THE *n*-DIMENSIONAL DISTRIBUTIONAL HANKEL TRANSFORMATION

E. L. KOH

1. Introduction. The Hankel transformation was extended to certain generalized functions of one dimension [1; 2; 3]. In this paper, we develop the *n*-dimensional case corresponding to [1]. The procedure in [1] is briefly as follows:

A test function space H_{μ} is constructed on which the μ th order Hankel transformation h_{μ} defined by

$$h_{\mu}\phi = \int_{0}^{\infty} \phi(x) (xy)^{1/2} J_{\mu}(xy) dx, \quad \phi \in H_{\mu}$$

is an automorphism whenever $\mu \ge -1/2$. The generalized transformation h_{μ}' is then defined on the dual H_{μ}' as the adjoint of h_{μ} through a Parseval relation, i.e.

 $\langle h_{\mu}'f, \phi \rangle = \langle f, h_{\mu}\phi \rangle, \qquad \phi \in H_{\mu}, f \in H_{\mu}'.$

This definition coincides with the classical Hankel transformation when f is a regular distribution corresponding to an L_1 function.

We shall use the following notations. \mathbb{R}^n and \mathbb{C}^n are respectively the real and complex *n*-dimensional euclidean spaces. An *n*-tuple will be denoted by $z = \{z_1, \ldots, z_n\}$. For our purpose, we shall restrict *x* and *y* to the first orthant of \mathbb{R}^n which we denote by *I*. Thus, $I = \{x \in \mathbb{R}^n : 0 < x_\nu < \infty, \nu = 1, \ldots, n\}$. We shall use the usual euclidean norm, $|x| = [\sum_{\nu=1}^n x_\nu^2]^{1/2}$. A function on a subset of \mathbb{R}^n shall be denoted by $f(x) = f(x_1, x_2, \ldots, x_n)$. By [x], we mean the product $x_1x_2 \ldots x_n$. Thus $[x^m] = x_1^{m_1}x_2^{m_2} \ldots x_n^{m_n}$ where $m = \{m_1, m_2, \ldots, m_n\}$. The notations $x \leq y$ and x < y mean respectively $x_\nu \leq y_\nu$ and $x_\nu < y_\nu$ $(\nu = 1, 2, \ldots, n)$. The letters *k* and *m* shall denote nonnegative integers in \mathbb{R}^n , i.e., k_ν and m_ν are nonnegative integers. Letting $(k) = k_1 + k_2 + \ldots + k_n, D_x^k$ shall denote

(1)
$$\frac{\partial^{(k)}}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_n^{k_n}}$$

while $(x^{-1}D_x)^k$ denotes

(2)
$$\prod_{\nu=1}^{n} \left(x_{\nu}^{-1} \frac{\partial}{\partial x_{\nu}} \right)^{k_{\nu}}.$$

Other operators will be defined later when their uses arise.

Received October 4, 1973. This research was partially supported by the National Research Council of Canada under Grant A-7184.

By a smooth function, we mean a function that possesses partial derivatives of all orders at all points of its domain.

2. The testing function space H_{μ} and its dual. Let μ be a fixed number in $(-\infty, \infty)$. We define H_{μ} to be the space of smooth complex-valued functions $\phi(x)$ which are defined on I and such that for each pair of nonnegative integers m and k in \mathbb{R}^n

(3)
$$\gamma_{m,k}^{\mu}(\phi(x)) = \sup_{x \in I} |[x^m](x^{-1}D_x)^k[x]^{-\mu-1/2}\phi(x)| < \infty$$
.

Since $\phi(x)$ is smooth, the order of differentiation in $(x^{-1}D_x)^k$ is immaterial; thus

$$\left(x_{i}^{-1}\frac{\partial}{\partial x_{i}}\right)\left(x_{j}^{-1}\frac{\partial}{\partial x_{j}}\right)=\left(x_{j}^{-1}\frac{\partial}{\partial x_{j}}\right)\left(x_{i}^{-1}\frac{\partial}{\partial x_{i}}\right)$$

for all i, j = 1, ..., n.

424

 H_{μ} is a vector space. Since $\gamma_{m,0}^{\mu}$ are norms, we have a separating collection of seminorms, i.e. a multinorm. (An equivalent topology for H_{μ} may be given by the multinorm $\{\rho_{\tau}{}^{\mu}\}$ with

$$\rho_r^{\mu}(\phi) = \max_{0 \le m, k \le r} \gamma_{m,k}^{\mu}(\phi), \quad r = (r_1, r_2, \ldots, r_n).)$$

As k and m traverse a countable index set, H_{μ} is, in fact, a countably multinormed space. We say that a sequence $\{\phi_{\nu}\}$ is Cauchy in H_{μ} if $\phi_{\nu} \in H_{\mu}$ for all ν and for every m, k, $\gamma_{m,k}^{\mu}(\phi_{\nu} - \phi_{\lambda}) \rightarrow 0$ as ν and $\lambda \rightarrow \infty$ independently.

