## THE $n$-DIMENSIONAL DISTRIBUTIONAL HANKEL TRANSFORMATION

## E. L. KOH

1. Introduction. The Hankel transformation was extended to certain generalized functions of one dimension $[\mathbf{1} ; \mathbf{2} ; \mathbf{3}]$. In this paper, we develop the $n$-dimensional case corresponding to [1]. The procedure in [1] is briefly as follows:

A test function space $H_{\mu}$ is constructed on which the $\mu$ th order Hankel transformation $h_{\mu}$ defined by

$$
h_{\mu} \phi=\int_{0}^{\infty} \phi(x)(x y)^{1 / 2} J_{\mu}(x y) d x, \quad \phi \in H_{\mu}
$$

is an automorphism whenever $\mu \geqq-1 / 2$. The generalized transformation $h_{\mu}{ }^{\prime}$ is then defined on the dual $H_{\mu}{ }^{\prime}$ as the adjoint of $h_{\mu}$ through a Parseval relation, i.e.

$$
\left\langle h_{\mu}^{\prime} f, \phi\right\rangle=\left\langle f, h_{\mu} \phi\right\rangle, \quad \phi \in H_{\mu}, f \in H_{\mu}{ }^{\prime} .
$$

This definition coincides with the classical Hankel transformation when $f$ is a regular distribution corresponding to an $L_{1}$ function.

We shall use the following notations. $R^{n}$ and $C^{n}$ are respectively the real and complex $n$-dimensional euclidean spaces. An $n$-tuple will be denoted by $z=\left\{z_{1}, \ldots, z_{n}\right\}$. For our purpose, we shall restrict $x$ and $y$ to the first orthant of $R^{n}$ which we denote by $I$. Thus, $I=\left\{x \in R^{n}: 0<x_{\nu}<\infty, \nu=1, \ldots, n\right\}$. We shall use the usual euclidean norm, $|x|=\left[\sum_{v=1}^{n} x_{\nu}{ }^{2}\right]^{1 / 2}$. A function on a subset of $R^{n}$ shall be denoted by $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. By $[x]$, we mean the product $x_{1} x_{2} \ldots x_{n}$. Thus $\left[x^{m}\right]=x_{1}{ }^{m_{1}} x_{2}{ }^{m_{2}} \ldots x_{n}{ }^{m_{n}}$ where $m=\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$. The notations $x \leqq y$ and $x<y$ mean respectively $x_{\nu} \leqq y_{\nu}$ and $x_{\nu}<y_{\nu}$ ( $\nu=1,2, \ldots, n$ ). The letters $k$ and $m$ shall denote nonnegative integers in $R^{n}$, i.e., $k_{\nu}$ and $m_{\nu}$ are nonnegative integers. Letting $(k)=k_{1}+k_{2}+\ldots+k_{n}, D_{x}{ }^{k}$ shall denote

$$
\begin{equation*}
\frac{\partial^{(k)}}{\partial x_{1}^{k_{1}} \partial x_{2}^{k_{2}} \ldots \partial x_{n}^{k_{n}}} \tag{1}
\end{equation*}
$$

while $\left(x^{-1} D_{x}\right)^{k}$ denotes
(2) $\prod_{\nu=1}^{n}\left(x_{\nu}{ }^{-1} \frac{\partial}{\partial x_{\nu}}\right)^{k_{\nu}}$.

Other operators will be defined later when their uses arise.

[^0]By a smooth function, we mean a function that possesses partial derivatives of all orders at all points of its domain.
2. The testing function space $H_{\mu}$ and its dual. Let $\mu$ be a fixed number in $(-\infty, \infty)$. We define $H_{\mu}$ to be the space of smooth complex-valued functions $\phi(x)$ which are defined on $I$ and such that for each pair of nonnegative integers $m$ and $k$ in $R^{n}$

$$
\begin{equation*}
\gamma_{m, k}^{\mu}(\phi(x))=\sup _{x \in I}\left|\left[x^{m}\right]\left(x^{-1} D_{x}\right)^{k}[x]^{-\mu-1 / 2} \phi(x)\right|<\infty . \tag{3}
\end{equation*}
$$

Since $\phi(x)$ is smooth, the order of differentiation in $\left(x^{-1} D_{x}\right)^{k}$ is immaterial; thus

$$
\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)\left(x_{j}^{-1} \frac{\partial}{\partial x_{j}}\right)=\left(x_{j}^{-1} \frac{\partial}{\partial x_{j}}\right)\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)
$$

for all $i, j=1, \ldots, n$.
$H_{\mu}$ is a vector space. Since $\gamma_{m, 0}^{\mu}$ are norms, we have a separating collection of seminorms, i.e. a multinorm. (An equivalent topology for $H_{\mu}$ may be given by the multinorm $\left\{\rho_{T}{ }^{\mu}\right\}$ with

$$
\left.\rho_{T}^{\mu}(\phi)=\max _{0 \leqq m, k \leqq r} \gamma_{m, k}^{\mu}(\phi), \quad r=\left(r_{1}, r_{2}, \ldots, r_{n}\right) .\right)
$$

As $k$ and $m$ traverse a countable index set, $H_{\mu}$ is, in fact, a countably multinormed space. We say that a sequence $\left\{\phi_{\nu}\right\}$ is Cauchy in $H_{\mu}$ if $\phi_{\nu} \in H_{\mu}$ for all $\nu$ and for every $\mathrm{m}, \mathrm{k}, \gamma_{m, k}^{\mu}\left(\phi_{\nu}-\phi_{\lambda}\right) \rightarrow 0$ as $\nu$ and $\lambda \rightarrow \infty$ independently.

