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Interest in the oxide heterostructure has been stimulated to a large extent by their interfaces which 

contain lots of novel phenomena [1-3]. In our research, by atomically resolved imaging and electron 

energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM), we 

investigate the elemental interdiffusion and valence states across the interface of LaMnO3 (LMO) thin 

film grown on SrTiO3 (STO) and KTaO3 (KTO) to understand the effects of the substrate on the 

interfacial configurations. 

 

First, we examine the microstructure of the interfaces of LMO/KTO and LMO/STO by high annular 

angle dark field (HAADF) STEM and EELS as shown in figure 1. The interface of LMO/STO has an 

elemental interdiffusion of about 4 to 5 unit cells. For the determination of the valence states of the 

elements at the interface, we extract the Ti L2,3- and Mn L2,3-edge spectra across the interface. With the 

unchanged Ti valence state and the decreased Mn valence states, we consider that the interdiffusion of 

Ti
4+

 at the interface can lower the valence of the Mn for electric neutrality. In LMO/KTO, we also 

observe the microstructure of the interface and the map of EELS near edge structures of K L2,3-, Mn L2,3- 

and La M4,5-edges. Compared to the LMO/STO, the elements at the LMO/KTO interfaces are much less 

interdiffused. After investigating the spectra of Mn L2,3- and O K-edge, we believe that the formation of 

the oxygen vacancies at the LMO/KTO interface is the factor of the reduction in the Mn valence. 

 

In summary, there are two different structural origins causing the decrease of the Mn valence at the 

interface in LMO/STO and LMO/KTO. Figure 2 shows the lower energy of Mn L2,3-edge at the 

interface in both oxide heterostructures. One is the significant Ti
4+ 

interdiffusion at the LMO/STO 

interface. The other is the existence of oxygen vacancies at the LMO/KTO interface. In the future, we 

would like to further investigate the relationship between atomic configuration and interfacial 

magnetism at the LMO/STO and LMO/KTO heterojunctions [4]. 
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Figure 1. STEM-EELS of the interface in LMO/KTO and LMO/STO. 

 

 
 

 

 

Figure 2. The map of EELS near edge structures of Mn L2,3-edges in LMO/KTO and LMO/STO. 
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