
2

Deterministic Hopfield Networks

2.1 Pattern Recognition

As an example of a pattern-recognition task, consider p images (patterns), for
instance the digits shown in Figure 2.1. The different patterns are indexed by
μ = 1, . . . , p. Here p is the number of patterns (p = 5 in Figure 2.1). The bits of
pattern μ are denoted by x (μ)

i . The index i = 1, . . . , N labels the different bits of a
given pattern, and N is the number of bits per pattern (N = 160 in Figure 2.1). The
bits are binary: they can take only the values −1 and +1. To determine the generic
properties of the algorithm, one often turns to random patterns where each bit x (μ)

i

is chosen randomly, taking either value with probability equal to 1
2 . It is convenient

to gather the bits of a pattern in a column vector like this:

x(μ) =

⎡
⎢⎢⎢⎣

x (μ)

1

x (μ)

2
...

x (μ)

N

⎤
⎥⎥⎥⎦ . (2.1)

In this book, vectors are written in a bold math font, as in Equation (2.1).
The task of the neural network is to recognise distorted patterns, to determine for

instance that the pattern on the right in Figure 2.2 is a perturbed version of the digit
on the left of this figure. To this end, one stores p patterns in the network, presents
it with a distorted version of one of these patterns, and asks the network to find the
stored pattern that is most similar to the distorted one.

The formulation of the problem makes it necessary to define how similar a dis-
torted pattern x is to any of the stored patterns, say x(ν). One possibility is to
quantify the distance dν between the patterns x and x(ν) by the mean squared
error:

dν = 1

4N

N∑
i=1

(
xi − x (ν)

i

)2
. (2.2)

15

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

16 Deterministic Hopfield Networks

Figure 2.2 Binary image (N = 160) of the digit 0, and a distorted version of the
same image. There are N = 160 bits xi , i = 1, . . . , N , and � stands for xi = +1
while � denotes xi = −1

The prefactor is chosen so that the distance equals the fraction of bits by which
two ±1-patterns differ. Note that the distance (2.2) does not refer to distortions
by translations, rotations, or shearing. An improved measure of distance might
take the minimum distance between the patterns subject to all possible translations,
rotations, and so forth.

2.2 Hopfield Networks and Hebb’s Rule

Hopfield networks [13, 24] are networks of McCulloch-Pitts neurons designed to
solve the pattern-recognition task described in the previous section. The bits of
the patterns to be recognised are encoded in a particular choice of weights called
Hebb’s rule, as explained in the following.

All possible states of the McCulloch-Pitts neurons in the network,

s =

⎡
⎢⎢⎢⎣

s1

s2
...

sN

⎤
⎥⎥⎥⎦ , (2.3)

form the configuration space of the network. The components of the states s are
updated either with the synchronous rule (1.2):

si (t + 1) = sgn
[
bi (t)

]
with local field bi (t) =

N∑
j=1

wi j s j (t)− θi , (2.4)

or with the asynchronous rule

si (t + 1) =
{

sgn
[
bm(t)

]
for i = m,

si (t) otherwise.
(2.5)

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

2.2 Hopfield Networks and Hebb’s Rule 17

To recognise a distorted pattern, one feeds its bits xi into the network by assigning
the initial states of the neurons to the pattern bits,

si (t = 0) = xi . (2.6)

The idea is to choose a set of weights wi j so that the network dynamics (2.4) or
(2.5) converges to the correct stored pattern. The choice of weights must depend on
all p patterns, x(1), . . . , x(p). We say that these patterns are stored in the network
by assigning appropriate weights. For example, if x is a distorted version of x(ν)

(Figure 2.2), then we want the network to converge to this pattern:

if s(t = 0) = x ≈ x(ν) then s(t)→ x(ν) as t →∞ . (2.7)

Equation (2.7) means that the network corrects the errors in the distorted pattern
x. If this works, the stored pattern x(ν) is said to be an attractor of the network
dynamics.

But convergence is not guaranteed. If the initial distortion is too large, the net-
work may converge to another pattern, or to some other state that bears no or little
relation to the stored patterns, or it may not converge at all. The region around pat-
tern x(ν) in which all patterns x converge to x(ν) is called the region of attraction
of x(ν). The size of this region depends in an intricate way upon the ensemble of
stored patterns, and there is no general convergence proof.

Therefore we ask a simpler question first: if one feeds one of the undistorted
patterns, for instance x(ν), does the network recognise it as one of the stored, undis-
torted ones? The network should not make any changes to x(ν) because all bits are
correct:

if s(t = 0) = x(ν) then s(t) = x(ν) for all t = 0, 1, 2, (2.8)

How can we choose weights and thresholds to ensure that Equation (2.8) holds? Let
us consider a simple case first, where there is only one pattern, x(1), to recognise.
In this case, a suitable choice of weights and thresholds is

wi j = 1

N
x (1)

i x (1)
j and θi = 0 . (2.9)

This learning rule reminds of a relation between activation patterns of neurons and
their coupling, postulated by Hebb [9] more than 70 years ago:

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased.