Lemma 1. If $\phi(x) \in H_{\mu}, D_{x}{ }^{k} \phi(x)$ is of rapid descent for each $k$.
Proof. Since

$$
\begin{aligned}
&\left(x_{i}{ }^{-1} \frac{\partial}{\partial x_{i}}\right)^{k_{i}} x_{i}{ }^{-\mu-1 / 2} \phi\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=x_{i}{ }^{-2 k_{i}} x_{i}{ }^{-\mu-1 / 2} \sum_{j=0}^{k_{i}} b_{j} x_{i}{ }^{j} \\
& \times\left(\frac{\partial}{\partial x_{i}}\right)^{j} \phi
\end{aligned}
$$

we have

$$
\begin{align*}
\left(x^{-1} D_{x}\right)^{k}[x]^{-\mu-1 / 2} \phi(x)=\left[x^{-2 k}\right][x]^{-\mu-1 / 2} \sum_{j_{1}=0}^{k_{1}} \cdots \sum_{j_{n}=0}^{k_{n}} b_{j}\left[x^{j}\right] &  \tag{4}\\
& \times \frac{\partial^{j_{1}+\ldots+j_{n}} \phi}{\partial x_{1}^{j_{1}} \ldots \partial x_{n}{ }^{j_{n}}}
\end{align*}
$$

where the $b_{j}$ are appropriate constants. Now consider $\phi \in H_{\mu}$. By $\gamma_{m, 0}^{\mu}(\phi)<\infty$, we have $\sup _{I}\left|\left[x^{m}\right][x]^{-\mu-1 / 2} \phi\right|<\infty$. Therefore, $\left[x^{m}\right] \phi \rightarrow 0$ as $|x| \rightarrow \infty$ for each
$m$. To show $\left[x^{m}\right] D_{x} \phi \rightarrow 0$ as $|x| \rightarrow \infty$, we observe that

$$
\gamma_{m, 1}^{\mu}(\phi)=\sup _{\substack{I \\ i=1, \ldots, n}}\left|\left[x^{m}\right][x]^{-\mu-1 / 2} x_{i}^{-1} \frac{\partial}{\partial x_{i}} \phi\right|<\infty
$$

Finally, by induction on $k$ and using (4), we have

$$
\gamma_{m, k}^{\mu}(\phi)<\infty \Rightarrow\left[x^{m}\right] D_{x}{ }^{k} \phi \rightarrow 0 \quad \text { as }|x| \rightarrow \infty
$$

Lemma 2. If $q$ is an even positive integer $\left(\in R^{1}\right)$, then $H_{\mu+q} \subset H_{\mu}$ and convergence in $H_{\mu+q}$ implies convergence in $H_{\mu}$.

Proof. It is easy to show that

$$
\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{k_{i}}\left(x_{i}^{-\mu-1 / 2} \phi\right)=\left(1+\frac{x_{i}}{2 k_{i}} \frac{\partial}{\partial x_{i}}\right)\left(2 k_{i}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{k_{i}-1} x_{i}^{-\mu-5 / 2} \phi\right)
$$

Hence, we have the operational identity

$$
\begin{equation*}
\prod_{i=1}^{n}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{k_{i}} x_{i}^{-\mu-1 / 2}=\prod_{i=1}^{n}\left(1+\frac{x_{i}}{2 k_{i}} \frac{\partial}{\partial x_{i}}\right)\left(2 k_{i}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)^{k_{i}-1} x^{-\mu-5 / 2}\right) \tag{5}
\end{equation*}
$$

Let

$$
\Delta_{i}=\frac{x_{i}}{2 k_{i}} \frac{\partial}{\partial x_{i}}
$$

The right hand side of (5) is a sum of $2^{n}$ terms of $\Delta_{i}$ multiplied by the operator $2^{n}[k]\left(x^{-1}(\partial / \partial x)\right)^{k-n}[x]^{-\mu-5 / 2}$, i.e.

$$
\begin{aligned}
\left(1+\sum_{i=1}^{n} \Delta_{i}+\sum_{i \neq j} \Delta_{i} \Delta_{j}+\ldots+\Delta_{1} \Delta_{2} \ldots \Delta_{n}\right) & .2^{n}[k] \\
& \times\left(x^{-1} \frac{\partial}{\partial x}\right)^{k-n}[x]^{-\mu-5 / 2}
\end{aligned}
$$

If now we evaluate $\gamma_{m, k}^{\mu}(\phi)=\sup _{I}\left|\left[x^{m}\right]\left(x^{-1} D_{x}\right)^{k}[x]^{-\mu-1 / 2} \boldsymbol{\phi}\right|$ we have

$$
\gamma_{m, k}^{\mu}(\phi) \leqq 2^{n}[k] \gamma_{m, k-n}^{\mu+2}(\phi)+C_{1} \gamma_{m+1, k-n+1}^{\mu+2}(\phi)+\ldots+C_{j} \gamma_{m+n, k}^{\mu+2}(\phi)
$$

