On Cyclic Fields of Odd Prime Degree *p* with Infinite Hilbert *p*-Class Field Towers

Frank Gerth III

Abstract. Let *k* be a cyclic extension of odd prime degree *p* of the field of rational numbers. If *t* denotes the number of primes that ramify in *k*, it is known that the Hilbert *p*-class field tower of *k* is infinite if $t > 3 + 2\sqrt{p}$. For each $t > 2 + \sqrt{p}$, this paper shows that a positive proportion of such fields *k* have infinite Hilbert *p*-class field towers.

Let *p* be an odd prime number, and let *k* be a cyclic extension of degree *p* over the field of rational numbers \mathbb{Q} . Let C_k be the *p*-class group of *k* (*i.e.*, the Sylow *p*subgroup of the ideal class group of *k*). Let k_1 be the Hilbert *p*-class field of *k*. So k_1 is the maximal abelian unramified extension of *k* whose Galois group is a *p*-group. From class field theory, $C_k \cong \text{Gal}(k_1/k)$. For $i \ge 2$, let k_i be the Hilbert *p*-class field of k_{i-1} . Then

$$k \subset k_1 \subset k_2 \subset \cdots \subset k_i \subset \cdots$$

is the Hilbert *p*-class field tower of *k*. If $k_i \neq k_{i-1}$ for each *i*, then the Hilbert *p*-class field tower of *k* is said to be *infinite*.

Let r_k be the rank of the *p*-class group of *k*. So

(1)
$$r_k = \operatorname{rank} C_k = \dim_{\mathbb{F}_p} (C_k / C_k^p)$$

Here \mathbb{F}_p is the finite field with p elements, $C_k^p = \{a^p : a \in C_k\}$, and we are viewing the elementary abelian p-group C_k/C_k^p as a vector space over \mathbb{F}_p . It is known (*cf.* [1], p. 233) that the Hilbert p-class field tower of k is infinite if

$$(2) r_k > 2 + 2\sqrt{p}.$$

Now let $G = \text{Gal}(k/\mathbb{Q})$, and let σ be a generator of the cyclic group G. Then C_k is a module over the group ring $\mathbb{Z}[G]$. Since the norm map from the *p*-class group of *k* to the *p*-class group of \mathbb{Q} is the trivial map, then $C_k^{1+\sigma+\dots+\sigma^{p-1}} = \{1\}$. So we may view C_k as a module over $\mathbb{Z}[G]/(1+\sigma+\dots+\sigma^{p-1})\mathbb{Z}[G]$. Note that

$$\mathbb{Z}[G]/(1+\sigma+\cdots+\sigma^{p-1})\mathbb{Z}[G]\cong\mathbb{Z}[\zeta]$$

where ζ is a primitive *p*-th root of unity. (The map $\mathbb{Z}[G] \to \mathbb{Z}[\zeta]$ induced by $\sigma \mapsto \zeta$ is a surjective homomorphism with kernel $(1 + \sigma + \cdots + \sigma^{p-1})\mathbb{Z}[G]$.) Since the ideal

Received by the editors July 20, 2000.

AMS subject classification: 11R29, 11R37, 11R45.

[©]Canadian Mathematical Society 2002.

$$(1-\zeta)^{p-1}\mathbb{Z}[\zeta] = p\mathbb{Z}[\zeta]$$
, then $C_k^{(1-\sigma)^{p-1}} = C_k^p$, where $C_k^{(1-\sigma)^i} = \{a^{(1-\sigma)^i} : a \in C_k\}$ for $i \ge 0$. Then

(3)
$$r_k = \operatorname{rank}(C_k/C_k^p) = \operatorname{rank}(C_k/C_k^{(1-\sigma)^{p-1}}) = \sum_{i=1}^{p-1} \operatorname{rank}(C_k^{(1-\sigma)^{i-1}}/C_k^{(1-\sigma)^i}).$$

Let *t* denote the number of primes that ramify in k/\mathbb{Q} . From genus theory it is known that

(4)
$$\operatorname{rank}(C_k/C_k^{1-\sigma}) = t - 1.$$

From Inequality 2 and Equations 3 and 4, we see that the Hilbert *p*-class field tower of *k* is infinite if $t > 3 + 2\sqrt{p}$. We shall consider cases where $t > 2 + \sqrt{p}$. Let