This is a mechanism for learning through establishing connections: the coupling
between neurons tends to increase if they are active at the same time. Equation
(2.25), expresses an analogous principle. Together with Equation (2.7), it says that

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

18 Deterministic Hopfield Networks

Figure 2.3 Hopfield network with N = 4 neurons. (a) Network layout. Neuron i
is represented as i . Arrows indicate symmetric connections. (b) Pattern x(1)

the coupling wi j between two neurons is positive if they are both active (si =
s j = 1); if their states differ, the coupling is negative. Therefore the rule (2.25)
is called Hebb’s rule. Hopfield networks are networks of McCulloch-Pitts neurons
with weights determined by Hebb’s rule.

Does a Hopfield network recognise the pattern x(1) stored in this way? To check
that the rule (2.9) does the trick, we feed the pattern to the network by assigning
s j (t = 0) = x (1)

j , and evaluate Equation (2.4):

N∑
j=1

wi j x
(1)
j =

1

N

N∑
j=1

x (1)
i x (1)

j x (1)
j =

1

N

N∑
j=1

x (1)
i = x (1)

i . (2.10)

The second equality follows because x (1)
j can only take the values ±1, so that

[x (1)
j]2 = 1. Using sgn(x (1)

i) = x (1)
i , we obtain

sgn

(N∑
j=1

wi j x
(1)
j

)
= x (1)

i . (2.11)

Comparing Equation (2.11) with the update rule (2.4) shows that the bits x (1)
j of

the pattern x(1) remain unchanged under the update, as required by Equation (2.8).
The network recognises the pattern as a stored one, so Equation (2.9) does what we
asked for. Note that we obtain the same result if we leave out the factor of N−1 in
Equation (2.9).

But does the network correct errors? In other words, is the pattern x(1) an
attractor [Equation (2.7)]? This question cannot be answered in general. Yet, in

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

2.2 Hopfield Networks and Hebb’s Rule 19

Figure 2.4 Reconstruction of a distorted pattern. Under synchronous updating
(2.4), the first two distorted patterns (a) and (b) converge to the stored pattern x(1),
but pattern (c) does not

practice, Hopfield networks work often quite well. It is a fundamental insight that
neural networks may perform well although no proof exists that their dynamics
converges on the correct solution.

To illustrate the difficulties, consider an example: a Hopfield network with N =
4 neurons (Figure 2.3). Store the pattern x(1) shown in Figure 2.3 by assigning the
weights wi j using Equation (2.9). Now consider a distorted pattern x that has a
non-zero distance to x(1) [Figure 2.4 (a)]:

d1 = 1

16

4∑
i=1

(
xi − x (1)

i

)2 = 1

4
. (2.12)

To feed the pattern to the network, we set sj (t = 0) = x j . Then we iterate the
dynamics using the synchronous rule (2.4). Results for different distorted patterns
are shown in Figure 2.4. We see that the first two distorted patterns converge to the
stored pattern, cases (a) and (b). But the third distorted pattern does not [case (c)].

To understand this behaviour, we analyse the synchronous dynamics (2.4) using
the weight matrix

W = 1

N
x(1)x(1)T . (2.13)

Here x(1)T denotes the transpose of the column vector x(1), so that x(1)T is a row
vector. The standard rules for matrix multiplication apply also to column and row
vectors, they are just N × 1 and 1 × N matrices. So the product on the r.h.s. of
Equation (2.13) is an N × N matrix. In the following, matrices with elements Aij

or Bij are written as A, B, and so forth. The product in Equation (2.13) is also
referred to as an outer product. If we change the order of x(1) and x(1)T in the
product, we obtain a number instead:

x(1)Tx(1) =
N∑

j=1

[
x (1)

j

]2 = N . (2.14)

The product (2.14) is called the scalar product. It is also denoted by a ·b = aTb and
equals |a||b| cos ϕ, where ϕ is the angle between the vectors a and b, and |a| is the
magnitude of a. We use the same notation for multiplying a transposed vector with
a matrix from the left: x ·A = xTA. An excellent source for those not familiar with

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

20 Deterministic Hopfield Networks

Figure 2.5 Reproduced from xkcd.com/1838 under the creative commons
attribution-noncommercial 2.5 license

these terms from linear algebra (Figure 2.5) is Chapter 6 of Mathematical Methods
of Physics by Mathews and Walker [29].