where $C_{1}, \ldots, C_{j}$ are constants. The lemma follows by induction on $q$.
Lemma 3. $H_{\mu}$ is sequentially complete.
Proof. Let $\left\{\phi_{\nu}\right\}_{\nu=1}^{\infty}$ converge in $H_{\mu}$. Using the seminorms $\gamma_{0, k}^{\mu}$ and the relation (4), we have by induction on $k_{i}$ that for each $k=\left\{k_{1}, \ldots, k_{n}\right\}$ the sequence of partial derivatives $\left\{D_{x}{ }^{k} \phi_{\nu}\right\}_{\nu=1}^{\infty}$ converges uniformly on every compact subset of $I$. Therefore, there exists a smooth function $\phi$ on $I$ such that for each $k$ and $x, D_{x}{ }^{k} \phi_{\nu}(x) \rightarrow D_{x}{ }^{k} \phi(x)$ as $\nu \rightarrow \infty$. Again, since $\left\{\phi_{\nu}\right\}$ is a Cauchy sequence,
for each $m$ and $k$ and a given $\epsilon>0$ there is a positive number $N_{m, k}$ such that for every $\nu, \eta>N_{m, k}$,

$$
\begin{equation*}
\gamma_{m, k}^{\mu}\left(\phi_{\nu}-\phi_{\eta}\right)<\epsilon . \tag{6}
\end{equation*}
$$

Passing to the limit as $\eta \rightarrow \infty$, we have $\gamma_{m, k}^{\mu}\left(\phi_{\nu}-\phi\right) \leqq \epsilon$ for all $\nu>N_{m, k}$, i.e.

$$
\begin{equation*}
\gamma_{m, k}^{\mu}\left(\phi_{\nu}-\phi\right) \rightarrow 0 \quad \text { as } \nu \rightarrow \infty . \tag{7}
\end{equation*}
$$

To complete the proof, we show that $\phi \in H_{\mu}$ as follows: it is clear that

$$
\begin{equation*}
\gamma_{m, k}^{\mu}(\phi) \leqq \gamma_{m, k}^{\mu}\left(\phi_{\nu}\right)+\gamma_{m, k}^{\mu}\left(\phi_{\nu}-\phi\right) . \tag{8}
\end{equation*}
$$

By (7) and the fact that $\gamma_{m, k}^{\mu}\left(\phi_{\nu}\right)<\infty$ for all $\nu$, it follows from (8) that $\gamma_{m, k}^{\mu}(\phi)<\infty$.
$H_{\mu}$ is therefore a Frèchet space, i.e. a complete countably multinormed space. Its dual is denoted by $H_{\mu}{ }^{\prime}$. It follows that $H_{\mu}{ }^{\prime}$ is also complete [4, Theorem 1.8-3].

The following properties are immediate extensions of the one-dimensional case, using the relation (4) whenever called for.

1. $\mathscr{D}(I)$, the space of smooth functions with compact support on $I$, is a subspace of $H_{\mu}$ for every choice of $\mu$. Convergence in $\mathscr{D}(I)$ implies convergence in $H_{\mu}$. Thus, the restriction of any $f \in H_{\mu}{ }^{\prime}$ to $\mathscr{D}(I)$ is in $\mathscr{D}^{\prime}(I)$. However $\mathscr{D}(I)$ is not dense in $H_{\mu}$.
2. For each $\mu, H_{\mu}$ is a subspace of $\mathscr{E}(I)$, the space of smooth functions on $I$. $H_{\mu}$ is dense in $\mathscr{E}(I)$. Moreover, the topology of $H_{\mu}$ is stronger than that induced on it by $\mathscr{E}(I)$. It follows that $\mathscr{E}^{\prime}(I)$ is a subspace of $H_{\mu}{ }^{\prime}$.
3. The complex number that $f \in H_{\mu}{ }^{\prime}$ assigns to $\phi \in H_{\mu}$ is denoted by $\langle f, \phi\rangle$. We assign to $H_{\mu}{ }^{\prime}$ the weak topology generated by the seminorms

$$
\eta_{\phi}(f)=|\langle f, \phi\rangle| \quad \text { where } \phi \in H_{\mu} .
$$

For each $f \in H_{\mu}{ }^{\prime}$, there exist a positive constant $C$ and a non-negative integer $r$ such that

$$
|\langle f, \phi\rangle| \leqq C \rho_{r}^{\mu}(\phi) \quad \phi \in H_{\mu} .
$$

Recall that $\rho_{\tau}^{\mu}=\max _{0 \leqq m, k \leqq r} \gamma_{m, k}^{\mu}(\phi)$.
4. Let $f(x)$ be a locally Lebesgue integrable function on $I$ such that $f(x)$ is of slow growth as $|x| \rightarrow \infty$ and $[x]^{\mu+1 / 2} f(x)$ is absolutely integrable on $0<x_{\nu}<1, \nu=1,2, \ldots, n$. Then $f(x)$ generates a regular generalized function $f$ in $H_{\mu}{ }^{\prime}$ defined by

$$
\langle f, \phi\rangle=\int_{0}^{\infty} \ldots \int_{0}^{\infty} f\left(x_{1}, \ldots, x_{n}\right) \phi\left(x_{1}, \ldots, x_{n}\right) d x_{1} d x_{2} \ldots d x_{n}, \phi \in H_{\mu}
$$

This statement follows from the mean value theorem for $n$-dimensional integrals (see [5, p. 155]) and the fact that $\phi$ is of rapid descent.

