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§1. Introduction.
Hadamard defines1 the "elementary solution^" of the general

linear partial differential equation of the second order, namely

F(u)= S Aik ° A - + 2 Bi 4P + Cu = 0, (1)
i,k = l CXidXk i = i OXi

[Aik, Bu C being functions of the n variables zu x2, .., xn, which may
be regarded as coordinates in a space of n dimensions), to be one of
those solutions which are infinite to as low an order as possible at a
given point and on every bicharacteristic through that point.2 He
then proceeds to find formulae for the elementary solution of equa-
tion (1), his result being as follows:

Let (Hi!c) be the matrix reciprocal to (Aik), and consider the
Riemannian space whose metric is specified by

ds2 = 2 HikdXidxk. (2)
i, h

Let F denote the square of the geodesic distance between the point
(xi) and a fixed point (gj of this space. Then if n be odd, the elemen-
tary solution of (1) is given by

u = r-^-^[uo + u1r + u2r-+ .... + urr
r + . . . . ] ,

where

C70= fcexpf - r i . {^ ( r ) -CT -2n}ds],
L J o 4s J

k being a certain constant, s = \/T, the integral being taken along
the arc of the geodesic from (qt) to (a;,). The functions Ur (r > 0) are
then determined by the recurrence-formula

(T,

1 Lectures on Gauchy's Problem in Linear Partial Differential Equations (Yale, 1923),
p. 70, et seq.

- The solutions satisfying this condition differ only in the values of arbitrary
constants, the elementary solution being obtained by choosing these according to a
certain rule. For the purpose of this paper it suffices to say that the elementary
solution is the one which reduces to u = l/r, where r= J {{x ~x)2+(y-y)2 + (z-S)i},
vhen the differential equation (1) is of the particular form v2 F = 0 .
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A similar formula holds when n is even, but involves a term
in log F.

The object of the present paper is to establish a formula for the
elementary solution for the particular case in which equation (1) is
the tensor generalisation, with respect to the metric (2), of the
ordinary Laplace's equation. The result obtained lacks the generality
of Hadamard's, but may be of interest on account of its comparative
simplicity and because a single formula holds whether n is odd
or even.

§ 2. Laplace's Equation in Tensor Form.

Let
( M , i» = 1 , 2 , . . , (3)

define the metric1 of a general Riemannian space of n dimensions.
If V be any scalar and V^ its second covariant derivative, viz.

v - 8 F
— {jJ-v, a}

dV

then the partial differential equation of which we seek the elementary
solution is

sr y = (4)

(When n = 3 and ds2 = dx2 + dy2 + dz2, this reduces to the ordinary
Laplace's Equation \/2V = 0).

Let Q. be one half the square of the geodesic distance2 between
the point (x{) = (x1, x2, .., xn) and the fixed point (xl) = (a;1, x2, • •, xn).
Thus

Q = \s2 (5)

where 5 is the length of the arc of the geodesic joining (x*) and (a;').

D is a function of the x's and of the x's. We shall write D^ for
dQ/dx"-, Q w for d£l/dx", QM M for 32 Q/dardz". Further, g^, q>">
will be used respectively to denote the values at (x{) of g^, g*v, while g
will represent the value at this point of the determinant g = || g^W.

1 The summation convention is adopted throughout. The notation of the
succeeding paragraphs will differ to some extent from that of Hadamard, in order
that it should be brought into conformity with the notation now usual in the Tensor
Calculus.

2 Thus if in § 1 (qi) is taken at (x ), we have 0 = J r .
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Let J denote the determinant || Q^H . Then we shall prove the
following theorem:

The elementary solution of the partial differential equation g*v V^v = 0
is given by

y = A[ * % + B, (6)

where A, B are suitable constants, and the integral is taken along an arc
of the geodesic joining (x{) to (xl).

It should be remarked that (xl) must not itself be a point of
the arc of integration, for if it were the integral would in general be
divergent. Further, the constant B must be so chosen that the
solution is unaltered by an interchange of the the x{ with the x\ The
actual value given to A is not of fundamental importance.

§ 3. Proof of the theorem of § 2.

It is a known fact that by transferring to a normal coordinate-
system («/*), the equations of any geodesic through (xl) can be put in
the form1

!̂  = <*'«, (?)

where the constants a1 are the values at {xl) (which is the origin of the
normal coordinates) of dx{ /ds for the geodesic in question. Thus

Components of tensors corresponding to the y-coordinate-system will
be denoted by the affixing of an asterisk. For example, *Q^ will
denote the vector 9 Q / dy*1.

By (3) and (8), g^a^a" = 1. Multiplying by | s 2 and using (5),
we get

a = i g^ y- y\ (9)

Hence ~—^ = g^ y",

tha t is, *O^ = *gr^^ , (10)
biiicc y^j, y — y^v y .

1 Thei/ are the normal variables of Lipschitz : Hadamard, loc. dt., p. 87. A full
account of them is given by Veblen, Invariants of Quadratic Differential Forms
(Cambridge Tract no. 24, 1927), ch. VI.

2 Veblen, loc. dt., ch. VI (14.8).
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Raising the suffix /x in (10),

Hence

Contracting,

*Q£ = » + i j r | ^ (log *fir)

or1, by (7),

* ^ = M + i 5 l (log*?). (11)

Again, it has been shown2 that

^ = - ^ Q ( e 0 , (12)

the repetition of a implying a summation.
By (5), *Q^ = s *s*, and it quickly follows from (10), (9) and (5),

that
* ^ * s ^ = l . (13)

And it further follows from (11) and (13) that

^ ^ f l r ) . (14)

Wre are now in a position to solve the partial differential equation (4).
Transferring to normal coordinates, the equation becomes

or * , •> o

dv dv ds m dv
B u t -r = ~j -r = S/i

dy* ds dy1* ds

= *Su. *sv 1 ? — .
dy* dy" ds dy ds

Substituting in (15), we get

^ ds2 M ds

and hence, by (13) and (14),

= 0,

d?V , [n- 1 , .d ., „, ,1 dV n

TT + h | r (log *g) T— = 0.
ds' L s ds -I ds

1 This equation is essentially the same as Hadamard's, loc. cit., p. 91 (37).

- In a paper by the author to appear shortly in Proe. London Math. Soc.
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Multiplying by the integrating factor *g^sn~1, we quickly get the
solution

f ' L J?L +B, (16)

K, B being arbitrary constants.

Now *gi is a scalar density, hence

*gi =

by a well-known property of Jacobians.

But

dx" ||

- S " - a W l | by (12),

= (-l)ngJ. (18)

Substituting from (17) and (18) in (16), and putting A for the
arbitrary constant (— 1)" Kg"-, we get

ji gi S » - l

the result stated; g* is of course a constant, being a function of the xl

only. Since we have made no supposition regarding n, the solution
holds whether n be odd or even.
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