. Conversely, let $\left\{T_{\gamma}: \gamma \in \Gamma\right\}$ be a family of exclusive ( $R$ )-semigroups $T_{\gamma}$. Then, it is easily checked that $T=\Sigma\left\{T_{\gamma}: \gamma \in \Gamma\right\} \dot{+}\{0\}$ becomes a basic primitive exclusive semigroup under the multiplication $\circ$ defined by
(1) $0 \circ a=a \circ 0=0$ for all $a \in T$,
(2) $a \circ b=0$ for $a \in T_{\alpha}, b \in T_{\beta}, \alpha \neq \beta$,
(3) $a \circ b=a b$ (the product of $a, b$ in $T_{a}$ ) for $a, b \in T_{\alpha}, \alpha \in \Gamma$. Accordingly, the structure of basic primitive exclusive semigroups has now been also clarified. Thus, by Theorem 2.2, the problem of constructing all primitive exclusive semigroups with zero is reduced to the problem of determining all possible exclusive ideal extensions of $S$ by $T$ for a given unipotent exclusive semigroup $S$ and a given basic primitive exclusive semigroup $T$. This problem can be solved by slightly modifying Theorem 1.1 of Yoshida [10], which shows how to construct all the ideal extensions of $S$ by $T$ for a given semigroup $S$ and a given semigroup $T$ with zero, but it is too complicated and is somewhat tedious to give all the details of this approach. Therefore, we shall give here only the result, without a proof. Let $S$ and $T$ be a unipotent exclusive semigroup and a basic primitive exclusive semigroup respectively. Let $0, \underset{\sim}{0}$ be the zero elements of $S, T$. Put $T \backslash \underset{\sim}{0}=T^{*}$. Hereafter, for every notation and symbol the reader is referred to [10].

If a mapping $\zeta$ of a semigroup $M$ into $M$ satisfies $(s t) \zeta=s \zeta, t \zeta$ or $s t$ for all $s, t \in M$, then $\zeta$ is said to be semi-identity. Let

$$
\left[\left\{\lambda(A): A \in T^{*}\right\},\left\{\rho(A): A \in T^{*}\right\}, \phi\right]
$$

be a system of mappings $\lambda(A), \rho(A)\left(A \in T^{*}\right), \phi$ satisfying (C1)-(C5) of Theorem 1.1 of [10] and the following conditions I-IV:
I. Each $\lambda(A)$ and each $\rho(A)$ are semi-identity mappings.
II. For any $s \in S$,
(i) $s \rho(A) \rho(B)=(A, B) \phi, s \rho(A)$ or $s \rho(B)$,
(ii) $s \lambda(A) \lambda(B)=(B, A) \phi, s \lambda(A)$ or $s \lambda(B)$,
(iii) $s \rho(B) \lambda(A)(=s \lambda(A) \rho(B))=(A, B) \phi, s \lambda(A)$ or $s \rho(B)$.
III. For any $s, t \in S$,

$$
s \rho(A) \neq 0, t \lambda(A) \neq 0 \text { implies } s \rho(A) t(=s(t \lambda(A))=s t
$$

IV. (i) $(A, B) \phi \rho(C)=(A, B) \phi,(B, C) \phi$, or $(A, C) \phi$, if $A B=\underset{\sim}{0}$,
(ii) $(B, C) \phi \lambda(A)=(A, B) \phi,(B, C) \phi$, or $(A, C) \phi$, if $B C=\underset{\sim}{0}$,
(iii) $(A B, C) \phi(=(A, B C) \phi)=(A, C) \phi$, if $A B \neq \underset{\sim}{0}$ and $B C \neq \underset{\sim}{0}$.

Then, $\Sigma=S \dot{+} T^{*}$ becomes an exclusive ideal extension of $S$ by $T$ under the multiplication $\circ$ defined by ( N 1 )-( N 4 ) of Theorem 1.1 of [10]. Further, every exclusive ideal extension of $S$ by $T$ can be constructed in this fashion. It is also noted that for given $S, T$ there exists at least one sucb system

$$
\left[\left\{\lambda(A): A \in T^{*}\right\},\left\{\rho(A): A \in T^{*}\right\}, \phi\right]
$$

satisfying I-IV above and (C1)-(C5) of Theorem 1.1 of [10]. For example, for every $A \in T^{*}$ define $\lambda(A), \rho(A)$ as follows: $s \lambda(A)=0$ and $s \rho(A)=0$ for all $s \in S$. Define $\phi$ by $(A, B) \phi=0$ for $A, B \in T^{*}, A B=\underset{\sim}{0}$. Then, the system

$$
\left[\left\{\lambda(A): A \in T^{*}\right\},\left\{\rho(A): A \in T^{*}\right\}, \phi\right]
$$

satisfies the conditions I-IV and the conditions (C1)-(C5) of Theorem 1.1 of [10].