## 3. Operations on $H_{\mu}$ and $H_{\mu}{ }^{\prime}$.

Lemma 4. For any positive or negative integer $n$ and for any $\mu$, the mapping $\phi(x) \rightarrow[x]^{n} \phi(x)$ is an isomorphism from $H_{\mu}$ onto $H_{\mu+n}$. Thus, the operator $f(x) \rightarrow[x]^{n} f(x)$ which is defined by

$$
\left\langle[x]^{n} f(x), \phi(x)\right\rangle=\left\langle f(x),[x]^{n} \phi(x)\right\rangle
$$

is an isomorphism from $H_{\mu+n}{ }^{\prime}$ onto $H_{\mu}{ }^{\prime}$.
Proof. If $\phi \in H_{\mu}$ then

$$
\begin{aligned}
\gamma_{m, k}^{\mu+n}\left([x]^{n} \phi\right) & =\sup _{I}\left|\left[x^{m}\right]\left(x^{-1} D_{x}\right)^{k}[x]^{-\mu-1 / 2-n}[x]^{n} \phi\right| \\
& =\gamma_{m, k}^{\mu}(\phi) .
\end{aligned}
$$

We now define the following operators on $H_{\mu}$ :

$$
\begin{aligned}
N_{i \mu} & =x_{i}^{\mu+1 / 2} \frac{\partial}{\partial x_{i}} x_{i}^{-\mu-1 / 2} \\
N_{\mu} & =N_{1 \mu} N_{2 \mu} \ldots N_{n \mu}=[x]^{\mu+1 / 2} \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}}[x]^{-\mu-1 / 2} \\
M_{i \mu} & =x_{i}^{-\mu-1 / 2} \frac{\partial}{\partial x_{i}} x_{i}^{\mu+1 / 2} \\
M_{\mu} & =M_{1 \mu} M_{2 \mu} \ldots M_{n \mu}=[x]^{-\mu-1 / 2} \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}}[x]^{\mu+1 / 2} .
\end{aligned}
$$

Also, we define an inverse operator to $N_{\mu}$ as follows:

$$
\begin{aligned}
& N_{1 \mu}{ }^{-1} \phi=x_{i}^{\mu+1 / 2} \int_{\infty}^{x_{1}} t^{-\mu-1 / 2} \phi\left(t, x_{2}, \ldots, x_{n}\right) d t \\
& N_{2 \mu}^{-1} \phi=x_{2}^{\mu+1 / 2} \int_{\infty}^{x_{2}} t^{-\mu-1 / 2} \phi\left(x_{1}, t, \ldots, x_{n}\right) d t
\end{aligned}
$$

and so on.

$$
\begin{aligned}
N_{\mu}^{-1} \phi & =N_{1 \mu}{ }^{-1} N_{2 \mu}{ }^{-1} \ldots N_{n \mu}{ }^{-1} \phi \\
& =[x]^{\mu+1 / 2} \int_{\infty}^{x_{1}} \ldots \int_{\infty}^{x_{n}}[t]^{-\mu-1 / 2} \phi(t) d t_{n} \ldots d t_{1} .
\end{aligned}
$$

That $N_{\mu}{ }^{-1}$ is truly the inverse to $N_{\mu}$ follows from the fact that $\phi$ is smooth and of rapid descent.

Lemma 5. $\phi \rightarrow N_{\mu} \phi$ is an isomorphism from $H_{\mu}$ onto $H_{\mu+1}$.

Proof.

$$
\begin{aligned}
\gamma_{m, k}^{\mu+1}\left(N_{\mu} \phi\right) & =\sup _{I}\left|\left[x^{m}\right]\left(x^{-1} D_{x}\right)^{k}[x]^{-\mu-1-1 / 2} N_{\mu} \phi\right| \\
& =\sup _{I}\left|\left[x^{m}\right]\left(x^{-1} D_{x}\right)^{k+n}[x]^{-\mu-1 / 2} \phi\right|=\gamma_{m, k+n}^{\mu}(\phi) .
\end{aligned}
$$

This shows that $N_{\mu}$ is a continuous linear mapping of $H_{\mu}$ into $H_{\mu+1}$. To complete the proof, let $\phi \in H_{\mu+1}$. Let $k$ be a fixed integer in $R^{n}$. Then

$$
\begin{aligned}
&\left(x^{-1} D_{x}\right)^{k}[x]^{-\mu-1 / 2} N_{\mu}^{-1} \phi=\left(x^{-1} D_{x}\right)^{k} \int_{\infty}^{x_{1}} \ldots \int_{\infty}^{x_{n}}[t]^{-\mu-1 / 2} \phi(t) d t_{n} \ldots d t_{1} \\
&=\left(x_{1}^{-1} \frac{\partial}{\partial x_{1}}\right)^{k_{1}-1} \ldots\left(x_{n}^{-1} \frac{\partial}{\partial x_{n}}\right)^{k_{n}-1}[x]^{-\mu-3 / 2} \phi(x), \\
& k_{v} \geqq 1 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\gamma_{m, k}^{\mu}\left(N_{\mu}^{-1} \phi\right)=\gamma_{m, k-n}^{\mu+1}(\phi) \quad \text { for } m=0,1,2, \ldots ; k_{\nu} \geqq 1 . \tag{9}
\end{equation*}
$$