LEMMA 1. If $\phi(x) \in H_{\mu}$, $D_x^{k}\phi(x)$ is of rapid descent for each k.

Proof. Since

$$\left(x_{i}^{-1}\frac{\partial}{\partial x_{i}}\right)^{k_{i}}x_{i}^{-\mu-1/2}\phi(x_{1},\ldots,x_{i},\ldots,x_{n}) = x_{i}^{-2k_{i}}x_{i}^{-\mu-1/2}\sum_{j=0}^{k_{i}}b_{j}x_{i}^{j}$$
$$\times \left(\frac{\partial}{\partial x_{i}}\right)^{j}\phi,$$

we have

(4)
$$(x^{-1}D_x)^k [x]^{-\mu-1/2} \phi(x) = [x^{-2k}] [x]^{-\mu-1/2} \sum_{j_1=0}^{k_1} \dots \sum_{j_n=0}^{k_n} b_j [x^j] \\ \times \frac{\partial^{j_1+\dots+j_n} \phi}{\partial x_1^{j_1}\dots \partial x_n^{j_n}}$$

where the b_j are appropriate constants. Now consider $\phi \in H_{\mu}$. By $\gamma_{m,0}^{\mu}(\phi) < \infty$, we have $\sup_{I} |[x^m][x]^{-\mu-1/2}\phi| < \infty$. Therefore, $[x^m]\phi \to 0$ as $|x| \to \infty$ for each

m. To show $[x^m]D_x\phi \to 0$ as $|x| \to \infty$, we observe that

$$\gamma_{m,1}^{\mu}(\phi) = \sup_{\substack{I\\i=1,\ldots,n}} \left| [x^m] [x]^{-\mu-1/2} x_i^{-1} \frac{\partial}{\partial x_i} \phi \right| < \infty.$$

Finally, by induction on k and using (4), we have

$$\gamma^{\mu}_{m,k}(\phi) < \infty \Rightarrow [x^m] D_x^k \phi \to 0 \quad \text{as } |x| \to \infty.$$

LEMMA 2. If q is an even positive integer $(\in R^1)$, then $H_{\mu+q} \subset H_{\mu}$ and convergence in $H_{\mu+q}$ implies convergence in H_{μ} .

Proof. It is easy to show that

$$\left(x_{i}^{-1}\frac{\partial}{\partial x_{i}}\right)^{k_{i}}\left(x_{i}^{-\mu-1/2}\phi\right) = \left(1 + \frac{x_{i}}{2k_{i}}\frac{\partial}{\partial x_{i}}\right)\left(2k_{i}\left(x_{i}^{-1}\frac{\partial}{\partial x_{i}}\right)^{k_{i}-1}x_{i}^{-\mu-5/2}\phi\right).$$

Hence, we have the operational identity

(5)
$$\prod_{i=1}^{n} \left(x_i^{-1} \frac{\partial}{\partial x_i} \right)^{k_i} x_i^{-\mu-1/2} = \prod_{i=1}^{n} \left(1 + \frac{x_i}{2k_i} \frac{\partial}{\partial x_i} \right) \left(2k_i \left(x_i^{-1} \frac{\partial}{\partial x_i} \right)^{k_i-1} x^{-\mu-5/2} \right).$$

Let

$$\Delta_i = \frac{x_i}{2k_i} \frac{\partial}{\partial x_i} \,.$$

The right hand side of (5) is a sum of 2^n terms of Δ_i multiplied by the operator $2^n[k](x^{-1}(\partial/\partial x))^{k-n}[x]^{-\mu-5/2}$, i.e.

$$\left(1 + \sum_{i=1}^{n} \Delta_{i} + \sum_{i \neq j} \Delta_{i} \Delta_{j} + \ldots + \Delta_{1} \Delta_{2} \ldots \Delta_{n}\right) \cdot 2^{n} [k] \times \left(x^{-1} \frac{\partial}{\partial x}\right)^{k-n} [x]^{-\mu-5/2}.$$

If now we evaluate $\gamma^{\mu}_{m,k}(\phi) = \sup_{I} |[x^{m}](x^{-1}D_{x})^{k}[x]^{-\mu-1/2}\phi|$ we have

$$\gamma_{m,k}^{\mu}(\phi) \leq 2^{n}[k]\gamma_{m,k-n}^{\mu+2}(\phi) + C_{1}\gamma_{m+1,k-n+1}^{\mu+2}(\phi) + \ldots + C_{j}\gamma_{m+n,k}^{\mu+2}(\phi)$$

where C_1, \ldots, C_j are constants. The lemma follows by induction on q.