Using Equation (2.14), we see that W projects onto the vector x(1):

Wx(1) = x(1) . (2.15)

In addition, it follows from Equation (2.14) that the matrix (2.13) is idempotent:

Wt =W for t = 1, 2, 3, (2.16)

Equations (2.15) and (2.16) together with sgn
(
x (1)

i

) = x (1)
i imply that the network

recognises the pattern x(1) as the stored one. This example illustrates the general
proof, Equations (2.10) and (2.11).

Now consider the distorted pattern (a) in Figure 2.4. We feed this pattern to the
network by assigning

s(t = 0) =

⎡
⎢⎢⎣
−1
−1
−1
1

⎤
⎥⎥⎦ . (2.17)

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://xkcd.com/1838
https://doi.org/10.1017/9781108860604.002

2.2 Hopfield Networks and Hebb’s Rule 21

To compute one step in the synchronous dynamics (2.4), we apply W to s(t = 0).
This is done in two steps, using the outer-product form (2.13) of the weight matrix.
We first multiply s(t = 0) with x(1)T from the left

x(1)Ts(t = 0) = [
1, −1, −1, 1

]
⎡
⎢⎢⎣
−1
−1
−1
1

⎤
⎥⎥⎦ = 2 , (2.18)

and then we multiply this result with x(1). This results in

Ws(t = 0) = 1
2 x(1) . (2.19)

The signum of the i-th component of the vector Ws(t = 0) yields si (t = 1):

si (t = 1) = sgn

(N∑
j=1

wi j s j (t = 0)

)
= x (1)

i . (2.20)

We conclude that the state of the network converges to the stored pattern, in one
synchronous update. Since W is idempotent, the network stays there: the pattern
x(1) is an attractor. Case (b) in Figure 2.4 works in a similar way.

Now look at case (c), where the network fails to converge to the stored pattern.
We feed this pattern to the network by assigning s(t = 0) = [−1, 1,−1,−1]T. For
one iteration of the synchronous dynamics, we evaluate

x(1)Ts(0) = [
1, −1, −1, 1

]
⎡
⎢⎢⎣
−1
1
−1
−1

⎤
⎥⎥⎦ = −2 . (2.21)

It follows that

Ws(t = 0) = − 1
2 x(1) . (2.22)

Using the update rule (2.4), we find

s(t = 1) = −x(1) . (2.23)

Equation (2.16) implies that

s(t) = −x(1) for t ≥ 1 . (2.24)

Thus the network shown in Figure 2.3 has two attractors, the pattern x(1) as well as
the inverted pattern−x(1). As we shall see in Section 2.5, this is a general property
of Hopfield networks: if x(1) is an attractor, then the pattern −x(1) is an attractor
too. In the next section, we discuss what happens when more than one pattern is
stored in the Hopfield network.

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

22 Deterministic Hopfield Networks

2.3 The Cross-Talk Term

When there are more patterns than just one, we need to generalise Equation (2.9).
One possibility is to simply sum Equation (2.9) over the stored patterns [13]:

wi j = 1

N

p∑
μ=1

x (μ)

i x (μ)

j and θi = 0 . (2.25)

Equation (2.25) generalises Hebb’s rule to p patterns. Because of the sum over μ,
the relation to Hebb’s learning hypothesis is less clear, but we nevertheless refer to
Equation (2.25) as Hebb’s rule. At any rate, we see that the weights are proportional
to the second moments of the pattern bits. It is plausible that a neural network based
upon the rule (2.25) can recognise properties of the patterns x(μ) that are encoded
in two-point correlations of their bits.

Note that the weights are symmetric, wi j = w j i . Also, note that the prefactor
N−1 in Equation (2.25) is not important. It is chosen to simplify the large-N analy-
sis of the model (Chapter 3). An alternative version of Hebb’s rule [2, 13] sets the
diagonal weights to zero:

wi j = 1

N

p∑
μ=1

x (μ)

i x (μ)

j for i 	= j, wi i = 0, and θi = 0. (2.26)

In this section, we use the form (2.26) of Hebb’s rule. If we assign the weights in
this way, does the network recognise the stored patterns? The question is whether

sgn
(1

N

∑
j 	=i

∑
μ

x (μ)

i x (μ)

j x (ν)
j

)
︸ ︷︷ ︸

=b(ν)
i

= x (ν)
i (2.27)

holds or not. To check this, we repeat the calculation described in the previous
section. As a first step, we evaluate the local field

b(ν)
i =

(
1− 1

N

)
x (ν)

i +
1

N

∑
j 	=i

∑
μ	=ν

x (μ)

i x (μ)

j x (ν)
j . (2.28)

Here we split the sum over the patterns into two contributions. The first term
corresponds to μ = ν, where ν refers to the pattern that was fed to the network, the
one we want the network to recognise. Condition (2.27) is satisfied if the second
term in (2.28) does not affect the sign of the r.h.s. of this equation. This second
term is called the cross-talk term.