## 3. Exclusive homobands

We have already seen that if $S$ is an exclusive ( $R$ )-semigroup whose idempotents form a purely rectangular band, then the set $E$ of idempotents of $S$ is an ideal of $S$ and $S$ satisfies the following condition:

$$
\begin{equation*}
(x y)^{2}=x^{2} y^{2} \text { for all } x, y \tag{3.1}
\end{equation*}
$$

It is easy to see that, for exclusive semigroups, the condition (3.1) is equivalent to the following:

$$
\begin{equation*}
(x y)^{n}=x^{n} y^{n} \text { for all } n \geqq 1 \text { and for all } x, y \tag{3.1}
\end{equation*}
$$

Further, we have
Theorem 3.1. For an exclusive semigroup $S$, the condit on (3.1) (hence (3.1)*) is equivalent to the following:
(3.2) The set $E$ of idempotents of $S$ is a band, and there exists a homomorphism $\xi: S \rightarrow E$ such that $e \xi=e$ for all $e \in E$.

Proof. (3.1) $\Rightarrow$ (3.2): Take two idempotents $e, f$. Then, $(e f)^{2}=e^{2} f^{2}=e f$. Hence $e f$ is an idempotent. Let $\xi: S \rightarrow E$ define by $x \xi=x^{2}, x \in S$. Then,

$$
(x y) \xi=(x y)^{2}=x^{2} y^{2}=(x \xi)(y \xi)
$$

Hence $\xi$ is a homomorphism. It is obvious that $e \xi=e$ for all idempotents $e f$.
(3.2) $\Rightarrow$ (3.1): For any $x \in S, x^{2}=x^{2} \xi=(x \xi)^{2}=x \xi$. Hence, $(x y)^{2}=(x y) \xi$ $=(x \xi)(y \xi)=x^{2} y^{2}$.

An exclusive semigroup $S$ is called an exclusive homoband if $S$ satisfies condition (3.1) and the following condition:

The set $E$ of idempotents of $S$ is an ideal of $S$.
Remark. In an exclusive semigroup, the set of idempotents is not necessarily a subsemigroup. This can be seen from the example given by O'Carroll and Schein [5]. Also, the set of idempotents is not necessarily an ideal even when it is a subsemigroup.

This can also be seen from Tamura's paper [6]. Therefore, each of our conditions (3.1) and (3.3) seems to be strong. However, in general, for any two idempotents $e, f$ of an exclusive semigroup at least one of $e f$ and $f e$ is an idempotent. Further, both a commutative semigroup and a completely non-commutative semigroup ${ }^{(4)}$ satisfy the condition (3.1). Moreover, it is easily seen that in an exclusive semigroup $S$ whose idempotents form a band, for any $x, y \in S$ the relation $(x y)^{2}=x^{2} y^{2}$ is satisfied except in the case $x^{2}=e, y^{2}=f, e f=e$ or $f, e \neq f$. It is also easily proved that for any idempotent $f$ and any element $x$ of an exclusive semigroup $S$, at least one of $x f$ and $f x$ is contained in the set $E$ of idempotents of $S$ except in the case $x^{2}=e, e f=f e=e, e \neq f$. Therefore, the conditions (3.1) and (3.3) are not such strong conditions for the class of exclusive semigroups as at first appears.

Now, we have
Theorem 3.2. Let $S$ be an exclusive homoband, and $E$ the band of idempotents of $S$. Let $S_{e}=\left\{x \in S: x^{2}=e\right\}, e \in E$. Then,
(1) $S=\Sigma\left\{S_{e}: e \in E\right\}$,
(2) $S_{e} S_{f}=$ ef for all $e, f \in E, e \neq f$,
(3) $S_{e}$ is a unipotent exclusive semigroup, and in particular $S_{e}$ is a null semigroup if there exists $f \in E$ such that $e f e=e$, ef $\neq e$ and $f e \neq e$,
(4) $E$ is an exclusive band.