LEMMA 3. H_{μ} is sequentially complete.

Proof. Let $\{\phi_{\nu}\}_{\nu=1}^{\infty}$ converge in H_{μ} . Using the seminorms $\gamma_{0,k}^{\mu}$ and the relation (4), we have by induction on k_i that for each $k = \{k_1, \ldots, k_n\}$ the sequence of partial derivatives $\{D_x^{\ k}\phi_{\nu}\}_{\nu=1}^{\infty}$ converges uniformly on every compact subset of *I*. Therefore, there exists a smooth function ϕ on *I* such that for each k and x, $D_x^{\ k}\phi_{\nu}(x) \rightarrow D_x^{\ k}\phi(x)$ as $\nu \rightarrow \infty$. Again, since $\{\phi_{\nu}\}$ is a Cauchy sequence,

for each *m* and *k* and a given $\epsilon > 0$ there is a positive number $N_{m,k}$ such that for every $\nu, \eta > N_{m,k}$,

(6)
$$\gamma^{\mu}_{m,k}(\phi_{\nu}-\phi_{\eta})<\epsilon.$$

Passing to the limit as $\eta \to \infty$, we have $\gamma^{\mu}_{m,k}(\phi_{\nu} - \phi) \leq \epsilon$ for all $\nu > N_{m,k}$, i.e.

(7) $\gamma^{\mu}_{m,k}(\phi_{\nu} - \phi) \to 0$ as $\nu \to \infty$.

To complete the proof, we show that $\phi \in H_{\mu}$ as follows: it is clear that

(8)
$$\gamma_{m,k}^{\mu}(\phi) \leq \gamma_{m,k}^{\mu}(\phi_{\nu}) + \gamma_{m,k}^{\mu}(\phi_{\nu} - \phi).$$

By (7) and the fact that $\gamma^{\mu}_{m,k}(\phi_{\nu}) < \infty$ for all ν , it follows from (8) that $\gamma^{\mu}_{m,k}(\phi) < \infty$.

 H_{μ} is therefore a Frèchet space, i.e. a complete countably multinormed space. Its dual is denoted by H_{μ}' . It follows that H_{μ}' is also complete [4, Theorem 1.8-3].

The following properties are immediate extensions of the one-dimensional case, using the relation (4) whenever called for.

1. $\mathscr{D}(I)$, the space of smooth functions with compact support on I, is a subspace of H_{μ} for every choice of μ . Convergence in $\mathscr{D}(I)$ implies convergence in H_{μ} . Thus, the restriction of any $f \in H_{\mu}'$ to $\mathscr{D}(I)$ is in $\mathscr{D}'(I)$. However $\mathscr{D}(I)$ is not dense in H_{μ} .

2. For each μ , H_{μ} is a subspace of $\mathscr{E}(I)$, the space of smooth functions on I. H_{μ} is dense in $\mathscr{E}(I)$. Moreover, the topology of H_{μ} is stronger than that induced on it by $\mathscr{E}(I)$. It follows that $\mathscr{E}'(I)$ is a subspace of $H_{\mu'}$.

3. The complex number that $f \in H_{\mu}'$ assigns to $\phi \in H_{\mu}$ is denoted by $\langle f, \phi \rangle$. We assign to H_{μ}' the weak topology generated by the seminorms

$$\eta_{\phi}(f) = |\langle f, \phi \rangle|$$
 where $\phi \in H_{\mu}$.

For each $f \in H_{\mu}'$, there exist a positive constant C and a non-negative integer r such that

$$|\langle f, \phi \rangle| \leq C \rho_r^{\mu}(\phi) \qquad \phi \in H_{\mu}.$$

Recall that $\rho_r^{\mu} = \max_{0 \le m, k \le r} \gamma_{m,k}^{\mu}(\phi)$.

4. Let f(x) be a locally Lebesgue integrable function on I such that f(x) is of slow growth as $|x| \to \infty$ and $[x]^{\mu+1/2}f(x)$ is absolutely integrable on $0 < x_{\nu} < 1, \nu = 1, 2, ..., n$. Then f(x) generates a regular generalized function f in H_{μ}' defined by

$$\langle f, \phi \rangle = \int_0^\infty \ldots \int_0^\infty f(x_1, \ldots, x_n) \phi(x_1, \ldots, x_n) dx_1 dx_2 \ldots dx_n, \phi \in H_\mu.$$

This statement follows from the mean value theorem for *n*-dimensional integrals (see [5, p. 155]) and the fact that ϕ is of rapid descent.

