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THE »-DIMENSIONAL DISTRIBUTIONAL HANKEL
TRANSFORMATION

E. L. KOH

1. Introduction. The Hankel transformation was extended to certain
generalized functions of one dimension [1; 2; 3]. In this paper, we develop the
n-dimensional case corresponding to [1]. The procedure in [1] is briefly as
follows:

A test function space H, is constructed on which the uth order Hankel
transformation %, defined by

hao = j; ¢ (x) (xy)1/2ju(xy)dxr ¢ € H,

is an automorphism whenever p = —1/2. The generalized transformation 4,’
is then defined on the dual H, as the adjoint of %, through a Parseval relation,
ie.

<hu/fr ¢> = (fv h,,¢>, S Hmf € Hu/-

This definition coincides with the classical Hankel transformation when f is
a regular distribution corresponding to an L; function.

We shall use the following notations. R* and C" are respectively the real
and complex n-dimensional euclidean spaces. An n-tuple will be denoted by
z = {21, ..., 2,}. For our purpose, we shall restrict x and y to the first orthant
of R* which wedenoteby I. Thus, I = {x e R": 0 < x, < o0,» =1,...,n}.
We shall use the usual euclidean norm, |x| = [>)_; x,2]/2. A function on a
subset of R”* shall be denoted by f(x) = f(x1, x2, ..., x,). By [x], we mean
the productx;xs...x,. Thus [x™] = x,"x™2...x," where m = {m,, m,, ..., m,}.
The notations x =y and x < y mean respectively x, <y, and x, <y,
(v =1,2,...,n). The letters £ and m shall denote nonnegative integers in R",
i.e., k, and m, are nonnegative integers. Letting (k) = k; + ks + ...+ k,, D*
shall denote

®
(1) X 19xs2 . . . Ix,™

while (x~1D,)* denotes

o (2]

y=1

Other operators will be defined later when their uses arise.
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By a smooth function, we mean a function that possesses partial derivatives
of all orders at all points of its domain.

2. The testing function space H, and its dual. Let u be a fixed number
in (—o0, 0 ). We define H, to be the space of smooth complex-valued functions
¢ (x) which are defined on I and such that for each pair of nonnegative integers
m and k in R"

@) Ymx (p(x)) = sup "1 D) T g ()| < 0.

Since ¢(x) is smooth, the order of differentiation in (x~'D,)* is immaterial;

thus
(x—li) (x —li) _ (x—li) (x —li)
ook U7 ax; T ox, booxy

foralls,j=1,...,n
H, is a vector space. Since v,, o are norms, we have a separating collection

of seminorms, i.e. a multinorm. (An equivalent topology for H, may be given
by the multinorm {p,*} with

p/ (¢) = max vmyx (¢), 7= (ri,7e,...,7).)
0<m.k<r

As k and m traverse a countable index set, H, is, in fact, a countably multi-
normed space. We say that a sequence {¢,} is Cauchy in H, if ¢, € H, for all
v and for every m, k, ¥4 (¢, — ¢n) — 0 as » and A — o0 independently.

LemMA 1. If ¢(x) € H,, D¢ (x) is of rapid descent for each k.
Proof. Since

ki ki
-1 0 —u—1/2 ok —u—1/2 ;
(xt _) X4 SX1, oo Ky, X)) = Xy Ky Z b
(93(7{ 7=0
F) J
X (
o, @,
we have

@) @Y B ) = B Y LY byl)

j1=0 Jn=0

a!l+.‘.+jn¢

X 9y’ ... Oyt

where the b, are appropriate constants. Now consider ¢ € H,. By vh, o(¢) < 00,
we have sup; |[x™][x]#12¢| < 0. Therefore, [x™]¢ — 0 as |x| — oo for each
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m. To show [x™]D,¢ — 0 as |x| — ©, we observe that

" - m —u—1/2 fli
Ym,1 (¢) - SL;p [.’)C ][x] Xy axi

i=1,....n

¢| < 0.

Finally, by induction on & and using (4), we have
Ymi(9) <0 = [x"]DSf¢—>0  as|x] —>o0.

LeEmMMA 2. If q is an even positive integer (€ R'), then H,,, C H, and con-
vergence in H,., implies convergence in H,.

Proof. It is easy to show that

(g e ()l ) o
ook, 2k 9x; A" o, t ’

Hence, we have the operational identity

g (O PO YRR
_—— ~—I‘— = — .-'_ _“—
(5) ,Q vy BET LI 1+2k vy 2k | x; oy x )
Let

X4 0

A,=5’Z6—xl.

The right hand side of (5) is a sum of 2" terms of A; multiplied by the operator
2"[k](x~1(9/9x) )*"[x] 52, i.e.