Whether adding the cross-talk term to x(ν) affects sgn(b(ν)
i) or not depends on

the stored patterns. Since the cross-talk term contains a sum over μ = 1, . . . , p, we
expect that this term does not matter if p is small enough. The fewer patterns we

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

2.4 One-Step Error Probability 23

store, the more likely it is that all of them are recognised. Furthermore, by analogy
with the example described in the previous section, it is plausible that the stored
patterns are then also attractors, so that slightly distorted patterns converge to the
correct stored pattern.

For a more quantitative analysis of the effect of the cross-talk term, we store
patterns with random bits (random patterns). Different bits are assigned ±1
independently with equal probability:

Prob(x (ν)
i = ±1) = 1

2 . (2.29)

This means in particular that different patterns are uncorrelated, because their
covariance vanishes:

〈x (μ)

i x (ν)
j 〉 = δi jδμν . (2.30)

Here 〈· · · 〉 denotes an average over many realisations of random patterns, and δi j is
the Kronecker delta, equal to unity if i = j but zero otherwise. Note that 〈x (μ)

j 〉 = 0.
This follows from Equation (2.29).

Given an ensemble of random patterns, what is the probability that the cross-talk
term changes sgn(b(ν)

i)? In other words, what is the probability that the network
produces a wrong bit in one asynchronous update if all bits were initially correct?
The magnitude of the cross-talk term does not matter when it has the same sign as
x (ν)

i . If it has a different sign, then the cross-talk term may matter. To determine
when this is the case, one defines

C (ν)
i ≡ −x (ν)

i

1

N

∑
j 	=i

∑
μ 	=ν

x (μ)

i x (μ)

j x (ν)
j︸ ︷︷ ︸

cross-talk term

. (2.31)

If C (ν)
i < 0, then the cross-talk term has same sign as x (ν)

i , so that the cross-talk term
does not make a difference: adding this term does not change the sign of x (ν)

i . If
0 < C (ν)

i < 1, it does not matter either, only when C (ν)
i > 1. The network produces

an error in bit i of pattern ν if C (ν)
i > 1 (we approximated 1−1/N ≈ 1 in Equation

(2.28), assuming that N is large).

2.4 One-Step Error Probability

The one-step error probability Pt=1
error is defined as the probability that an error

occurs in one attempt to update a bit, given that initially all bits were correct:

Pt=1
error = Prob(C (ν)

i > 1) . (2.32)

Since patterns and bits are identically distributed, Prob(C (ν)
i > 1) does not depend

on i or ν. Therefore Pt=1
error does not carry any indices.

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

24 Deterministic Hopfield Networks

How does Pt=1
error depend on the parameters of the problem, p and N? When both

p and N are large, we can use the central-limit theorem [29, 30] to answer this
question. Since different bits/patterns are independent, we can think of C (ν)

i as a
sum of independent random numbers cm that take the values−1 and+1 with equal
probabilities,

C (ν)
i = −

1

N

∑
j 	=i

∑
μ	=ν

x (μ)

i x (μ)

j x (ν)
j x (ν)

i = −
1

N

(N−1)(p−1)∑
m=1

cm . (2.33)

There are M = (N − 1)(p − 1) terms in the sum on the r.h.s. because terms with
μ = ν are excluded, and also those with j = i [Equation (2.26)]. If we use the
rule (2.25) instead, then there is a correction to Equation (2.33) from the diagonal
weights. For p � N , this correction is small.

When p and N are large, the sum
∑M

m=1 cm contains a large number of
independently identically distributed random numbers with mean zero and variance
unity. It follows from the central-limit theorem [29, 30] that

∑M
m=1 cm is Gaussian

distributed with mean zero and variance M .
Since the central-limit theorem plays an important role in the analysis of neural-

network algorithms, it is worth discussing this theorem in a little more detail. To
begin with, note that the sum

∑M
m=1 cm equals 2k − M , where k is the number of

occurrences of cm = +1 in the sum. Choosing cm randomly to equal either −1 or
+1 is called a Bernoulli trial [30], and the probability Pk,M of drawing k times +1
and M − k times −1 is given by the binomial distribution [30]. In our case, the
probability of cm = ±1 equals 1

2 , so that

Pk,M =
(

M

k

) (
1
2

)k(1
2

)M−k
. (2.34)

Here
(M

k

) = M !/[k! (M − k)!] denotes the number of ways in which k occurrences
of +1 can be distributed over M places.