3. Operations on H_{μ} and H_{μ}' .

LEMMA 4. For any positive or negative integer n and for any μ , the mapping $\phi(x) \to [x]^n \phi(x)$ is an isomorphism from H_{μ} onto $H_{\mu+n}$. Thus, the operator $f(x) \to [x]^n f(x)$ which is defined by

$$\langle [x]^n f(x), \phi(x) \rangle = \langle f(x), [x]^n \phi(x) \rangle$$

is an isomorphism from $H_{\mu+n'}$ onto $H_{\mu'}$.

Proof. If $\phi \in H_{\mu}$ then

$$\begin{split} \gamma_{m,k}^{\mu+n} \left([x]^n \phi \right) &= \sup_{I} \left| [x^m] (x^{-1} D_x)^k [x]^{-\mu-1/2-n} [x]^n \phi \right| \\ &= \gamma_{m,k}^{\mu} \ (\phi). \end{split}$$

We now define the following operators on H_{μ} :

$$N_{i\mu} = x_i^{\mu+1/2} \frac{\partial}{\partial x_i} x_i^{-\mu-1/2}$$

$$N_{\mu} = N_{1\mu} N_{2\mu} \dots N_{n\mu} = [x]^{\mu+1/2} \frac{\partial^n}{\partial x_1 \dots \partial x_n} [x]^{-\mu-1/2}$$

$$M_{i\mu} = x_i^{-\mu-1/2} \frac{\partial}{\partial x_i} x_i^{\mu+1/2}$$

$$M_{\mu} = M_{1\mu} M_{2\mu} \dots M_{n\mu} = [x]^{-\mu-1/2} \frac{\partial^n}{\partial x_1 \dots \partial x_n} [x]^{\mu+1/2}$$

Also, we define an inverse operator to N_{μ} as follows:

$$N_{1\mu}^{-1}\phi = x_{i}^{\mu+1/2} \int_{\infty}^{x_{1}} t^{-\mu-1/2} \phi(t, x_{2}, \dots, x_{n}) dt$$
$$N_{2\mu}^{-1}\phi = x_{2}^{\mu+1/2} \int_{\infty}^{x_{2}} t^{-\mu-1/2} \phi(x_{1}, t, \dots, x_{n}) dt$$

and so on.

$$N_{\mu}^{-1}\phi = N_{1\mu}^{-1}N_{2\mu}^{-1}\dots N_{n\mu}^{-1}\phi$$

= $[x]^{\mu+1/2}\int_{\infty}^{x_1}\dots \int_{\infty}^{x_n} [t]^{-\mu-1/2}\phi(t)dt_n\dots dt_1.$

That N_{μ}^{-1} is truly the inverse to N_{μ} follows from the fact that ϕ is smooth and of rapid descent.

LEMMA 5. $\phi \rightarrow N_{\mu}\phi$ is an isomorphism from H_{μ} onto $H_{\mu+1}$.

E. L. KOH

Proof.

$$\begin{split} \gamma_{m,k}^{\mu+1} \left(N_{\mu} \phi \right) &= \sup_{I} |[x^{m}] (x^{-1} D_{x})^{k} [x]^{-\mu-1-1/2} N_{\mu} \phi | \\ &= \sup_{I} |[x^{m}] (x^{-1} D_{x})^{k+n} [x]^{-\mu-1/2} \phi | = \gamma_{m,k+n}^{\mu} (\phi). \end{split}$$

This shows that N_{μ} is a continuous linear mapping of H_{μ} into $H_{\mu+1}$. To complete the proof, let $\phi \in H_{\mu+1}$. Let k be a fixed integer in \mathbb{R}^n . Then

$$(x^{-1}D_x)^k [x]^{-\mu-1/2} N_{\mu}^{-1} \phi = (x^{-1}D_x)^k \int_{\infty}^{x_1} \dots \int_{\infty}^{x_n} [t]^{-\mu-1/2} \phi(t) dt_n \dots dt_1$$
$$= \left(x_1^{-1} \frac{\partial}{\partial x_1}\right)^{k_1-1} \dots \left(x_n^{-1} \frac{\partial}{\partial x_n}\right)^{k_n-1} [x]^{-\mu-3/2} \phi(x),$$
$$k_{\nu} \ge 1.$$

Hence

(9)
$$\gamma_{m,k}^{\mu}(N_{\mu}^{-1}\phi) = \gamma_{m,k-n}^{\mu+1}(\phi)$$
 for $m = 0, 1, 2, ...; k_{\nu} \ge 1$.