Proof. Parts (1), (4) and the first half of (3) are obvious. Therefore, next we prove the latter half of (3). Let $e, f$ be idempotents such that efe $=e$, ef $\neq e$ and $f e \neq e$. Take any elements $x, y$ of $S_{e}$. Then,

$$
x f y=x f, f y \text { or } x y
$$

Since $x f y=e f e, x f=e f$ and $f y=f e$, we have $x f y \neq x f$ and $x f y \neq f y$. Hence

$$
e=e f e=x f y=x y
$$

This means that $S_{e}$ is a null semigroup. Finally, we prove part (2). Since ef $\neq e$ or $e f \neq f$, we can assume that $e f \neq e$ without loss of generality. Take any elements $x, y$ from $S_{e}, S_{f}$, respectively. Then,

$$
(e y)^{2}=e^{2} y^{2}=e f
$$

by condition (3.1). Since $e y \in E,(e y)^{2}=e y$. Hence $e y=e f$. Therefore,

$$
e f=e y=x x y=x^{2} \text { or } x y
$$

Since $e f \neq e$ we have $x y=e f$. Thus, $S_{e} S_{f}=e f$.
By using the theorem above, we have

[^2]Theorem 3.3. Let $E$ be an exclusive band. For every $e \in E$ let $S_{e}$ be a unipotent exclusive semigroup having $e$ as its zero element, and moreover let Se be a null semigroup having $e$ as its zero element if there exists $f \in E$ such that $e f e=e, e f \neq e$ and $f e \neq e$. Then $S=\Sigma\left\{S_{e}: e \in E\right\}$ becomes an exclusive homoband having $E$ as the band of its idempotents under the multiplication $\circ$ defined by

$$
x \circ y=\left\{\begin{array}{l}
x y \text { if } x, y \in S_{e} \text { for some } e \in E  \tag{3.4}\\
\text { ef if } x \in S_{e}, y \in S_{f} \text { and } e \neq f
\end{array}\right.
$$

Further, every exclusive homoband is constructed in this fashion.
Proof. First, we prove that $S(\circ)$ is a semigroup. Take any $x, y, z$ from $S_{e}, S_{f}, S_{h}$ respectively. If $e=f=h$, then

$$
(x \circ y) \circ z=(x y) z=x(y z)=x \circ(y \circ z)
$$

Hence in this case, the associative law

$$
(x \circ y) \circ z=x \circ(y \circ z)
$$

is satisfied. Next, consider the case where one of $e, f, h$ is different from each of the others. In this case,

$$
x \circ(y \circ z)=e f h=(x \circ y) \circ z
$$

Therefore, $S(\circ)$ is a semigroup. Next, we prove the exclusiveness of $S(\circ)$. Take $x, y, z$ from $S_{e}, S_{f}, S_{h}$, respectively.
(i) The case $e=f=h$ : In this case

$$
x \circ y \circ z=x \circ y, x \circ z \text { or } y \circ z
$$

as is obvious.
(ii) The case where two of $e, f, h$ are same and one of $e, f, h$ is different from the other two elements: In this case,

$$
x \circ y \circ z=e f h
$$

If $e=f$ and $f \neq h$, then $e f h=e h$. Hence

$$
x \circ y \circ z=y \circ z
$$

If $f=h$ and $f \neq e$, then $e f h=e f$. Hence

$$
x \circ y \circ z=x \circ y
$$

If $e=h$ and $e \neq f$, then $e f h=e f, f h$ or $e$. In the case $e f h=e f$, we have

$$
x \circ y \circ z=x \circ y
$$

If $e f h=f h$; then we have

$$
x \circ y \supset z=y \supset z .
$$

Finally in the case efe $(=e f h) \neq e f$, efe $\neq f e$ and $e f e=e$, by the hypothesis $S_{e}$ is a null subsemigroup. Therefore, $x \circ y \circ z=e=x z=x \circ z$.
(iii) The case where $e, f, h$ are distinct: In this case,

$$
x \circ y \circ z=x \circ y, y \circ z \text { or } x \circ z
$$

is easily verified since efh=ef,fh or eh and since $x \circ y=e f, y \circ z=f h$ and $x \circ z=e h$.