For $k_{\nu}=0$, for all $\nu$ :

$$
\begin{aligned}
& \left|x_{1}{ }^{m_{1}} \ldots x_{n}{ }^{m_{n}}\left(x_{1} \ldots x_{n}\right)^{-\mu-1 / 2} N_{\mu}{ }^{-1} \phi\right| \leqq{x_{1}}^{m_{1}} \ldots x_{n}{ }^{m_{n}} \\
& \times \int_{x_{1}}^{\infty} \ldots \int_{x_{n}}^{\infty}\left|\left(t_{1} \ldots t_{n}\right)^{-\mu-1 / 2} \phi(t)\right| d t_{n} \ldots d t_{1} \\
& \leqq \int_{x_{1}}^{\infty} \ldots \int_{x_{n}}^{\infty} \left\lvert\, \frac{1}{t_{1}{ }^{2}+1}\left(t_{1}{ }^{m_{1}+1}+t_{1}{ }^{m_{1}+3}\right) \cdots \frac{1}{t_{n}{ }^{2}+1}\right. \\
& \times\left(t_{1}{ }^{m_{n}+1}+t_{n}^{m_{n}+3}\right)\left(t_{1} \ldots t_{n}\right)^{-\mu-3 / 2} \phi \mid d t_{n} \ldots d t_{1} \\
& \left.\leqq \int_{0}^{\infty} \frac{d t_{1}}{t_{1}{ }^{2}+1} \ldots \int_{0}^{\infty} \frac{d t_{n}}{t_{n}{ }^{2}+1} \sup _{I} \right\rvert\,\left(t_{1}{ }^{m_{1}+1} \ldots t_{n}^{m_{n}+1}+\ldots+t_{1}^{m_{1}+3} \ldots t_{n}^{m_{n}+3}\right) \\
& \times\left(t_{1} \ldots t_{n}\right)^{-\mu-3 / 2} \phi(t) \mid
\end{aligned}
$$

Therefore,
(10) $\quad \gamma_{m, 0}^{\mu}\left(N_{\mu}^{-1} \phi\right) \leqq \frac{\pi^{n}}{2^{n}}\left[\gamma_{m+n, 0}^{\mu+1}(\phi)+\ldots+\gamma_{m+3 n, 0}^{\mu+1}(\phi) \mid, \quad m=0,1,2, \ldots\right.$

Finally, for the case where some but not all $k_{\nu}$ are zero, a similar inequality to (10) can easily be obtained. It follows then that $\phi \rightarrow N_{\mu}{ }^{-1} \phi$ is a continuous linear mapping of $H_{\mu+1}$ into $H_{\mu}$. Since $N_{\mu}$ and $N_{\mu}^{-1}$ are inverses, these mappings are one-to-one. Therefore, $N_{\mu}$ is an isomorphism from $H_{\mu}$ onto $H_{\mu+1}$.

Lemma 6. $\phi \rightarrow M_{\mu} \phi$ is a continuous linear mapping of $H_{\mu+1}$ onto $H_{\mu}$.

Proof. For $\phi \in H_{\mu+1}$ and each pair of $m, k$,

$$
\begin{aligned}
\gamma_{m, k}^{\mu}\left(M_{\mu} \phi\right)= & \sup _{I}\left|\left[x^{m}\right]\left(x^{-1} D_{x}\right)^{k}[x]^{-2 \mu-1} \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}}[x]^{\mu+1 / 2} \phi\right| \\
= & \sup _{I} \mid(2 \mu+2)^{n}\left[x^{m}\right]\left(x^{-1} D_{x}\right)^{k}[x]^{-\mu-3 / 2} \phi \\
& \quad+\left[x^{m}\right]\left(x^{-1} D_{x}\right)^{k}[x]^{2}\left(x^{-1} D_{x}\right)[x]^{-\mu-3 / 2} \phi \mid \\
= & \sup _{I} \mid(2 \mu+2)^{n}\left[x^{m}\right]\left(x^{-1} D_{x}\right)^{k}[x]^{-\mu-3 / 2} \phi \\
& \left.+\left[x^{m}\right] \prod_{i=1}^{n}\left(2 k_{i}+x_{i}{ }^{2}\left(x_{i}^{-1} \frac{\partial}{\partial x_{i}}\right)\right)\left(x^{-1} D_{x}\right)^{k}[x]^{-\mu-3 / 2} \phi \right\rvert\,
\end{aligned}
$$

$$
\begin{equation*}
\leqq\left\{(2 \mu+2)^{n}+2^{n}[k]\right\} \gamma_{m, k}^{\mu+1}(\phi)+\sum_{i=1}^{n} 2^{n-i} C_{i}(k) \gamma_{m+2 i, k+1}^{\mu+1}(\phi), \tag{11}
\end{equation*}
$$

where $C_{i}(k)$ are appropriate sums of products of $k_{\nu}$. For example, for $n=3$ :

$$
\begin{aligned}
& \gamma_{m, k}^{\mu}\left(M_{\mu} \phi\right) \leqq\left\{(2 \mu+2)^{3}+8 k_{1} k_{2} k_{3}\right\} \gamma_{m, k}^{\mu+1}(\phi) \\
& \quad+4\left(k_{1} k_{2}+k_{1} k_{3}+k_{2} k_{3}\right) \gamma_{m+2, k+1}^{\mu+1}(\phi) \\
& \quad+2\left(k_{1}+k_{2}+k_{3}\right) \gamma_{m+4, k+2}^{\mu+1}(\phi)
\end{aligned}
$$

Lemmas 5 and 6 imply
Lemma 7.

$$
\begin{aligned}
M_{\mu} N_{\mu}=[x]^{-\mu-1 / 2} \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}}[x]^{2 \mu+1} \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}}[x]^{-\mu-1 / 2} & = \\
& \prod_{i=1}^{n}\left(\frac{\partial^{2}}{\partial x_{i}{ }^{2}}-\frac{4 \mu^{2}-1}{4 x_{i}{ }^{2}}\right)
\end{aligned}
$$

is a continuous linear mapping of $H_{\mu}$ into itself.
In the dual spaces, we define $N_{\mu}$ and $M_{\mu}$ as weak differential operators by

$$
\begin{array}{ll}
\left\langle N_{\mu} f, \phi\right\rangle=\left\langle f,(-1)^{n} M_{\mu} \phi\right\rangle & f \in H_{\mu}{ }^{\prime}, \phi \in H_{\mu+1}  \tag{12}\\
\left\langle M_{\mu} f, \phi\right\rangle=\left\langle f,(-1)^{n} N_{\mu} \phi\right\rangle & f \in H_{\mu+1^{\prime}}, \phi \in H_{\mu}
\end{array}
$$