For $k_{\nu} = 0$, for all ν :

Therefore,

(10)
$$\gamma_{m,0}^{\mu}(N_{\mu}^{-1}\phi) \leq \frac{\pi^{n}}{2^{n}} [\gamma_{m+n,0}^{\mu+1}(\phi) + \ldots + \gamma_{m+3n,0}^{\mu+1}(\phi)], \quad m = 0, 1, 2, \ldots$$

Finally, for the case where some but not all k_{ν} are zero, a similar inequality to (10) can easily be obtained. It follows then that $\phi \to N_{\mu}^{-1}\phi$ is a continuous linear mapping of $H_{\mu+1}$ into H_{μ} . Since N_{μ} and N_{μ}^{-1} are inverses, these mappings are one-to-one. Therefore, N_{μ} is an isomorphism from H_{μ} onto $H_{\mu+1}$.

LEMMA 6. $\phi \to M_{\mu}\phi$ is a continuous linear mapping of $H_{\mu+1}$ onto H_{μ} .

https://doi.org/10.4153/CJM-1975-050-9 Published online by Cambridge University Press

428

Proof. For $\phi \in H_{\mu+1}$ and each pair of m, k,

$$\gamma_{m,k}^{\mu} (M_{\mu}\phi) = \sup_{I} \left| [x^{m}](x^{-1}D_{x})^{k}[x]^{-2\mu-1} \frac{\partial^{n}}{\partial x_{1} \dots \partial x_{n}} [x]^{\mu+1/2}\phi \right|$$

$$= \sup_{I} \left| (2\mu + 2)^{n}[x^{m}](x^{-1}D_{x})^{k}[x]^{-\mu-3/2}\phi + [x^{m}](x^{-1}D_{x})^{k}[x]^{-\mu-3/2}\phi \right|$$

$$= \sup_{I} \left| (2\mu + 2)^{n}[x^{m}](x^{-1}D_{x})^{k}[x]^{-\mu-3/2}\phi + [x^{m}]\prod_{i=1}^{n} \left(2k_{i} + x_{i}^{2} \left(x_{i}^{-1} \frac{\partial}{\partial x_{i}} \right) \right) (x^{-1}D_{x})^{k}[x]^{-\mu-3/2}\phi \right|$$

(11)

$$\leq \{ (2\mu + 2)^{n} + 2^{n}[k] \} \gamma_{m,k}^{\mu+1} (\phi) + \sum_{i=1}^{n} 2^{n-i}C_{i}(k) \gamma_{m+2i,k+1}^{\mu+1} (\phi),$$

where $C_i(k)$ are appropriate sums of products of k_{ν} . For example, for n = 3:

$$\begin{split} \gamma_{m,k}^{\mu}(M_{\mu}\phi) &\leq \{(2\mu+2)^3+8k_1k_2k_3\}\gamma_{m,k}^{\mu+1}(\phi) \\ &+ 4(k_1k_2+k_1k_3+k_2k_3)\gamma_{m+2,k+1}^{\mu+1}(\phi) \\ &+ 2(k_1+k_2+k_3)\gamma_{m+4,k+2}^{\mu+1}(\phi). \end{split}$$

Lemmas 5 and 6 imply

LEMMA 7.

$$M_{\mu}N_{\mu} = [x]^{-\mu-1/2} \frac{\partial^{n}}{\partial x_{1} \dots \partial x_{n}} [x]^{2\mu+1} \frac{\partial^{n}}{\partial x_{1} \dots \partial x_{n}} [x]^{-\mu-1/2} = \prod_{i=1}^{n} \left(\frac{\partial^{2}}{\partial x_{i}^{2}} - \frac{4\mu^{2} - 1}{4x_{i}^{2}}\right)$$

is a continuous linear mapping of H_{μ} into itself.

In the dual spaces, we define N_{μ} and M_{μ} as weak differential operators by

- (12) $\langle N_{\mu}f, \phi \rangle = \langle f, (-1)^n M_{\mu}\phi \rangle$ $f \in H_{\mu'}, \phi \in H_{\mu+1}$
- (13) $\langle M_{\mu}f, \phi \rangle = \langle f, (-1)^n N_{\mu}\phi \rangle$ $f \in H_{\mu+1}', \phi \in H_{\mu}$

Thus we also have

(14) $\langle M_{\mu}N_{\mu}f, \phi \rangle = \langle f, M_{\mu}N_{\mu}\phi \rangle$ $f \in H_{\mu}', \phi \in H_{\mu}.$

These definitions are consistent with the usual meaning of weak derivatives. In view of lemmas 5, 6 and 7, we have

LEMMA 8. (i) The weak differential operator N_{μ} , defined by (12) is a continuous linear mapping of H_{μ}' into $H_{\mu+1}'$.