Thus, in any case

$$
x \circ y \circ z=x \circ y, y \circ z \text { or } x \circ z
$$

is satisfied. The latter half of the theorem is obvious from Theorem 3.2.
Corollary. If $S$ is an exclusive homoband and if the idempotents $E$ of $S$ form a semilattice of purely rectangular bands, then $S$ is an inflation of $E$. Conversely, if a semigroup $S$ is an inflation of an exclusive band $E$ then $S$ is an exclusive homoband having $E$ as the band of its idempotents.

Proof. Obvious from Theorems 1.4 and 3.3.
From the theorem above, the problem of describing the structure of exclusive homobands is reduced to that of exclusive bands. Recently, the author heard that O'Carroll and Schein [5] have completely described the structure of exclusive bands. They have also independently obtained Theorem 1.2 and the parts (2)-(4) of Theorem 1.3 and Theorems 4.1 and 4.2 below.

## 4. Medial exclusive semigroups

If a [left, right] normal band $S$ (see [7], [8]) is exclusive, then $S$ is called a [left, right] normal exclusive band.

For left [right] normal bands we have
Theorem 4.1. Let $S$ be a left [right] normal band, and $S \sim \Sigma\left\{S_{\gamma}: \gamma \in \Gamma\right\}$ the structure decomposition of $S$ (see [7], [8]). Let $\Omega=\left\{\psi_{\beta}^{\alpha}: \alpha \leqq \beta, \alpha, \beta \in \Gamma\right\}$ be the characteristic family of $S$ (where $\alpha \leqq \beta$ if and only if $\alpha \beta=\beta \alpha=\beta$ ) (see [7], [8]). Then $S$ is exclusive if and only if
(1) $\Gamma$ is exclusive, and
(2) for $\alpha, \beta, \gamma \in \Gamma$ such that $\alpha \beta, \beta \gamma, \gamma \alpha$ are mutually distinct $S_{\alpha} \psi_{\alpha \beta \gamma}^{\alpha}=S_{\beta} \psi_{\alpha \beta \gamma}^{\beta}=S_{\gamma} \psi_{\alpha \beta \gamma}^{\gamma}=a$ single element.

Proof. First we prove the "only if" part. Since $\Gamma$ is a homomorphic image of $S$, it is also exclusive. To prove part (2), let $\alpha, \beta, \gamma$ be elements of $\Gamma$ such that $\alpha \beta, \beta \gamma, \gamma \alpha$ are all mutually distinct. Since $\Gamma$ is exclusive, $\alpha \beta \gamma=\alpha \beta, \beta \gamma$ or $\alpha \gamma$. We can assume without loss of generality that $\alpha \beta \gamma=\beta \gamma$, because, for example, if
$\alpha \beta \gamma=\alpha \gamma$ then this implies $\beta \alpha \gamma=\alpha \gamma$. For any $a_{\alpha} \in S_{\alpha}, b_{\beta} \in S_{\beta}$ and $c_{\gamma} \in S_{\gamma}$, we have $a_{\alpha} b_{\beta} c_{\gamma}=b_{\beta} c_{\gamma}$. Hence

$$
a_{\alpha} \psi_{\alpha \beta \gamma}^{\alpha}=b_{\beta} \psi_{\alpha \beta \gamma}^{\beta}=b_{\beta} \psi_{\alpha \beta \gamma}^{\beta}
$$

Similarly, $a_{\alpha} c_{\gamma} b_{\beta}=c_{\gamma} b_{\beta}$ implies $a_{\alpha} \psi_{\alpha \beta \gamma}^{\alpha}=c_{\gamma} \psi_{\alpha \beta \gamma}^{\gamma}$. Therefore,

$$
a_{\alpha} \psi_{\alpha \beta \gamma}^{\alpha}=b_{\beta} \psi_{\alpha \beta \gamma}^{\beta}=c_{\gamma} \psi_{\alpha \beta \gamma}^{\gamma} .
$$

This implies

$$
S_{\alpha} \psi_{\alpha \beta \gamma}^{\alpha}=S_{\beta} \psi_{\alpha \beta \gamma}^{\beta}=S_{\gamma} \psi_{\alpha \beta \gamma}^{\gamma}=\mathbf{a} \text { single element. }
$$