(1+ Z‘i A+ D AiAj-i—...—l—AlAz...An) - 2" [k]
1= 1]

—1 d ke —p—5/2

If now we evaluate vy x(¢) = sup; |[x™](x~1D,)*[x]=#~1/2¢| we have
Vor(®) = 2[RIVt (8) + Covefiiain(9) + ... 4+ Caos(9)
where Ci, . .., C; are constants. The lemma follows by induction on g.

LeEmMA 3. H, is sequentially complete.

Proof. Let {¢,}5-1 converge in H,. Using the seminorms 7% ; and the relation
(4), we have by induction on k; that for each k¥ = {ky, ..., k,} the sequence
of partial derivatives {D,*$,};21 converges uniformly on every compact
subset of I. Therefore, there exists a smooth function ¢ on I such that for each
kand x, D,*¢,(x) — D,*¢(x) as v — 0. Again, since {¢,} is a Cauchy sequence,
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for each m and k and a given € > 0 there is a positive number N,, ; such that
for every v, 7 > Ny 1,

(6) 7¢n,k(¢v - ¢ﬂ) < €.

Passing to the limit as n — 00, we have 74, 1 (¢, — ¢) < eforall v > N, ,, i.e.

(M) Yrx(ey — ) >0 asvy — 0.
To complete the proof, we show that ¢ € H, as follows: it is clear that

8)  Yni(8) = Vni(d) + vmi(dy — ¢).

By (7) and the fact that v, x(¢,) < o for all », it follows from (8) that
Ymi () < 0.

H, is therefore a Fréchet space, i.e. a complete countably multinormed
space. Its dual is denoted by H,'. It follows that H,’ is also complete [4,
Theorem 1.8-3].

The following properties are immediate extensions of the one-dimensional
case, using the relation (4) whenever called for.

1. 2(1), the space of smooth functions with compact support on I, is a
subspace of H, for every choice of u. Convergence in & (I) implies convergence
in H,. Thus, the restriction of any f € H,/ to 2 (I) is in £2'(I). However
2 (I) is not dense in H,.

2. For each u, H, is a subspace of & (I), the space of smooth functions on I.
H, is dense in & (I). Moreover, the topology of H, is stronger than that
induced on it by & (I). It follows that &’ (I) is a subspace of H,'.

3. The complex number that f € H,’ assigns to ¢ € H, is denoted by
{f, ¢). We assign to H,’ the weak topology generated by the seminorms

16(f) = {f, #)|  where ¢ € H,.

For each f € H,/, there exist a positive constant C and a non-negative integer r
such that

I(f, ®)| = Co#(¢) ¢ € H,.

Recall that p* = maxogmk<r Ym.x(9).
4. Let f(x) be a locally Lebesgue integrable function on I such that f(x)
is of slow growth as |x| — o0 and [x]**'/%f(x) is absolutely integrable on

0<x,<1, »=1,2,...,n Then f(x) generates a regular generalized
function f in H,' defined by

<f1¢>=f0 fo Sy, ooy 20)@(xn, - o oy Xp)dxdXs . . . dXy, & € H,.

This statement follows from the mean value theorem for n-dimensional
integrals (see [5, p. 155]) and the fact that ¢ is of rapid descent.
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3. Operations on H, and H,'.

LeMMA 4. For any positive or negative integer n and for any u, the mapping
o(x) — [x]"d(x) s an isomorphism from H, onto H,.,. Thus, the operator
flx) = [x]"f (x) which is defined by

(61 (x), $(x)) = (f(x), (6] (x))
is an isomorphism from H,,, onto H,'.
Proof. If ¢ € H, then
i (51'9) = sup [[¥"](7 D) eI ]|
= Vi (9).

We now define the following operators on H,:

w12 90 _u1p2
N#, = X X
0x

a" o
N, = NyuNy ...Ny = [x]n+1/2m [x]™ 1/2

o172 8 iy
My = x, Xq
axi

—p— 9"
M, = MMy, ... M,, = [x]™ ”2m ]2,

Also, we define an inverse operator to N, as follows:

r1
Ny ¢ = x/ f Gt %, L ., Ky)dE

©

x2
Ny ¢ = x 12 f Gty L, K,)dE

©

and so on.

N6 = Ny 'Noy ™. Ny '

= [ f f e ()dty . . .

That N,~! is truly the inverse to N, follows from the fact that ¢ is smooth
and of rapid descent.