(ii) The weak differential operator M_{μ} , defined by (13) is an isomorphism from $H_{\mu+1}'$ onto H_{μ}' .

(iii) The weak differential operator $M_{\mu}N_{\mu}$, given by (14) is a continuous linear mapping of H_{μ} into itself.

4. The *n*-dimensional Hankel transformation. We shall define the *n*-dimensional classical μ th order Hankel transformation h_{μ} by

$$(h_{\mu}\phi)(y) = \int_{0}^{\infty} \ldots \int_{0}^{\infty} \phi(x_{1},\ldots,x_{n}) \left(\prod_{i=1}^{n} (x_{i}y_{i})^{1/2} J_{\mu}(x_{i}y_{i})\right) dx_{1}\ldots dx_{n}.$$

For $\mu \geq -1/2$, the Hankel transform $(h_{\mu}\phi)(y)$ exists for every $\phi \in H_{\mu}$. This is due to the facts that ϕ is smooth and of rapid descent as $|x| \to \infty$ while $(x_i y_i)^{1/2} J_{\mu}(x_i y_i) = 0(x_i^{\mu+1/2})$ as $x_i \to 0^+$ and it remains bounded as $x_i \to \infty$. These properties of $\phi(x_1, \ldots, x_n)$ also ensure the validity of the classical inversion theorem [**6**, Theorem 19] when extended to *n*-dimensions.

THEOREM 1. For $\mu \ge -1/2$, the Hankel transformation h_{μ} is an automorphism on H_{μ} .

Proof. Let $\Phi(y) = h_{\mu}(\phi(x))$. Then

(15)
$$[y^{m}](y^{-1}D_{\nu})^{k}[y]^{-\mu-1/2}\Phi(y) = \int_{0}^{\infty} \dots \int_{0}^{\infty} \phi(x)(-1)^{(k)}[x]^{1/2} \times \prod_{\nu=1}^{n} x_{\nu}^{k_{\nu}}y_{\nu}^{-\mu-k_{\nu}+m_{\nu}}J_{\mu+k_{\nu}}(x_{\nu}y_{\nu})dx_{1}\dots dx_{n}$$

$$(16) = \int_{0}^{\infty} \dots \int_{0}^{\infty} \phi(x) (-1)^{(k)} [x]^{-\mu+1/2} \\ \times \prod_{\nu=1}^{n} \left(x_{\nu}^{-1} \frac{\partial}{\partial x_{\nu}} \right)^{m_{\nu}} y_{\nu}^{-\mu-k_{\nu}} x_{\nu}^{\mu+k_{\nu}+m_{\nu}} J_{\mu+k_{\nu}+m_{\nu}}(x_{\nu}y_{\nu}) dx_{1} \dots dx_{n} \\ (17) = (-1)^{(k)+(m)} \int_{0}^{\infty} \dots \int_{0}^{\infty} \left(\prod_{\nu=1}^{n} x_{\nu}^{2\mu+2k_{\nu}+m_{\nu}+1} \right) \\ \times ((x^{-1}D_{x})^{m} [x]^{-\mu-1/2} \phi(x)) \prod_{\nu=1}^{n} (x_{\nu}y_{\nu})^{-\mu-k_{\nu}} J_{\mu+k_{\nu}+m_{\nu}}(x_{\nu}y_{\nu}) dx_{1} \dots dx_{n}.$$

Equation (15) is obtained by differentiating under the integral sign and a repeated use of

(18)
$$\frac{\partial}{\partial y} y^{-\mu} J_{\mu}(xy) = -x y^{-\mu} J_{\mu+1}(xy).$$

Equation (16) follows from m_{ν} -times application of the identity

(19)
$$yx^{\mu+1}J_{\mu}(xy) = \frac{\partial}{\partial x}x^{\mu+1}J_{\mu+1}(xy)$$

and equation (17) is obtained by integration by parts through each variable x_1, \ldots, x_n . The limit terms vanish since $\phi(x)$ is of rapid descent for large x while $x_i^{1/2}J_{\mu+1}(x_iy_i) = O(x_i), \phi(x) = O(1)$ as $x_i \to 0$.

As $z^{-\mu-k\nu}J_{\mu+k_{\nu}+m_{\nu}}(z)$ is bounded on $0 < z < \infty$, by say B_{ν} , the integral in (17) converges uniformly for all $y \in I$ so that $\Phi(y)$ is smooth on I.