Next, we prove the "if"' part. Since $\Gamma$ is exclusive, $\alpha \beta \gamma=\alpha \beta, \beta \gamma$ or $\alpha \gamma$. Let $a_{\alpha}, b_{\beta}, c_{\gamma}$ be elements of $S_{\alpha}, S_{\beta}, S_{\gamma}$ respectively, and consider $a_{\alpha} b_{\beta} c_{\gamma}$.
(i) Case $\alpha \beta \gamma=\alpha \beta: a_{\alpha} b_{\beta} c_{\gamma}=a_{\alpha} b_{\beta}\left(a_{\alpha} b_{\beta} c_{\gamma}\right)=a_{\alpha} b_{\beta}$ (by the left normality of $S$ ).
(ii) Case $\alpha \beta \gamma=\alpha \gamma: a_{\alpha} b_{\beta} c_{\gamma}=a_{\alpha} c_{\gamma} b_{\beta}$ (by the left normality of $S$ ) $=a_{\alpha} c_{\gamma}$ (by (i)).
(iii) Case $\alpha \beta \gamma \neq \alpha \beta, \alpha \gamma$ : In this case, it is easy to see that $\alpha \beta \gamma=\beta \gamma$ and $\alpha \beta, \beta \gamma, \alpha \gamma$ are mutually distinct. Now,

$$
a_{\alpha} b_{\beta} c_{\gamma}=a_{\alpha} \psi_{\alpha \beta \gamma}^{\alpha}=b_{\beta} \psi_{\alpha \beta \gamma}^{\beta} \quad \text { (by condition (2)) }=b_{\beta} \psi_{\beta \gamma}^{\beta}=b_{\beta} c_{\gamma} .
$$

Thus $S$ is exclusive.
Next, let $N$ be a normal band. Then $N$ is isomorphic to a spined product of a left normal band $L$ and a right normal band $R$ with respect to a semilattice $\Gamma$; that is, $N \cong L \triangleright \triangleleft R(\Gamma)$ (see [7], [8]). Let

$$
L \sim \Sigma\left\{L_{\gamma}: \gamma \in \Gamma\right\}, R \sim \Sigma\left\{R_{\gamma}: \gamma \in \Gamma\right\}
$$

be the structure decompositions of $L, R$ respectively, and let

$$
\Omega=\left\{\psi_{\beta}^{\alpha}: \alpha \leqq \beta, \alpha, \beta \in \Gamma\right\}, \quad \Delta=\left\{\phi_{\beta}^{\alpha}: \alpha \leqq \beta, \alpha, \beta \in \Gamma\right\}
$$

be the characteristic families of $L, R$.
Then, we have
Theorem 4.2. $N$ is exclusive if and only if
(1) $\Gamma$ is exclusive,
(2) if $\beta \in \Gamma$ is not a minimal element, then $L_{\beta}=a$ single element or $R_{\beta}=$ a single element, and
(3) for $\alpha, \beta, \gamma \in \Gamma$ such that $\alpha \beta, \beta \gamma, \gamma \alpha$ are mutually distinct,

$$
L_{\alpha} \psi_{\alpha \beta \gamma}^{\alpha}=L_{\beta} \psi_{\alpha \beta \gamma}^{\beta}=L_{\gamma} \psi_{\alpha \beta \gamma}^{\gamma}=a \text { single element }
$$

and $R_{\alpha} \phi_{\alpha \beta \gamma}^{\alpha}=R_{\beta} \phi_{\alpha \beta \gamma}^{\beta}=R_{\gamma} \phi_{\alpha \beta \gamma}^{\gamma}=a$ single element.
Proof. First we prove the 'only if'’ part. Conditions (1), (3) follow from Theorem 4.1 and the fact that $\Gamma, L, R$ are homomorphic images of the exclusive band $N$. Hence, we need only prove (2). Let $\beta \in \Gamma$ be not a minimal element.