LEMMA 5. ¢ — N,é is an isomorphism from H, onto H,,1.
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Proof.

vk (V) = sup [")(7' D) ] N

sup I (x—IDz)k+n[ _”_1/24’1 = 'Ym k+n(¢')

Il

This shows that NV, is a continuous linear mapping of H, into H,,. To com-
plete the proof, let ¢ € H,,,. Let k be a fixed integer in R". Then

'D,)* f f T e (0dt, . dt

-1 0 =1 ( -1 3)“_1 —u—3/2
(x1 axl) R vy [x] ¢ (x),

D) BTN

k, = 1.
Hence
9)  Ymix(N) = viili(¢)  form =0,1,2,...;k = 1.
For k, = 0, for all v:
|x1m1 xnm"(xl xn)—u—lﬂN —1¢‘ < Xy mi . X mn
X f f I(tl .. n)_“—lﬂd)(t)ldtn . e dtl
< mi+1 mi+3 -
=ff @ TR ey

X (™ Y )T dt .. dly

® d f‘” dt,
= .. su e A 7 LA A
012 + 1 tr 41 IP[( 1 )

X (b. . t) 329 ()|
Therefore,

(10) Ym0 (V. ~l¢) < [’anﬁl o (¢) + .o+ Vihho (¢)], m=0,1,2,....

Finally, for the case where some but not all k, are zero, a similar inequality
to (10) can easily be obtained. It follows then that ¢ — N,~'¢ is a continuous
linear mapping of H,,, into H,. Since N, and N,~! are inverses, these mappings
are one-to-one. Therefore, N, is an isomorphism from H, onto H,.

LEMMA 6. ¢ — M,¢ is a continuous linear mapping of H,,, onto H,.
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Proof. For ¢ € H,.1 and each pair of m, &,

Yo (0,8) = sup | 167D T 5T 1
= sup [2u + 2)"x™ (7 D,) [x] ™
+ "D ] (7 D) k] g
= sup | (2u + 2)"l6") 7D ]
+ [x™] i[l (2k, + xf(x;l 5fc_i)) (D) e
) S (@u+ 2" + PRI () + 3 27 C Mo (8),

where C,(k) are appropriate sums of products of k,. For example, for » = 3:

Yk (Mu$) = {20 + 2)° + Skikoks) vl (¢)
+ 4(kiks + kiks + k2k3)'yly‘n—§-l2,k+l(¢)

+ 2(k1 + ko + Fa) ¥t ira(e).
Lemmas 5 and 6 imply

LeEMMA 7.
ML, = a7 e a7 =

9x1...0 %1 ... 0%,
(_@2_ _ _4#2_—_1)
1 \ox/ 4/

In the dual spaces, we define N, and M, as weak differential operators by
(12) (Nuf, ¢) = (f, (=1)"Myup)  f€ H/ ¢ € Huna
(13) (Muf,é) = (f, (=1)"Nup)  f€ Hud, ¢ € Hy.
Thus we also have
(14) (MuN.f, ¢) = (f, M,N,¢)  f€ H/, ¢ € Hy

These definitions are consistent with the usual meaning of weak derivatives.
In view of lemmas 5, 6 and 7, we have

-

15 a continuous linear mapping of H, into itself.

LeEMMA 8. (i) The weak differential operator N, defined by (12) is a continuous
linear mapping of H, into H,.,'.
(ii) The weak differential operator M,, defined by (13) is an isomorphism
Sfrom H,.1 onto H,'.
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(iii) The weak differential operator M,N,, given by (14) is a continuous
linear mapping of H, into itself.

4. The n-dimensional Hankel transformation. We shall define the
n-dimensional classical uth order Hankel transformation %, by

(ho) () = f f ¢(x1, . . xn)(H @) J(xzyz))dxl . A%,

For u = —1/2, the Hankel transform (h,¢) (y) exists for every ¢ € H,. This
is due to the facts that ¢ is smooth and of rapid descent as |x| — co while
(xoy )2 T (xy;) = 0(x#t12) as x; — 0 and it remains bounded as x; — .
These properties of ¢(xi,...,x,) also ensure the validity of the classical
inversion theorem [6, Theorem 19] when extended to #-dimensions.

THEOREM 1. For p = —1/2, the Hankel transformation h, is an automorphism
on H,.

Proof. Let ®(y) = h,(¢(x)). Then

"D ™ e (y)

= f:’...f; ¢ (@) (— )P [x]"?

(15) )
X Hl x,,kvyy_"—ky+my wht, (x.y)dxy . . . dx,
(16) = f C f ¢(x)(_1)(k)[x]—u+l/2
0 0

mV
—Hr—k utk,+m
) Y, v, ? Tutiim, (XY )d%x1 . .. dxy,

xH(y‘

a7 = (_1)(k)+(m) fﬂf’ - foo (ﬁ xy2y+2k”+mp+1)
0 0 y=1

X (@' D) "] (x)) H @) Ty, (€03,)d%1 . . d2y

Equation (15) is obtained by differentiating under the integral sign and a
repeated use of

o _ _
(18) 3 Tu(ey) = —xy ™ Tupa(xy).

Equation (16) follows from m,-times application of the identity

(19) "7, (xy) = -x i1 (xy)
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and equation (17) is obtained by integration by parts through each variable
X1, . . ., %, The limit terms vanish since ¢(x) is of rapid descent for large x
while x,1/2J 1 (x ;) = O(xy), ¢(x) = 0(1) asx; — 0.