Thus we also have

$$
\begin{equation*}
\left\langle M_{\mu} N_{\mu} f, \phi\right\rangle=\left\langle f, M_{\mu} N_{\mu} \phi\right\rangle \quad f \in H_{\mu}^{\prime}, \phi \in H_{\mu} \tag{14}
\end{equation*}
$$

These definitions are consistent with the usual meaning of weak derivatives. In view of lemmas 5, 6 and 7, we have

Lemma 8. (i) The weak differential operator $N_{\mu}$, defined by (12) is a continuous linear mapping of $H_{\mu}{ }^{\prime}$ into $H_{\mu+1}{ }^{\prime}$.
(ii) The weak differential operator $M_{\mu}$, defined by (13) is an isomorphism from $H_{\mu+1}{ }^{\prime}$ onto $H_{\mu}{ }^{\prime}$.
(iii) The weak differential operator $M_{\mu} N_{\mu}$, given by (14) is a continuous linear mapping of $H_{\mu}$ into itself.
4. The $n$-dimensional Hankel transformation. We shall define the $n$-dimensional classical $\mu$ th order Hankel transformation $h_{\mu}$ by

$$
\left(h_{\mu} \phi\right)(y)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} \phi\left(x_{1}, \ldots x_{n}\right)\left(\prod_{i=1}^{n}\left(x_{i} y_{i}\right)^{1 / 2} J_{\mu}\left(x_{i} y_{i}\right)\right) d x_{1} \ldots d x_{n} .
$$

For $\mu \geqq-1 / 2$, the Hankel transform $\left(h_{\mu} \phi\right)(y)$ exists for every $\phi \in H_{\mu}$. This is due to the facts that $\phi$ is smooth and of rapid descent as $|x| \rightarrow \infty$ while $\left(x_{i} y_{i}\right)^{1 / 2} J_{\mu}\left(x_{i} y_{i}\right)=0\left(x_{i}^{\mu+1 / 2}\right)$ as $x_{i} \rightarrow 0^{+}$and it remains bounded as $x_{i} \rightarrow \infty$. These properties of $\phi\left(x_{1}, \ldots, x_{n}\right)$ also ensure the validity of the classical inversion theorem [ $\mathbf{6}$, Theorem 19] when extended to $n$-dimensions.

Theorem 1. For $\mu \geqq-1 / 2$, the Hankel transformation $h_{\mu}$ is an automorphism on $H_{\mu}$.

Proof. Let $\Phi(y)=h_{\mu}(\phi(x))$. Then

$$
\begin{align*}
& {\left[y^{m}\right]\left(y^{-1} D_{y}\right)^{k}[y]^{-\mu-1 / 2} \Phi(y)} \\
& \quad=\int_{0}^{\infty} \ldots \int_{0}^{\infty} \phi(x)(-1)^{(k)}[x]^{1 / 2} \\
& \quad \times \prod_{\nu=1}^{n} x_{\nu}^{k_{\nu}} y_{\nu}{ }^{-\mu-k_{\nu}+m_{\nu}} J_{\mu+k_{\nu}}\left(x_{\nu} y_{\nu}\right) d x_{1} \ldots d x_{n}  \tag{15}\\
& =\int_{0}^{\infty} \ldots \int_{0}^{\infty} \phi(x)(-1)^{(k)}[x]^{-\mu+1 / 2} \tag{16}
\end{align*}
$$

$$
\times \prod_{\nu=1}^{n}\left(x_{\nu}{ }^{-1} \frac{\partial}{\partial x_{\nu}}\right)^{m_{\nu}} y_{\nu}{ }^{-\mu-k_{\nu}} x_{\nu}{ }^{\mu+k_{\nu}+m_{\nu}} J_{\mu+k_{\nu}+m_{\nu}}\left(x_{\nu} y_{\nu}\right) d x_{1} \ldots d x_{n}
$$

$$
\begin{align*}
& =(-1)^{(k)+(m)} \int_{0}^{\infty} \cdots \int_{0}^{\infty}\left(\prod_{\nu=1}^{n} x_{\nu}^{2 \mu+2 k_{\nu}+m_{\nu}+1}\right)  \tag{17}\\
& \quad \times\left(\left(x^{-1} D_{x}\right)^{m}[x]^{-\mu-1 / 2} \phi(x)\right) \prod_{\nu=1}^{n}\left(x_{\nu} y_{\nu}\right)^{-\mu-k_{\nu}} J_{\mu+k_{\nu}+m_{\nu}}\left(x_{\nu} y_{\nu}\right) d x_{1} \ldots d x_{n} .
\end{align*}
$$

Equation (15) is obtained by differentiating under the integral sign and a repeated use of
(18) $\frac{\partial}{\partial y} y^{-\mu} J_{\mu}(x y)=-x y^{-\mu} J_{\mu+1}(x y)$.

Equation (16) follows from $m_{\nu}$-times application of the identity
(19) $y x^{\mu+1} J_{\mu}(x y)=\frac{\partial}{\partial x} x^{\mu+1} J_{\mu+1}(x y)$
and equation (17) is obtained by integration by parts through each variable $x_{1}, \ldots, x_{n}$. The limit terms vanish since $\phi(x)$ is of rapid descent for large $x$ while $x_{i}^{1 / 2} J_{\mu+1}\left(x_{i} y_{i}\right)=O\left(x_{i}\right), \phi(x)=O(1)$ as $x_{i} \rightarrow 0$.