Then, there exists $\alpha \in \Gamma$ such that $\alpha<\beta$. Take any

$$
a_{\alpha}, c_{\alpha} \in L_{\alpha}, b_{\beta} \in L_{\beta}, a_{\alpha}^{\prime}, c_{\alpha}^{\prime} \in R_{\alpha}, b_{\beta}^{\prime} \in R_{\beta}
$$

Consider the three elements $\left(a_{\alpha}, a_{\alpha}^{\prime}\right),\left(b_{\beta}, b_{\beta}^{\prime}\right),\left(c_{\alpha}, c_{\alpha}^{\prime}\right) \in L \bowtie \triangleleft R(\Gamma)$. Since

$$
\left(a_{\alpha}, a_{\alpha}^{\prime}\right)\left(b_{\beta}, b_{\beta}^{\prime}\right)\left(c_{\alpha}, c_{\alpha}^{\prime}\right)=\left(a_{\alpha}, a_{\alpha}^{\prime}\right)\left(b_{\beta}, b_{\beta}^{\prime}\right) \text { or }\left(b_{\beta}, b_{\beta}^{\prime}\right)\left(c_{\alpha}, c_{\alpha}^{\prime}\right)
$$

we have $\left(a_{\alpha} b_{\beta} c_{\alpha}, a_{\alpha}^{\prime} b_{\beta}^{\prime} c_{\alpha}^{\prime}\right)=\left(a_{\alpha} b_{\beta}, a_{\alpha}^{\prime} b_{\beta}^{\prime}\right)$ or $\left(b_{\beta} c_{\alpha}, b_{\beta}^{\prime} c_{\alpha}^{\prime}\right)$. On the other hand,

$$
\left(a_{\alpha} b_{\beta} c_{\alpha}, a_{\alpha}^{\prime} b_{\beta}^{\prime} c_{\alpha}^{\prime}\right)=\left(a_{\alpha} b_{\beta}, b_{\beta}^{\prime} c_{\alpha}^{\prime}\right)
$$

since $L_{\alpha \beta}, R_{\alpha \beta}$ are a left zero semigroup and a right zero semigroup, respectively.
If $\left(a_{\alpha} b_{\beta}, b_{\beta}^{\prime} c_{\alpha}^{\prime}\right)=\left(a_{\alpha} b_{\beta}, a_{\alpha}^{\prime} b_{\beta}^{\prime}\right)$, then $c_{\alpha}^{\prime} \phi_{\beta}^{\alpha}=b_{\beta}^{\prime}$.
If $\left(a_{\alpha} b_{\beta}, b_{\beta}^{\prime} c_{\alpha}^{\prime}\right)=\left(b_{\beta} c_{\alpha}, b_{\beta}^{\prime} c_{\alpha}^{\prime}\right)$, then $a_{\alpha} \psi_{\beta}^{\alpha}=b_{\beta}$.
Hence, we have $a_{\alpha} \psi_{\beta}^{\alpha}=b_{\beta}$ or $c_{\alpha}^{\prime} \phi_{\beta}^{\alpha}=b_{\beta}^{\prime}$. Suppose that each of $L_{\beta}$ and $R_{\beta}$ contains at least two elements. Then, there exist $d_{\beta} \in L_{\beta}, d_{\beta}^{\prime} \in R_{\beta}$ such that $d_{\beta} \neq b_{\beta}$ and $d_{\beta}^{\prime} \neq b_{\beta}^{\prime}$. By the same method, we have

$$
a_{\alpha} \psi_{\beta}^{\alpha}=d_{\beta} \text { or } c_{\alpha}^{\prime} \phi_{\beta}^{\alpha}=d_{\beta}^{\prime}
$$

Therefore, either

$$
{ }^{\prime} a_{\alpha} \psi_{\beta}^{\alpha}=b_{\beta} \text { and } c_{\alpha}^{\prime} \phi_{\beta}^{\alpha}=d_{\beta}^{\prime \prime} \text { ' or " } a_{\alpha} \psi_{\beta}^{\alpha}=d_{\beta} \text { and } c_{\alpha}^{\prime} \phi_{\beta}^{\alpha}=b_{\beta}^{\prime \prime} \text { '. }
$$

Suppose that $a_{\alpha} \psi_{\beta}^{\alpha}=b_{\beta}$ and $c_{\alpha}^{\prime} \phi_{\beta}^{\alpha}=d_{\beta}^{\prime}$. Then,

$$
\left(a_{\alpha}, a_{\alpha}^{\prime}\right)\left(d_{\beta}, b_{\beta}^{\prime}\right)\left(c_{\alpha}, c_{\alpha}^{\prime}\right)=\left(a_{\alpha} d_{\beta}, a_{\alpha}^{\prime} b_{\beta}^{\prime}\right) \text { or }\left(d_{\beta} c_{\alpha}, b_{\beta}^{\prime} c_{\alpha}^{\prime}\right)
$$