We want to show that Pk,M approaches a Gaussian distribution for large M , with
mean zero and with variance M . Since the variance diverges as M → ∞, it is
convenient to use the variable z = (2k − M)/

√
M . The central-limit theorem

implies that z is Gaussian with mean zero and unit variance in the limit of large M .
To prove that this is the case, we substitute k = M

2 +
√

M
2 z into Equation (2.34) and

take the limit of large M using Stirling’s approximation

n! ≈ en log n−n+ 1
2 log 2πn

. (2.35)

Expanding Pk,M to leading order in M−1 assuming that z remains of order unity
gives Pk,M =√2/(π M) exp (−z2/2). Now one changes variables from k to z. This
stretches local neighbourhoods dk to dz. Conservation of probability implies that
P(z)dz = P(k)dk. It follows that P(z) = (

√
M/2)P(k), so that P(z) = (2π)−1/2

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

2.4 One-Step Error Probability 25

exp(−z2/2). In other words, the distribution of z is Gaussian with zero mean and
unit variance, as we intended to show.

Returning to Equation (2.33), we conclude that C (ν)
i is Gaussian distributed

P(C) = (2πσ 2
C)−1/2 exp[−C2/(2σ 2

C)] , (2.36)

with zero mean, as illustrated in Figure 2.6, and with variance

σ 2
C =

M

N 2
≈ p

N
. (2.37)

Here we used M ≈ N p for large N and p.
Another way to compute this variance is to square Equation (2.33) and to average

over random patterns:

σ 2
C =

1

N 2

〈(
M∑

m=1

cm

)2〉
= 1

N 2

M∑
n=1

M∑
m=1

〈cncm〉. (2.38)

Here 〈· · · 〉 denotes the average over random realisations of cm . Since the ran-
dom numbers cm are independent for different indices and because 〈c2

m〉 = 1, we
have that 〈cncm〉 = δnm . So only the diagonal terms in the double sum contribute,
summing to M ≈ N p. This yields Equation (2.37).

To determine Pt=1
error [Equation (2.32)], we must integrate the distribution of C

from 1 to∞:

Pt=1
error =

1√
2πσC

∫ ∞
1

dC e
− C2

2σ2
C = 1

2

[
1− erf

(√
N

2p

)]
. (2.39)

Here erf is the error function defined as [31]

erf(z) = 2√
π

∫ z

0
dx e−x2

. (2.40)

Figure 2.6 Gaussian distribution of the quantity C defined in Equation (2.31)

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

26 Deterministic Hopfield Networks

Since erf(z) increases monotonically as z increases, we conclude that Pt=1
error

increases as p increases, or as N decreases. This is expected: it is more difficult
for the network to distinguish stored patterns when there are more of them. On the
other hand, it is easier to differentiate stored patterns if they have more bits. We
also see that the one-step error probability depends on p and N only through the
combination

α ≡ p

N
. (2.41)

The parameter α is called the storage capacity of the network. Figure 2.7 shows
how Pt=1

error depends on the storage capacity. For α = 0.2, for example, the one-step
error probability is slightly larger than 1%.

In the derivation of Equation (2.39), we assumed that the stored patterns are
random with independent bits. Realistic patterns are not random. We nevertheless
expect that Pt=1

error describes the typical one-step error probability of the Hopfield
network when p and N are large. However, it is straightforward to construct
counterexamples. Consider for example orthogonal patterns:

x(μ) · x(ν) = 0 for μ 	= ν . (2.42)

For such patterns, the crosstalk term vanishes in the limit of large N (Exercise 2.2),
so that Pt=1

error = 0.
More importantly, the error probability defined in this section refers only to the

initial update, the first iteration. What happens in the next iteration, and after many
iterations? Numerical experiments show that the error probability can be much
higher in later iterations, because an error tends to increase the probability of mak-
ing another error later on. So the estimate Pt=1

error is only a lower bound for the
probability of observing errors in the long run.

Figure 2.7 Dependence of the one-step error probability on the storage capacity
α according to Equation (2.39)

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

2.5 Energy Function 27

2.5 Energy Function

Consider the long-time limit t → ∞. Does the Hopfield dynamics converge, as
required by Equation (2.7)? This is an important question in the analysis of neural-
network algorithms, because an algorithm that does not converge to a meaningful
solution is useless.

The standard way of analysing the convergence of neural-network algorithms is
to define an energy function H(s) that has a minimum at the desired solution, say
s = x(ν). We monitor how the energy function changes as we iterate, and keep
track of the smallest values of H encountered, to find the minimum. If we store
only one pattern, p = 1, then a suitable energy function is

H = − 1

2N

(N∑
i=1

si x
(1)
i

)2

. (2.43)

This function is minimal when s = x(1), i.e., when si = x (1)
i for all i . It is customary

to insert the factor 1/(2N); this does not change the fact that H is minimal at
s = x(1).