(5)
$$s_k = \operatorname{rank}(C_k^{1-\sigma}/C_k^{(1-\sigma)^2})$$

Then from Equations 3, 4, and 5,

$$(6) r_k \ge t - 1 + s_k$$

For each positive integer t and each positive real number x, we define

 $A_t = \{ \text{cyclic extensions } k \text{ of } \mathbb{Q} \text{ of degree } p \text{ with exactly } t \text{ ramified primes} \}$

$$A_{t;x} = \{k \in A_t : \text{ the conductor of } k \text{ is } \leq x\}$$

 $A_{t:x}^* = \{k \in A_{t;x} : \text{ Hilbert } p \text{-class field tower of } k \text{ is infinite} \}.$

Next we define a density

(7)
$$d_t^* = \liminf_{x \to \infty} \frac{|A_{t;x}^*|}{|A_{t;x}|}$$

where |A| denotes the cardinality of a set *A*. Since $A_{tx}^* = A_{tx}$ for $t > 3 + 2\sqrt{p}$, we know that $d_t^* = 1$ for $t > 3 + 2\sqrt{p}$. Our main result is the following theorem.

Theorem Let d_t^* be defined by Equation 7. Then $d_t^* = 1$ for $t > 3+2\sqrt{p}$. Furthermore, $d_t^* > 0$ for $t > 2+\sqrt{p}$. In other words, for each integer $t > 2+\sqrt{p}$, a positive proportion of the cyclic extensions of \mathbb{Q} of odd prime degree p with exactly t ramified primes have infinite Hilbert p-class field towers.

Proof With s_k defined by Equation 5, we define for nonnegative integers s

$$A_{t,s;x} = \{k \in A_{t;x} : s_k = s\}$$

and

(8)
$$d_{t,s} = \lim_{x \to \infty} \frac{|A_{t,s;x}|}{|A_{t;x}|}$$

From Equation 3 in [2],

(9)
$$d_{t,s} = \left[\prod_{i=1}^{t-1-s} \left(1 - \frac{1}{p^{t+1-i}}\right)\right] \cdot \frac{1}{p^{ts}} \cdot \sum_{\substack{i_1 + \dots + i_{t-1-s} \le s \\ each \ i_j \ge 0}} \left(\prod_{j=1}^{t-1-s} p^{ji_j}\right)$$

for $0 \le s \le t - 2$. When s = t - 1, $d_{t,t-1} = p^{-t(t-1)}$. Now if $t > 2 + \sqrt{p}$ and $s_k = t - 1$, then from Inequality 6, $r_k > 2 + 2\sqrt{p}$. Hence from Inequality 2, the Hilbert *p*-class field tower of *k* is infinite. So for $t > 2 + \sqrt{p}$,

$$d_t^* \ge d_{t,t-1} = p^{-t(t-1)} > 0,$$

which completes the proof of the theorem.

We now consider the special case p = 3, and we shall use Equation 9 to give somewhat more detailed results in this case. From Inequality 2, a cyclic cubic field khas an infinite Hilbert 3-class field tower if $r_k \ge 6$. So if $t \ge 7$, then $d_t^* = 1$. From the Theorem, $d_t^* > 0$ for $t \ge 4$. For cyclic cubic fields with exactly four ramified primes,

$$d_4^* \ge d_{4,3} = 3^{-12}$$
.

For cyclic cubic fields with exactly five ramified primes,

$$d_5^* \ge d_{5,2} + d_{5,3} + d_{5,4} > .002.$$

For cyclic cubic fields with exactly six ramified primes,

$$d_6^* \ge d_{6,1} + d_{6,2} + d_{6,3} + d_{6,4} + d_{6,5} > .159.$$

References

- [1] J. Cassels and A. Fröhlich, *Algebraic Number Theory*. Academic Press, London, New York, 1986.
- [2] F. Gerth, Densities for ranks of certain parts of p-class groups. Proc. Amer. Math. Soc. 99(1987), 1–8.

Department of Mathematics The University of Texas at Austin Austin, Texas 78712-1082 U.S.A. e-mail: gerth@math.utexas.edu

88