On the other hand, $\left(a_{\alpha} d_{\beta} c_{\alpha}, a_{\alpha}^{\prime} b_{\beta}^{\prime} c_{\alpha}^{\prime}\right)=\left(a_{\alpha} d_{\beta}, b_{\beta}^{\prime} c_{\alpha}^{\prime}\right)$. Hence,

$$
a_{\alpha} \psi_{\beta}^{\alpha}=d_{\beta} \text { or } c_{\alpha}^{\prime} \phi_{\beta}^{\alpha}=b_{\beta}^{\prime} .
$$

This is a contradiction. Similarly, if we assume " $a_{\alpha} \psi_{\beta}^{\alpha}=d_{\beta}$ and $c_{\alpha}^{\prime} \phi_{\beta}^{\alpha}=b_{\beta}^{\prime}$ " then we also get a contradiction. Therefore, $L_{\beta}=$ a single element or $R_{\beta}=\mathrm{a}$ single element. Since the "if" part can be proved by a method almost identical to that of the proof of the "if"' part of Theorem 4.1, we omit its proof.

Corollary. If a normal exclusive band $S$ is a semilattice of purely rectangular bands, then $S$ is necessarily a purely rectangular band.

Proof. Obvious from the theorem above.
Since the structure of exclusive semilattices has been completely described by [6], the structure of normal exclusive bands is now also clarified by the theorem above. A semigroup is said to be medial if it satisfies the identity $x y z w=x z y w^{(5)}$. It is easy to see that a medial exclusive archimedean semigroup (see [1]) is a medial exclusive homoband whose idempotents form a rectangular band. Next, we shall study the structure of medial exclusive homobands.
${ }^{(5)}$ Hence, a medial band is just the same as a normal band.

Theorem 4.3. Let $E$ be a normal exclusive band, and $E \sim \Sigma\left\{E_{\gamma}: \gamma \in \Gamma\right\}$ the structure decomposition of $E$ (see [7], [8]). For every $e \in E$, let $S_{e}$ be a unipotent medial exclusive semigroup having e as its zero element. Moreover, let $S_{e}$ be a null semigroup having $e$ as its zero element if there exists $f \in E$ such that efe $=e$, ef $\neq e$ and $f e \neq e$. Then, $S=\Sigma\left\{S_{e}: e \in E\right\}$ becomes a medial exclusive homoband under the multiplication $\circ$ defined by

$$
x \circ y=\left\{\begin{array}{l}
x y \text { if } x, y \in S_{e} \text { for some } e \in E  \tag{4.1}\\
\text { ef if } x \in S_{e}, y \in S_{f} \text { and } e \neq f
\end{array}\right.
$$

Further, every medial exclusive homoband can be constructed in this fashion.
Proof. Obvious from Theorem 3.3 and the fact that every subsemigroup of a medial semigroup is medial.

Thus the problem of describing the structure of medial exclusive homobands is reduced to that of describing the structure of unipotent medial exclusive semigroups. Next, we consider this problem.

Let $X$ be a set, and $A$ a subset of $X \times X=\{(x, y): x, y \in X\}$ such that

$$
\left\{\begin{array}{l}
\text { (1) } A \nRightarrow(a, a) \text { for all } a \in X,  \tag{4.2}\\
\text { (2) } A \ni(x, y),(y, z),(x, z) \text { implies that } \\
\\
\text { (i) }(x, v) \notin A \text { or }(v, y) \notin A \text { for all } v \in X, \text { and } \\
\text { (ii) }(y, w) \notin A \text { or }(w, z) \notin A \text { for all } w \in X .
\end{array}\right.
$$

Then, of course $A$ satisfies condition (1.2). Hence, $S=A \cup X \cup\{0\}$ becomes a unipotent exclusive semigroup under the multiplication $\circ$ defined by

```
(1) for \(a, b \in X, a \circ b=(a, b)\) if \((a, b) \in A\);
(2) for \(a \in X\) and \((b, c) \in A, a \circ(b, c)=(a, c)\)
    if \((a, b),(a, c) \in A\);
    (3) for \(c \in X\) and \((a, b) \in A,(a, b) \circ c=(a, c)\)
    if \((a, c),(b, c) \in A\);
(4) \(\alpha \circ \beta=0\) otherwise (where \(\alpha, \beta \in S\) ).
```