As 27+ ], 1, +m,(2) is bounded on 0 < z < 00, by say B,, the integral in
(17) converges uniformly for all y € I so that ®(y) is smooth on I.

If p, is an integer no less than p + %k, + %(m, 4+ 1), then

x,2utebtmitl < (1 + x,2)%  for x, > 0.

Hence, equation (17) yields

Yoo (®) = fo S fo ) I=I1 (1 + %) @D ] g () |

X H (1+ )dxl . dx,
™ " Q
= (5) [B] ;} Ci(0)721.m (o)

where Q is some integer and C;(pr) are appropriate constants involving p,.
This proves that ® € H, whenever ¢ € H,, and that the linear mapping 4,
is also continuous from H, onto H,. The classical inversion theorem together
with the fact that h,~' = h, [6] ensure that hk, is one-to-one, whenever
u = —1/2. Hence #, is an automorphism on H,.

We may now define the #-dimensional distributional Hankel transformation
k., on H, as the adjoint of &, on H,. Let u =2 —1/2. For ® € H,and f € H/,
the Hankel transform F = 4,/f is defined by

<hulf7 ®) = (f, hu®).

THEOREM 2. For u = —1/2, the distributional Hankel transformation h, is
an automorphism on H,'.

Proof. See [4, Theorem 1.10-2] and Theorem 1 above.
We now establish some transform formulas on H, and H,'.
LEMMA 9. Let p =2 —1/2. If ¢ € H,, then

(20)  hup1([—x]e(x)) = Nuhuo(x)

(21)  Musa(Nug) = [—ylho

(22) hu([x]’¢) (=1)"M,N by

(23)  hu(MuNu9) (=1)"[y1*hus.

If ¢ € Hyuyy, then

(24)  hu([x]9) = Mhupr¢

(25)  hu(Myu9) = hurio.
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Proof. Let ® = (hu¢)(v), where ¢ € H,. Then

) o _"’“ayn BT e (y) = f . f ) ST gt

X {I—Il yt_"Jﬂ(xiyi)} dxl ... dxn.
i=

By the identity (18), the right hand side of (26) becomes

(—=1)" f:o...f:o ¢(x)[x]3/2[y]—"(ljl J,.+1(x¢yi))dx1...dxn.

We may differentiate under the integral sign in (26) because for p = —1/2,
IT%_, 7,11 (x ) is a smooth bounded function on I and ¢(x)[x]*/ is of rapid
descent. Thus, (26) is a uniformly convergent integral on every compact
subset of 1. Hence

Nob = 1 5o 17 000) = b (=16 )

which is (20).
To prove (21), we use the formula (19) together with integration by parts.
Thus,

ha®) = 617 [ [ (5T e

X I—Il xi”+l.],‘+1(xiy,-)dxn oo dxl

@ o an L
= [y]l/2 L Ce j:] ECI__—BZC_.: {¢(x)(x1 .. .xn_l) #1/2

1/2 Xpn = o0
X %p Ju+l(xnyn) X, = 0
- ﬁ [x]_“‘l/z‘i’(x)ynxn“q#ljﬂ (xnyn)dxn}
n—1
X Hl X T gy )dx,_y . . . dxy.
=

The limit terms vanish since ¢(x) is of rapid descent as x, — oo and
2,12 i1 (y) = O(x,) while ¢(x) = O(1) as x, — 0. Continuing the inte-
gration by parts through the succeeding components x,_i, . . . , X2, X1, we obtain
the result (21).

Formulas (24) and (25) are proved in a manner analogous to the proofs for
(20) and (21). Combining (20) and (24), we obtain (22). Indeed

MuN ot = M ([—x1¢(x)) = hu((—1)"[x]? (x)).
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Similarly, (23) follows from (21) and (25):
hu(MuNu9) = [¥]hur1(Nug) = (—=1)"[y]*h.s.

Lemma 9 enables us to prove the following theorem, whose proof follows
analogous arguments to Theorem 3 of [1] using the appropriate definition of
weak operators (12), (13), and (14).

THEOREM 3. Let p = —1/2. If f € H,/, then
Pt ((=1)"[x]f) = Nuh/'f

Py (N, f) = (=D"lylh/f

b ((—1)*[x]*f) = M.N.h/'f

' (MuN,.f) = (=D)"lyPPh) f.
If f € Hyyt, then

b ([x] f) = Myt f

hl"(Mﬂf) = [ylhu4i'f.

Remarks. (i) The results in the present work reduce to the one-dimensional
case in [1] when n = 1.

(i) By a similar device as in this work, it might be possible to extend the
n-dimensional Hankel transformation to generalized functions of exponential
descent [2] and certain distributions of rapid growth [3].
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