If p_{ν} is an integer no less than $\mu + k_{\nu} + \frac{1}{2}(m_{\nu} + 1)$, then

$$x_{\nu}^{2\mu+2k\nu+m\nu+1} < (1+x_{\nu}^{2})^{p}\nu$$
 for $x_{\nu} > 0$.

Hence, equation (17) yields

$$\gamma_{m,k}^{\mu}(\Phi) \leq \int_{0}^{\infty} \dots \int_{0}^{\infty} \prod_{\nu=1}^{n} (1+x_{\nu}^{2})^{p_{\nu}+1} |(x^{-1}D_{x})^{m}[x]^{-\mu-1/2} \phi(x)| \\ \times \prod_{\nu=1}^{n} \frac{B_{\nu}}{(1+x_{\nu}^{2})} dx_{1} \dots dx_{n} \\ \leq \left(\frac{\pi}{2}\right)^{n} [B] \sum_{j=0}^{Q} C_{j}(p_{\nu}) \gamma_{2j,m}^{\mu}(\phi)$$

where Q is some integer and $C_j(p\nu)$ are appropriate constants involving p_{ν} . This proves that $\Phi \in H_{\mu}$ whenever $\phi \in H_{\mu}$, and that the linear mapping h_{μ} is also continuous from H_{μ} onto H_{μ} . The classical inversion theorem together with the fact that $h_{\mu}^{-1} = h_{\mu}$ [6] ensure that h_{μ} is one-to-one, whenever $\mu \geq -1/2$. Hence h_{μ} is an automorphism on H_{μ} .

We may now define the *n*-dimensional distributional Hankel transformation h_{μ}' on H_{μ}' as the adjoint of h_{μ} on H_{μ} . Let $\mu \geq -1/2$. For $\Phi \in H_{\mu}$ and $f \in H_{\mu}'$, the Hankel transform $F = h_{\mu}'f$ is defined by

$$\langle h_{\mu}'f, \Phi \rangle = \langle f, h_{\mu}\Phi \rangle.$$

THEOREM 2. For $\mu \ge -1/2$, the distributional Hankel transformation $h_{\mu'}$ is an automorphism on $H_{\mu'}$.

Proof. See [4, Theorem 1.10-2] and Theorem 1 above.

We now establish some transform formulas on H_{μ} and H_{μ}' .

LEMMA 9. Let $\mu \geq -1/2$. If $\phi \in H_{\mu}$, then

(20)
$$h_{\mu+1}([-x]\phi(x)) = N_{\mu}h_{\mu}\phi(x)$$

(21) $h_{\mu}(N_{\mu}x) = [-x]h_{\mu}x$

(21)
$$h_{\mu+1}(N_{\mu}\phi) = [-y]h_{\mu}\phi$$

(22)
$$h_{\mu}([x]^{2}\phi) = (-1)^{n}M_{\mu}N_{\mu}h_{\mu}\phi$$

(23)
$$h_{\mu}(M_{\mu}N_{\mu}\phi) = (-1)^{n}[y]^{2}h_{\mu}\phi.$$

If $\boldsymbol{\phi} \in H_{\mu+1}$, then

$$(24) \quad h_{\mu}([x]\phi) \qquad = M_{\mu}h_{\mu+1}\phi$$

$$(25) \quad h_{\mu}(M_{\mu}\phi) \qquad = [y]h_{\mu+1}\phi$$

E. L. KOH

Proof. Let $\Phi = (h_{\mu}\phi)(y)$, where $\phi \in H_{\mu}$. Then

(26)
$$\frac{\partial^n}{\partial y_1 \dots \partial y_n} [y]^{-\mu - 1/2} \Phi(y) = \int_0^\infty \dots \int_0^\infty \phi(x) [x]^{1/2} \frac{\partial^n}{\partial y_1 \dots \partial y_n} \\ \times \left\{ \prod_{i=1}^n y_i^{-\mu} J_\mu(x_i y_i) \right\} dx_1 \dots dx_n.$$

By the identity (18), the right hand side of (26) becomes

$$(-1)^n \int_0^\infty \dots \int_0^\infty \phi(x) [x]^{3/2} [y]^{-\mu} \left(\prod_{i=1}^n J_{\mu+1}(x_i y_i)\right) dx_1 \dots dx_n$$

We may differentiate under the integral sign in (26) because for $\mu \geq -1/2$, $\prod_{i=1}^{n} J_{\mu+1}(x_i y_i)$ is a smooth bounded function on I and $\phi(x)[x]^{3/2}$ is of rapid descent. Thus, (26) is a uniformly convergent integral on every compact subset of I. Hence

$$N_{\mu}h_{\mu}\phi = [y]^{\mu+1/2} \frac{\partial^{n}}{\partial y_{1} \dots \partial y_{n}} [y]^{-\mu-1/2} \Phi(y) = h_{\mu+1}([-x]\phi(x))$$

which is (20).