A crucial point is that the asynchronous McCulloch-Pitts dynamics (2.5) con-
verges to the minimum [13]. This follows from the fact that H cannot increase
under the update rule (2.5). To prove this important property, we begin by
evaluating the expression on the r.h.s. of Equation (2.43):

H = −1

2

N∑
i j

(
1

N
x (1)

i x (1)
j

)
si sj . (2.44)

Using Hebb’s rule (2.9), we find that the energy function (2.43) becomes

H = −1

2

∑
i j

wi j si s j . (2.45)

This function has the same form as the energy function (or Hamiltonian) for certain
physical models of magnetic systems consisting of interacting spins [32], where
the interaction energy between spins si and sj is 1

2(wi j +w j i)si s j . Note that Hebb’s
rule (2.9) yields symmetric weights: wi j = w j i , and wi i > 0. Note also that setting
the diagonal weights to zero does not change the fact that H is minimal at s =
x(1), because s2

i = 1. The diagonal weights just give a constant contribution to H ,
independent of s.

The second step is to show that H cannot increase under the asynchronous
McCulloch-Pitts dynamics (2.5). In this case, we say that the energy function is
a Lyapunov function, or loss function. To demonstrate that the energy function is a
Lyapunov function, choose a neuron m and update it according to Equation (2.5).

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

28 Deterministic Hopfield Networks

We denote the updated state of neuron m by s ′m :

s ′m = sgn

(∑
j

wmj s j

)
. (2.46)

All other neurons remain unchanged. There are two possibilities, either s ′m = sm or
s ′m = −sm . In the first case, H remains the same, H ′ = H . Here H ′ refers to the
value of the energy function after the update (2.46). When s ′m = −sm , by contrast,
the energy function changes by the amount

H ′ − H = −1

2

∑
j 	=m

(wmj + w jm)(s ′ms j − sms j)− 1

2
wmm(s ′ms ′m − smsm)

=
∑
j 	=m

(wmj + w jm)sms j . (2.47)

The sum goes over all neurons j that are connected to the neuron m, the one to be
updated in Equation (2.46). Now if the weights are symmetric, H ′ − H equals

H ′ − H = 2
∑
j 	=m

wmj sms j = 2
∑

j

wmj sms j − 2wmm . (2.48)

Since the sign of
∑

j wmj s j is that of s ′m = −sm and if wmm ≥ 0, it follows that

H ′ − H < 0 . (2.49)

In other words, the value of H must decrease when the state of neuron m
changes, s ′m 	= sm . In summary,1 H either remains constant under the asynchro-
nous McCulloch-Pitts dynamics (s ′m = sm) or its value decreases (s ′m 	= sm).
Note that this does not hold for the synchronous dynamics (2.4); see Exercise 2.9.
Since the energy function cannot increase under the asynchronous McCulloch-Pitts
dynamics, it must converge to a minimum of the energy function. For the energy
function (2.43) this implies that the dynamics must either converge to the stored
pattern or to its inverse. Both are attractors.

We assumed the thresholds to vanish, but the proof also works when the
thresholds are not zero, in this case for the energy function

H = −1

2

∑
i j

wi j si s j +
∑

i

θi si (2.50)

in conjunction with the update rule s ′m = sgn
(∑

j wmj s j − θm

)
.

1 The derivation outlined here did not use the specific form of Hebb’s rule (2.9), only that the weights are
symmetric, and that wmm ≥ 0. However, the derivation fails when wmm < 0. In this case, it is still true that
H assumes a minimum at s = x(1), but H can increase under the update rule, so that convergence is not
guaranteed. We therefore require that the diagonal weights are not negative.

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

2.5 Energy Function 29

Up until now, we considered only one stored pattern, p = 1. If we store more
than one pattern [Hebb’s rule (2.25)], the proof that (2.45) cannot increase under
the McCulloch-Pitts dynamics works in the same way because no particular form
of the weights wi j was assumed, only that they must be symmetric, and that the
diagonal weights must not be negative. Therefore it follows in this case too that the
minima of the energy function must correspond to attractors, as illustrated sche-
matically in Figure 2.8. The configuration space of the network, corresponding to
all possible choices of s = [s1, . . . sN]T, is drawn as a single axis, the x-axis. But
when N is large, the configuration space is really very high dimensional.