As $z^{-\mu-k \nu} J_{\mu+k_{\nu}+m_{\nu}}(z)$ is bounded on $0<z<\infty$, by say $B_{\nu}$, the integral in (17) converges uniformly for all $y \in I$ so that $\Phi(y)$ is smooth on $I$.

If $p_{\nu}$ is an integer no less than $\mu+k_{\nu}+\frac{1}{2}\left(m_{\nu}+1\right)$, then

$$
x_{\nu}{ }^{2 \mu+2 k \nu+m \nu+1}<\left(1+x_{\nu}{ }^{2}\right)^{p} \nu \text { for } x_{\nu}>0 .
$$

Hence, equation (17) yields

$$
\begin{aligned}
\gamma_{m, k}^{\mu}(\Phi) & \leqq \int_{0}^{\infty} \ldots \int_{0}^{\infty} \prod_{\nu=1}^{n}\left(1+x_{\nu}{ }^{2}\right)^{p_{\nu}+1}\left|\left(x^{-1} D_{x}\right)^{m}[x]^{-\mu-1 / 2} \phi(x)\right| \\
& \times \prod_{\nu=1}^{n} \frac{B_{\nu}}{\left(1+x_{\nu}{ }^{2}\right)} d x_{1} \ldots d x_{n} \\
& \leqq\left(\frac{\pi}{2}\right)^{n}[B] \sum_{j=0}^{Q} C_{j}\left(p_{\nu}\right) \gamma_{2 j, m}^{\mu}(\phi)
\end{aligned}
$$

where $Q$ is some integer and $C_{j}(p \nu)$ are appropriate constants involving $p_{\nu}$. This proves that $\Phi \in H_{\mu}$ whenever $\phi \in H_{\mu}$, and that the linear mapping $h_{\mu}$ is also continuous from $H_{\mu}$ onto $H_{\mu}$. The classical inversion theorem together with the fact that $h_{\mu}^{-1}=h_{\mu}$ [6] ensure that $h_{\mu}$ is one-to-one, whenever $\mu \geqq-1 / 2$. Hence $h_{\mu}$ is an automorphism on $H_{\mu}$.

We may now define the $n$-dimensional distributional Hankel transformation $h_{\mu}{ }^{\prime}$ on $H_{\mu}{ }^{\prime}$ as the adjoint of $h_{\mu}$ on $H_{\mu}$. Let $\mu \geqq-1 / 2$. For $\Phi \in H_{\mu}$ and $f \in H_{\mu}{ }^{\prime}$, the Hankel transform $F=h_{\mu}^{\prime} f$ is defined by

$$
\left\langle h_{\mu}^{\prime} f, \Phi\right\rangle=\left\langle f, h_{\mu} \Phi\right\rangle
$$

Theorem 2. For $\mu \geqq-1 / 2$, the distributional Hankel transformation $h_{\mu}{ }^{\prime}$ is an automorphism on $H_{\mu}{ }^{\prime}$.

Proof. See [4, Theorem 1.10-2] and Theorem 1 above.
We now establish some transform formulas on $H_{\mu}$ and $H_{\mu}{ }^{\prime}$.
Lemma 9. Let $\mu \geqq-1 / 2$. If $\phi \in H_{\mu}$, then

$$
\left.\left.\begin{array}{ll}
(20) & h_{\mu+1}([-x] \phi(x))  \tag{20}\\
(21) & h_{\mu+1}\left(N_{\mu} \phi\right) \\
(22) & h_{\mu} h_{\mu} \phi(x) \\
\left([x]^{2} \phi\right) & =(-y] h_{\mu} \phi \\
(23) & h_{\mu}\left(M_{\mu} N_{\mu} \phi\right)
\end{array}\right)=(-1)^{n} M_{\mu} N_{\mu} h_{\mu} \varphi\right]^{2} h_{\mu} \phi .
$$

If $\phi \in H_{\mu+1}$, then
(24) $h_{\mu}([x] \phi) \quad=M_{\mu} h_{\mu+1} \phi$

$$
\begin{equation*}
h_{\mu}\left(M_{\mu} \phi\right) \quad=[y] h_{\mu+1} \phi \tag{25}
\end{equation*}
$$

Proof. Let $\Phi=\left(h_{\mu} \phi\right)(y)$, where $\phi \in H_{\mu}$. Then

$$
\begin{align*}
& \frac{\partial^{n}}{\partial y_{1} \ldots \partial y_{n}}[y]^{-\mu-1 / 2} \Phi(y)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} \phi(x)[x]^{1 / 2} \frac{\partial^{n}}{\partial y_{1} \ldots \partial y_{n}}  \tag{26}\\
& \times\left\{\prod_{i=1}^{n} y_{i}^{-\mu} J_{\mu}\left(x_{i} y_{i}\right)\right\} d x_{1} \ldots d x_{n} .
\end{align*}
$$

By the identity (18), the right hand side of (26) becomes

$$
(-1)^{n} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \phi(x)[x]^{3 / 2}[y]^{-\mu}\left(\prod_{i=1}^{n} J_{\mu+1}\left(x_{i} y_{i}\right)\right) d x_{1} \ldots d x_{n}
$$