To prove (21), we use the formula (19) together with integration by parts. Thus,

$$h_{\mu+1}(N_{\mu}\phi) = [y]^{1/2} \int_{0}^{\infty} \dots \int_{0}^{\infty} \left(\frac{\partial^{n}}{\partial x_{1}\dots\partial x_{n}} [x]^{-\mu-1/2}\phi(x)\right) \\ \times \prod_{i=1}^{n} x_{i}^{\mu+1} J_{\mu+1}(x_{i}y_{i}) dx_{n}\dots dx_{1} \\ = [y]^{1/2} \int_{0}^{\infty} \dots \int_{0}^{\infty} \frac{\partial^{n}}{\partial x_{1}\dots\partial x_{n-1}} \left\{\phi(x) (x_{1}\dots x_{n-1})^{-\mu-1/2} \\ \times x_{n}^{1/2} J_{\mu+1}(x_{n}y_{n}) \left| \begin{array}{c} x_{n} = \infty \\ x_{n} = 0 \end{array} \right. \\ - \int_{0}^{\infty} [x]^{-\mu-1/2} \phi(x) y_{n} x_{n}^{\mu+1} J_{\mu}(x_{n}y_{n}) dx_{n} \right\} \\ \times \prod_{i=1}^{n-1} x_{i}^{\mu+1} J_{\mu+1}(x_{i}y_{i}) dx_{n-1}\dots dx_{1}.$$

The limit terms vanish since $\phi(x)$ is of rapid descent as $x_n \to \infty$ and $x_n^{1/2}J_{\mu+1}(x_ny_n) = O(x_n)$ while $\phi(x) = O(1)$ as $x_n \to 0$. Continuing the integration by parts through the succeeding components $x_{n-1}, \ldots, x_2, x_1$, we obtain the result (21).

Formulas (24) and (25) are proved in a manner analogous to the proofs for (20) and (21). Combining (20) and (24), we obtain (22). Indeed

$$M_{\mu}N_{\mu}h_{\mu}\phi = M_{\mu}h_{\mu+1}([-x]\phi(x)) = h_{\mu}((-1)^{n}[x]^{2}\phi(x)).$$

432

Similarly, (23) follows from (21) and (25):

$$h_{\mu}(M_{\mu}N_{\mu}\phi) = [y]h_{\mu+1}(N_{\mu}\phi) = (-1)^{n}[y]^{2}h_{\mu}\phi.$$

Lemma 9 enables us to prove the following theorem, whose proof follows analogous arguments to Theorem 3 of [1] using the appropriate definition of weak operators (12), (13), and (14).

THEOREM 3. Let $\mu \geq -1/2$. If $f \in H_{\mu'}$, then

$$\begin{split} h_{\mu+1}'((-1)^n[x]f) &= N_{\mu}h_{\mu}'f \\ h_{\mu+1}'(N_{\mu}f) &= (-1)^n[y]h_{\mu}'f \\ h_{\mu}'((-1)^n[x]^2f) &= M_{\mu}N_{\mu}h_{\mu}'f \\ h_{\mu}'(M_{\mu}N_{\mu}f) &= (-1)^n[y]^2h_{\mu}'f \end{split}$$

If $f \in H_{\mu+1}'$, then

$h_{\mu}'([x]f)$	$= M_{\mu}h_{\mu+1}'f$
$h_{\mu}'(M_{\mu}f)$	$= [y]h_{\mu+1}'f.$

Remarks. (i) The results in the present work reduce to the one-dimensional case in [1] when n = 1.

(ii) By a similar device as in this work, it might be possible to extend the n-dimensional Hankel transformation to generalized functions of exponential descent [2] and certain distributions of rapid growth [3].

References

- A. H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561–576.
- 2. E. L. Koh and A. H. Zemanian, The complex Hankel and I-transformations of generalized functions, SIAM J. Appl. Math. 16 (1968), 945-957.
- **3.** E. L. Koh, The Hankel transformation of negative order for distributions of rapid growth, SIAM J. Math. Anal. 1 (1970), 322–327.
- 4. A. H. Zemanian, Generalized integral transformations (Interscience, New York, 1968).
- 5. W. H. Fleming, Functions of several variables (Addison-Wesley, Reading, Mass, 1965).
- 6. I. N. Sneddon, Fourier transforms (McGraw-Hill, New York, 1951).

University of Regina, Regina, Saskatchewan