However, some stored patterns may not be attractors when p > 1. This follows
from our analysis of the cross-talk term in Section 2.2. If the cross-talk term causes
errors for a certain stored pattern, then this pattern is not located at a minimum of
the energy function. Another way to see this is to combine Equations (2.25) and
(2.45) to give

H = − 1

2N

p∑
μ=1

(N∑
i=1

si x
(μ)

i

)2

. (2.51)

While the energy function defined in Equation (2.43) has a minimum at x(1), Equa-
tion (2.51) need not have a minimum at x(1) (or at any other stored pattern), because
a maximal value of

(∑N
i=1 si x

(1)
i

)2
may be compensated by terms stemming from

other patterns. This happens rarely when p is small (Section 2.2).
Conversely, there may be minima that do not correspond to stored patterns. Such

states are referred to as spurious states. The network may converge to spurious
states. This is undesirable, but it occurs even when there is only one stored pat-
tern, as we saw in Section 2.2: the McCulloch-Pitts dynamics may converge to
the inverted pattern. This follows also from Equation (2.51): if s = x(1) is a local

Figure 2.8 Minima of the energy function are attractors. Not all minima corre-
spond to stored patterns (x(mix) is a mixed state; see the text), and stored patterns
need not correspond to minima

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

30 Deterministic Hopfield Networks

minimum of H , then so is s = −x(1). This is a consequence of the invariance of
H under s → −s. There are other types of spurious states besides inverted pat-
terns. An example are mixed states, superpositions of an odd number 2n + 1 of
patterns [1]. For n = 1, for example, the bits of a mixed state read:

x (mix)
i = sgn

(
±x (1)

i ± x (2)
i ± x (3)

i

)
. (2.52)

The number of mixed states increases as n increases. There are 22n+1
(p

2n+1

)
mixed

states that are superpositions of 2n + 1 out of p patterns, for n = 1, 2, . . . (Exer-
cise 2.4). Mixed states such as (2.52) are sometimes recognised by the network
(Exercise 2.5); therefore it may happen that the network converges to these states.
Finally, there are spurious states that are not related in any way to the stored pat-
terns x (μ)

j . Such spin-glass states are discussed in detail in Refs. [27, 33, 34], and
also by Hertz, Krogh, and Palmer [1].

2.6 Summary

Hopfield networks are networks of McCulloch-Pitts neurons that recognise patterns
(Algorithm 1). Their layout is defined by connection strengths, or weights, chosen
according to Hebb’s rule. The weights wi j are symmetric, and the network is in
general fully connected. Hebb’s rule ensures that stored patterns are recognised, at
least most of the time if the number of patterns is not too large. Convergence of
the McCulloch-Pitts dynamics is analysed in terms of an energy function, which
cannot increase under the asynchronous McCulloch-Pitts dynamics.

A single-step estimate for the error probability of the network dynamics was
derived in Section 2.2. If one iterates several steps, the error probability is usually
much larger, but it is difficult to evaluate in general. For stochastic Hopfield net-
works, the steady-state error probability can be estimated more easily, because the
dynamics converges to a steady state (Chapter 3).

Algorithm 1 Pattern recognition with a deterministic Hopfield network

store patterns x(μ) using Hebb’s rule;
feed distorted pattern x into network by assigning s(t = 0)← x;
for t = 1, . . . , T do

choose a value of m and update sm(t)← sgn
(∑N

j=1 wmj s j (t − 1)
)
;

end for
read out pattern s(T);

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

2.7 Exercises 31

2.7 Exercises

2.1 Modified Hebb’s rule. Show that the modified Hebb’s rule (2.26) satisfies
Equation (2.8) if we store only one pattern, p = 1.

2.2 Orthogonal patterns. For Hebb’s rule (2.25), show that the cross-talk term
vanishes for orthogonal patterns, so that Pt=1

error = 0. For the modified Hebb’s rule
(2.26), the cross-talk term is non-zero for orthogonal patterns. Show that it becomes
negligible in the limit of large N .

2.3 Cross-talk term. Expression (2.33) for the cross-talk term was derived using
modified Hebb’s rule, Equation (2.26). How does Equation (2.33) change if you
use the rule (2.25) instead? Show that the distribution of C (ν)

i then acquires a non-
zero mean, obtain an estimate for this mean value, and compute the one-step error
probability. Show that your result approaches (2.39) for small values of α. Explain
why your result is different from (2.39) for large α.

2.4 Mixed states. Explain why there are no mixed states that are superpositions
of an even number of stored patterns. Show that there are 22n+1

(p
2n+1

)
mixed states

that are superpositions of 2n + 1 out of p patterns, for n = 1, 2,

2.5 Recognising mixed states. Store p random patterns in a Hopfield network
with N = 50 and 100 neurons using Hebb’s rule (2.25). Using computer simula-
tions, determine the probability that the network recognises bit x (mix)

i of the mixed
state x(mix) with bits

x (mix)
i = sgn

(
x (1)

i + x (2)
i + x (3)

i

)
. (2.53)

Show that the one-step error probability tends to zero as α → 0 for large N , by
analysing how often sgn

(
1
N

∑p
μ=1

∑N
j=1 x (μ)

i x (μ)

j x (mix)
j

) = x (mix)
i holds. Hint: Think

of 1
N

∑
j as an average of x (μ)

j x (mix)
j over random bits and evaluate this average.

