J. Austral. Math. Soc. (Series A) 35 (1983), 369-372

CENTRAL RELATIONS ON LATTICES

DIETMAR SCHWEIGERT

(Received 2 February 1982)

Communicated by R. Lidl

Abstract

A maximal tolerance of a lattice L without infinite chains is either a congruence or a central relation. A finite lattice L is order-polynomially complete if and only if L is simple and has no central relation.

1980 Mathematics subject classification (Amer. Math. Soc.): 06 B 10.

A binary relation ρ is called compatible on a lattice L if for $(a, b) \in \rho$ and $(c, d) \in \rho$ we have $(a \land c, b \land d) \in \rho$ and $(a \lor c, b \lor d) \in \rho$. A compatible binary relation ρ on L is a tolerance if ρ is reflexive and symmetric. Of course every congruence relation is also a tolerance. First results on tolerances besides congruence relations were already derived in the papers of Hashimoto [5], Grätzer and E. T. Schmidt [7]. Chajda gives in [3] an overview of the theory. In this paper we study central relations which are tolerances having the property that there is a set Z, $\emptyset \subset Z \subset L$, such that $(z, a) \in \rho$ for every $a \in L$ if and only if $z \in Z$. Z is called the center of ρ . The central relations play an important role in the theory of clones [8]. The aim of this paper is to show that every tolerance of a lattice L without infinite chains which is not the all relation is either contained in a congruence or a central relation.

This result can be applied to characterize order-polynomially complete lattices. A lattice L is called order-polynomially complete if every order-preserving function $f: L^n \to L$ is a polynomial function (= algebraic function). Lattices which correspond to finite projective geometries as well as the finite partition lattices have this combinatorial property. We show that a finite lattice is orderpolynomially complete if and only if L is simple and has no central relation. This

^{© 1983} Australian Mathematical Society 0263-6115/83 \$A2.00 + 0.00

Dietmar Schweigert

extends a result of Kindermann. Furthermore it is easy to check whether a finite lattice has a central relation because one has only to study single elements as a center for such a relation. This advantage can be used for deriving a new proof for a theorem of Wille [12]. In the following we call a binary relation ρ non trivial if ρ is neither the identity nor the all relation.

PROPOSITION 1. Let ρ be a nontrivial tolerance of a complete lattice L and assume that ρ is a complete sublattice of L^2 . Define $a = \sup\{x \in L \mid (0, x) \in \rho\}$ and $b = \inf\{x \in L \mid (x, 1) \in \rho\}$. If $b \leq a$, then ρ is a central relation.

PROOF. Consider $Z = \{x | b \le x \le a\}$. Because of $(0, z) = (0, z) \land (z, z)$ we have $(0, z) \in \rho$ and similarly $(z, 1) \in \rho$. For every element $c \in L$ we have $(z, 1) \land (c, c) = (z \land c, c) \in \rho$ and $(z, 0) \in \rho$ hence $((z \land c) \lor z, c \lor 0) = (z, c) \in \rho$. Z is a proper subset of L otherwise ρ would be trivial.

PROPOSITION 2. Let ρ be an intransitive tolerance of the lattice L. Then there are $a, b, d \in L$ such that $(a, d) \in \rho$, $(d, d) \in \rho$, a < d < b but $(a, b) \notin \rho$.

PROOF. As ρ is an intransitive tolerance we have $c, e, d \in L$ such that $(c, d) \in \rho$, $(d, e) \in \rho$ but $(c, e) \notin \rho$. If d = 0 we have $(c, 0) \lor (0, e) = (c, e) \in \rho$. If d = 1 we have $(c, 1) \land (1, e) = (c, e) \in \rho$. Therefore we have 0 < d < 1. We put a = c $\land e \land d$ and $b = c \lor e \lor d$. Then we have $(a, d) \in \rho$ and $(d, b) \in \rho$. If $(a, b) \in \rho$ then we have $(a, e) \in \rho$ and $(c, a) \in \rho$ hence $(c, e) \in \rho$. Therefore $(a, b) \notin \rho$.

LEMMA 3. Let L have no infinite chains and let ρ be an intransitive tolerance of L. If ρ is not a central relation then there is a non trivial tolerance η of L such that $\rho \subset \eta$.