Further, $S(\circ)$ is medial For, let $\alpha, \beta, \gamma, \delta$ be any elements of $S(\circ)$. Then,

$$
\alpha \circ \beta \circ \gamma \circ \delta=(\alpha \circ \beta) \circ(\gamma \circ \delta)
$$

and each of $\alpha \circ \beta$ and $\gamma \circ \delta$ is 0 or an element of $A$. Hence, by the definition of the multiplication in $S$, we have

$$
(\alpha \circ \beta) \circ(\gamma \circ \delta)=0 .
$$

Similarly, $\alpha \circ \gamma \circ \beta \circ \delta=0$. Therefore, $S(\circ)$ is medial. We shall denote this $S(\circ)$ by $\operatorname{FM}(X, A)$.

Then, we have

Theorem 4.4. Any homomorphic image of $F M(X, A)$ is a unipotent medial exclusive semigroup. Conversely, every unipotent medial exclusive semigroup can be obtained as a homomorphic image of some $\operatorname{FM}(X, A)$.

Proof. The first half of the theorem follows from Theorem 1.6 and the fact that any homomorphic image of a medial semigroup is medial. To prove the latter half, let $S$ be a unipotent medial exclusive semigroup, and put

$$
S \backslash S^{2}=X \text { and }\{(x, y): x y \neq 0 \text { in } S, x, y \in X\}=A
$$

Then, it is easy to see that $A$ satisfies condition (4.2). Therefore, we can consider $F M(X, A)$. Now, define $\phi: F M(X, A) \rightarrow S$ by $0 \phi=0, x \phi=x$ for $x \in X$ and $(x, y) \phi=x y$ for $(x, y) \in A$. Then, this $\phi$ is a homomorphism of $F M(X, A)$ onto $S$.

Remark. Let $S$ be a unipotent medial exclusive semigroup. Then by the theorem above, $S$ is a homomorphic image of some $F M(X, A)$. Since for any $\alpha, \beta, \gamma, \delta \in F M(X, A) \alpha \beta \gamma \delta=0$ is satisfied as was seen above, the relation $a b c d=0$ is also satisfied for any $a, b, c, d$ of $S$. Hence, we have: If $S$ is a unipotent medial exclusive semigroup, then $a b c d=0$, for all $a, b, c, d \in S$.

## References

[1] J. L. Chrislock, 'Medial semigroups', J. of Algebra 12 (1969), 1-9.
[2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1 (Amer. Math. Soc., Providence, R. I., 1961).
[3] E. Hewitt and H. S. Zuckerman, Ternary operations and semigroups, Semigroups (edited by K. W. Folley, Academic Press, New York and London, 1969).
[4] G. B. Preston, 'Matrix representations of inverse semigroups', J. Austral. Math. Soc. 9 (1969), 29-61.
[5] L. O'Carroll and B. M. Schein, 'On exclusive semigroups' (to appear).
[6] T. Tamura, 'On commutative exclusive semigroups', Semigroup Forum 2 (1971), 181-187.
[7] M. Yamada and N. Kimura, 'Note on idempotent semigroups, II', Proc. Japan Acad. 34 (1958), 110-112.
[8] M. Yamada, The structure of separative bands, (Dissertation, University of Utah, 1962).
[9] M. Yamada, 'Note on exclusive semigroups' (to appear).
[10] R. Yoshida, 'Ideal extensions of semigroups and compound semigroups', Memoirs of the Research Institute of Science and Engineering, Ritumeikan Univ. No. 13 (1965), 1-8.

## Monash University

Victoria, Australia
Present address
Shimane University
Matsue, Shimane
Japan


[^0]:    * An abstract of a part of this paper will appear in Semigroup Forum.

[^1]:    (1) A semigroup is said to be unipotent if it has just one idempotent.
    ${ }^{(2)}$ Let $S$ be a semigroup with idempotents, and $E$ the set of idempotents of $S$. Then a nonzero element $e \in E$ is called primitive if $e f=f e=f, f \in E$, implies $f=0$ or $e=f$. If every nonzero element in $E$ is primitive, then $S$ is called a primitive semigroup.

[^2]:    ${ }^{(4)}$ A semigroup $S$ is said to be completely non-commutative if it satisfies the following condition: For any $x, y \in S, x y=y x$ implies $x=y$.