Then apply the signum function.

2.6 Energy function. Figure 2.9 shows a network with two neurons with asym-
metric weights, w12 = 2 and w21 = −1. Show that the energy function H =
−w12+w21

2 s1s2 can increase under the asynchronous McCulloch-Pitts rule.

Figure 2.9 Two neurons with asymmetric connections (Exercise 2.6)

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

32 Deterministic Hopfield Networks

2.7 Higher-order Hopfield networks. Determine under which conditions the
energy function H = − 1

2

∑
i j w

(2)
i j si s j − 1

6

∑
i jk w

(3)
i jksi s j sk is a Lyapunov function

for the asynchronous dynamics s ′m = sgn(bm) with bm = ∂ H/∂sm .

2.8 Hebb’s rule and energy function for 0/1 units. Suppose that the state of
a neuron takes the values 0 (inactive) and 1 (active). The corresponding asyn-

chronous update rule is n′m = θH

(∑
j wmj n j − μm

)
with threshold μm . The

activation function θH(b) is the Heaviside function, equal to 0 if b < 0 and
equal to 1 if b ≥ 0 (Figure 2.10). Write down Hebb’s rule for such 0/1 units
and show that if one stores only one pattern, then this pattern is recognised. Show
that H = − 1

2

∑
i j wi j ni n j + ∑

i μi ni cannot increase under the asynchronous
update rule (it is assumed that the weights are symmetric, and that wi i ≥ 0).
See Ref. [13].

2.9 Energy function and synchronous dynamics. Analyse how the energy func-
tion (2.45) changes under the synchronous dynamics (2.4). Show that the energy
function can increase, even though the weights are symmetric and the diagonal
weights are zero.

2.10 Continuous Hopfield network. Hopfield [35] also analysed a version
of his model with continuous-time dynamics. Consider τ d

dt ni = −ni +
g
(∑

j wi j n j − θi

)
with g(b) = (1 + e−b)−1 (this dynamical equation is slightly

different from the one used by Hopfield [35]). Show that the energy function
E = − 1

2

∑
i j wi j ni n j + ∑

i θi ni + ∑
i

∫ ni

0 dng−1(n) cannot increase under the
network dynamics if the weights are symmetric. It is not necessary to assume that
wi i ≥ 0.

2.11 Hopfield network with four neurons. The pattern shown in Figure. 2.11 is
stored in a Hopfield network using Hebb’s rule wi j = 1

N x (1)
i x (1)

j . There are 24

four-bit patterns. Apply each of these to the Hopfield network, and perform one
synchronous update. List the patterns you obtain and discuss your results.

Figure 2.10 Heaviside function (Exercise 2.8)

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

2.7 Exercises 33

Figure 2.11 The pattern x(1) has N = 4 bits, x (1)
1 = 1, and x (1)

i = −1 for
i = 2, 3, 4. See Exercise 2.11

Figure 2.12 Each of the five patterns consists of 32 bits x (μ)
i . A black pixel i in

pattern μ corresponds to x (μ)
i = 1, a white one to x (μ)

i = −1. See Exercise 2.12

2.12 Recognising letters with a Hopfield network. The five patterns in Figure
2.12 each have N = 32 bits. Store the patterns x(1) and x(2) in a Hopfield network
using Hebb’s rule wi j = 1

N

∑2
μ=1 x (μ)

i x (μ)

j . Which of the patterns in Figure 2.12

remain unchanged after one synchronous update with s ′i = sgn
(∑N

j=1 wi j s j

)
?

Hint: read off
∑N

j=1 x (μ)

j x (ν)
j from the Hamming distance between the two patterns,

equal to the number of bits by which the patterns differ. Use this quantity to express
the local fields b(μ)

i as linear combinations of x (1)
i and x (2)

i .

2.13 XOR function. The Boolean XOR function takes two binary inputs. For the
inputs [−1,−1] and [1, 1] the function evaluates to −1, for the other two inputs
to +1. Try to encode the XOR function in a Hopfield network with three neurons
by storing the patterns [−1,−1,−1], [1, 1,−1], [−1, 1, 1], and [1,−1, 1] using
Hebb’s rule. Test whether the patterns are recognised or not. Discuss your findings.

2.14 Distance as a measure of convergence. The distance d = 1
4N

∑
i (si − x (1)

i)2

[Equation (2.2)] has a minimum at s = x(1). How are d and H [Equation
(2.43)] related? What is the advantage of using H instead of d as a measure of
convergence?

https://doi.org/10.1017/9781108860604.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108860604.002