PROOF. As ρ is intransitive there is a triple (a, d, b) such that a < d < b and $(a, d) \in \rho$, $(d, b) \in \rho$ but $(a, b) \notin \rho$. We put $\eta = \langle \rho \cup \{(a, b), (b, a)\} \rangle$ the tolerance generated by ρ and (a, b), (b, a). Since $\rho' = \rho \cup \{(a, b), (b, a)\}$ is reflexive and symmetric $\eta = \langle \rho' \rangle$ is clearly the sublattice of L^2 generated by ρ' . Assume η is trivial, then we have $\eta = L^2$ and $(0, 1) \in \eta$. Then there exists a term function φ of L^2 with $\varphi((c_1, e_1), \dots, (c_n, e_n), (a, b), (b, a)) = (0, 1)$ where $\rho \supseteq \{(c_1, e_1), \dots, (c_n, e_n)\}$ [5] page 46. Since φ is an isotonic function, we have $\varphi((c_1, g_1), \dots, (c_n, g_n), (a, b), (b, b)) = (0, 1)$ where $g_i = e_i \lor c_i, i = 1, \dots, n$. We have that $(c_i, g_i) \in \rho$ and $c_i \leq g_i$. We split $\varphi = (\psi, \psi)$ in two term functions and we have $\psi(c_1, \dots, c_n, a, b) = 0, \ \psi(g_1, \dots, g_n, b, b) = 1$. Furthermore we put $F((x, y)) = \varphi((c_1, g_1), \dots, (c_n, g_n), (x, y), (b, b)), \ f(x) = \psi(c_1, \dots, c_n, x, b)$ and

 $g(x) = \psi(g_1, \dots, g_n, x, b)$. We have $f(x) \le g(x)$ for every $x \in L$. Consider $d_* = \inf\{x \mid (x, d) \in \rho, x \in L\}$ and $d^* = \sup\{x \mid (x, d) \in \rho, x \in L\}$. Then we have $F(d_*, d) = (0, s) \in \rho$ since $(d_*, d) \in \rho$ and $(a, d) \in \rho$ implies $d_* \le a$ and similarly $F(d, d^*) = (t, 1) \in \rho$ for $t \in L$. We have $f(d) = t \le g(d) = s$. Hence we have $(0, s) \in \rho$ and $(s, s) \lor (t, 1) = (s, 1) \in \rho$. s is an element of a center of ρ . Contradiction.

From this lemma it follows

THEOREM 4. A maximal tolerance of a lattice L with no infinite chains is either a congruence relation or a central relation.

This theorem can be applied to the following result of M. Kindermann in [7]. A finite lattice is order-polynomially complete if and only if L has only trivial tolerances. Therefore we have

THEOREM 5. A finite lattice L is order-polynomially complete if and only if L is simple and has no central relation.

This result is connected to the theory of clones because it states the following: Let $(A; \leq)$ be a lattice ordered finite set. The maximal subclones containing the functions \wedge and \vee of the clone of all order-preserving functions of A are either preserving a non trivial equivalence relation or a central relation.

Furthermore from the above theorem and from [10] we have the following

THEOREM 6. A simple modular lattice L of finite length is a projective geometry if and only if L has no central relation.

M. Szymańska has proved in [11] that a lattice L of finite length where 1 is the join of atoms has no central relation. Together with Theorem 5 this gives a new proof of Satz 5 in Wille [12].

References

- [1] H. Bandelt, 'Tolerance relations on lattices', Bull. Austral. Math. Soc. 23 (1981), 367-381.
- [2] G. Birkhoff, Lattice theory, 3rd ed. (Amer. Math. Soc. Colloq. Publ., 25, Providence, R.I., 1967).
- [3] I. Chajda, 'Recent results and trends in tolerance on algebras and varieties', Colloquia Mathematica Societatis János Bolyai 28 Szeged (1979), 69-95.
- [4] J. Hashimoto, 'Congruence relations and congruence classes in lattices', Osaka J. Math. 15 (1963), 71-86.

Dietmar Schweigert

- [5] G. Grätzer, Universal algebra (New York, 1979).
- [6] G. Grätzer and E. T. Schmidt, 'On congruence lattices of lattices', Acta Math. Acad. Sci. Hungar. 13 (1962), 178-185.
- [7] M. Kindermann, 'Uber die Äquivalenz von Ordnungspolynomivollständigkeit und Toleranzeinfachheit endlicher Verbände', Contribution to general algebra, H. Kautschitsch et al., pp. 145-149 (Klagenfurt, 1979).
- [8] I. G. Rosenberg, 'Uber die funktionale Vollständigkeit in den mehrwertigen Logiken', Rozpravy Československe Akad. Věd. Řada Mat. Přírod Věd. 80 4 (1970), 1-93.
- [9] D. Schweigert, 'Uber endliche, ordnungspolynomvollständige Verbände', Monatsh. Math. 78 (1974), 68-76.
- [10] D. Schweigert, 'Compatible relations of modular and orthomodular lattices; Proc. Amer. Math. Soc. 81 (1981), 462-463.
- [11] M. Szymańska, 'On central relations of complete lattices', Preprint, Warszawa (1981).
- [12] R. Wille, 'Eine Charakterisierung endlicher, ordnungspolynomvollständiger Verbände', Arch. Math. 28 (1977), 577-560.

FB Matematik Universität Kaiserslautern D 6750 Kaiserslautern West Germany

372