We may differentiate under the integral sign in (26) because for $\mu \geqq-1 / 2$, $\prod_{i=1}^{n} J_{\mu+1}\left(x_{i} y_{i}\right)$ is a smooth bounded function on $I$ and $\phi(x)[x]^{3 / 2}$ is of rapid descent. Thus, (26) is a uniformly convergent integral on every compact subset of $I$. Hence

$$
N_{\mu} h_{\mu} \phi=[y]^{\mu+1 / 2} \frac{\partial^{n}}{\partial y_{1} \ldots \partial y_{n}}[y]^{-\mu-1 / 2} \Phi(y)=h_{\mu+1}([-x] \phi(x))
$$

which is (20).
To prove (21), we use the formula (19) together with integration by parts. Thus,

$$
\begin{array}{r}
h_{\mu+1}\left(N_{\mu} \phi\right)=[y]^{1 / 2} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(\frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}}[x]^{-\mu-1 / 2} \phi(x)\right) \\
\quad \times \prod_{i=1}^{n} x_{i}^{\mu+1} J_{\mu+1}\left(x_{i} y_{i}\right) d x_{n} \ldots d x_{1} \\
=[y]^{1 / 2} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n-1}}\left\{\phi(x)\left(x_{1} \ldots x_{n-1}\right)^{-\mu-1 / 2}\right. \\
\\
\times x_{n}^{1 / 2} J_{\mu+1}\left(x_{n} y_{n}\right) \left\lvert\, \begin{array}{l}
x_{n}=\infty \\
x_{n}=0
\end{array}\right. \\
\left.-\int_{0}^{\infty}[x]^{-\mu-1 / 2} \phi(x) y_{n} x_{n}^{\mu+1} J_{\mu}\left(x_{n} y_{n}\right) d x_{n}\right\} \\
\\
\quad \times \prod_{i=1}^{n-1} x_{i}^{\mu+1} J_{\mu+1}\left(x_{i} y_{i}\right) d x_{n-1} \ldots d x_{1} .
\end{array}
$$

The limit terms vanish since $\phi(x)$ is of rapid descent as $x_{n} \rightarrow \infty$ and $x_{n}{ }^{1 / 2} J_{\mu+1}\left(x_{n} y_{n}\right)=O\left(x_{n}\right)$ while $\phi(x)=O(1)$ as $x_{n} \rightarrow 0$. Continuing the integration by parts through the succeeding components $x_{n-1}, \ldots, x_{2}, x_{1}$, we obtain the result (21).

Formulas (24) and (25) are proved in a manner analogous to the proofs for (20) and (21). Combining (20) and (24), we obtain (22). Indeed

$$
M_{\mu} N_{\mu} h_{\mu} \phi=M_{\mu} h_{\mu+1}([-x] \phi(x))=h_{\mu}\left((-1)^{n}[x]^{2} \phi(x)\right) .
$$

Similarly, (23) follows from (21) and (25):

$$
h_{\mu}\left(M_{\mu} N_{\mu} \phi\right)=[y] h_{\mu+1}\left(N_{\mu} \phi\right)=(-1)^{n}[y]^{2} h_{\mu} \phi .
$$

Lemma 9 enables us to prove the following theorem, whose proof follows analogous arguments to Theorem 3 of [1] using the appropriate definition of weak operators (12), (13), and (14).

Theorem 3. Let $\mu \geqq-1 / 2$. If $f \in H_{\mu}{ }^{\prime}$, then

$$
\begin{array}{ll}
h_{\mu+1}{ }^{\prime}\left((-1)^{n}[x] f\right) & =N_{\mu} h_{\mu}{ }^{\prime} f \\
h_{\mu+1}{ }^{\prime}\left(N_{\mu} f\right) & =(-1)^{n}[y] h_{\mu}{ }^{\prime} f \\
h_{\mu}{ }^{\prime}\left((-1)^{n}[x]^{2} f\right) & =M_{\mu} N_{\mu} h_{\mu}{ }^{\prime} f \\
h_{\mu}{ }^{\prime}\left(M_{\mu} N_{\mu} f\right) & =(-1)^{n}[y]^{2} h_{\mu}{ }^{\prime} f .
\end{array}
$$

If $f \in H_{\mu+1}{ }^{\prime}$, then

$$
\begin{array}{ll}
h_{\mu}{ }^{\prime}([x] f) & =M_{\mu} h_{\mu+1}{ }^{\prime} f \\
h_{\mu}{ }^{\prime}\left(M_{\mu} f\right) & =[y] h_{\mu+1}{ }^{\prime} f .
\end{array}
$$

Remarks. (i) The results in the present work reduce to the one-dimensional case in [1] when $n=1$.
(ii) By a similar device as in this work, it might be possible to extend the $n$-dimensional Hankel transformation to generalized functions of exponential descent [2] and certain distributions of rapid growth [3].

## References

1. A. H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576.
2. E. L. Koh and A. H. Zemanian, The complex Hankel and I-transformations of generalized functions, SIAM J. Appl. Math. 16 (1968), 945-957.
3. E. L. Koh, The Hankel transformation of negative order for distributions of rapid growth, SIAM J. Math. Anal. 1 (1970), 322-327.
4. A. H. Zemanian, Generalized integral transformations (Interscience, New York, 1968).
5. W. H. Fleming, Functions of several variables (Addison-Wesley, Reading, Mass, 1965).
6. I. N. Sneddon, Fourier transforms (McGraw-Hill, New York, 1951).

University of Regina, Regina, Saskatchewan


[^0]:    Received October 4, 1973. This research was partially supported by the National Research Council of Canada under Grant A-7184.

