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THE ^-DIMENSIONAL DISTRIBUTIONAL HANKEL 
TRANSFORMATION 

E. L. KOH 

1. Introduction. The Hankel transformation was extended to certain 
generalized functions of one dimension [1; 2; 3]. In this paper, we develop the 
w-dimensional case corresponding to [1]. The procedure in [1] is briefly as 
follows: 

A test function space H^ is constructed on which the /zth order Hankel 
transformation h» defined by 

hM(j> = I <f>(x) (xy)1/2Jfi(xy)dx, <j> £ H» 
J o 

is an automorphism whenever /x ^ —1/2. The generalized transformation h/ 
is then defined on the dual 7 / / as the adjoint of h» through a Parseval relation, 
i.e. 

This definition coincides with the classical Hankel transformation when / is 
a regular distribution corresponding to an LY function. 

We shall use the following notations. Rn and Cn are respectively the real 
and complex n-dimensional euclidean spaces. An n-tuple will be denoted by 
z = {zi, . . . , zn). For our purpose, we shall restrict x and y to the first orthant 
of Rn which we denote by 7. Thus, 7 = {x £ Rn : 0 < xv < co, v = 1, . . . , n\. 
We shall use the usual euclidean norm, \x\ = [X^=i xv

2]l/2. A function on a 
subset of Rn shall be denoted by f(x) = f(xi, X2f . . . , Xn ). By [x], we mean 
the product XiX2.. .xn. Thus [xm] = Ximi^2W2.. .xn

mn where m = {mi, rn<i,..., mn}. 
The notations x ^ y and x < y mean respectively xv ^ yv and xv < yv 

(v = 1 , 2 , . . . , » ) . The letters k and m shall denote nonnegative integers in Rn, 
i.e., kv and mv are nonnegative integers. Letting (k) = k\ + k2 + . . . + kn}D/ 
shall denote 

/ i ) °  
V ^ dXikldX2

k2 . . . dXnn 

while ( x - ^ ^ ) * denotes 

Other operators will be defined later when their uses arise. 
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424 E. L. KOH 

By a smooth function, we mean a function that possesses partial derivatives 
of all orders at all points of its domain. 

2. The testing function space H» and its dual. Let M be a fixed number 
in ( — 00 , oo ). We define H^ to be the space of smooth complex-valued functions 
4>(x) which are defined on / and such that for each pair of nonnegative integers 
m and k in Rn 

(3) 7i.* (*(*)) = sup \[xm](x-1Dx)
k[xr-1,2<t>(x)\ < oo. 

Since <£(x) is smooth, the order of differentiation in (x~lDx)
k is immaterial; 

thus 

\Xt * dx) V1 ' ax) ~ V1 ' dx) \Xt * dx) 
for all i, j = 1, . . . , n. 

Hy. is a vector space. Since 7^,0 are norms, we have a separating collection 
of seminorms, i.e. a multinorm. (An equivalent topology for H^ may be given 
by the multinorm {p/} with 

Pr
M(0) = max 7 ^ (0), r = (n, r2, . . . , rn).) 

As & and m traverse a countable index set, H^ is, in fact, a countably multi-
normed space. We say that a sequence {<£„} is Cauchy in i7M if <j>v £ î M for all 
v and for every m, k, 7™ ,*;(#„ — </>x) —» 0 as y and X —> oo independently. 

LEMMA 1. 7/ </>(x) G 7TM, Dx
k4>{x) is of rapid descent for each k. 

Proof. Since 

( ^ \ hi ki 

- 1 O I — / * — 1 / 2 , / \ _ —2*i —/x—1/2 V ^ ; j 
X* I X^ <PV#1» . . . , X $ , . . . , X w ^ — X i X j / j 0jXi 

ox t/ j=0 

we have 

(4) (X-lDxf[xr-ll2<i,{x) = [x-2*][^]-"-1/2 E • • • Z M*'] 
^1=0 y„=0 

w 2_ 
dXl X . . . dXn 'r, 

where the 6̂  are appropriate constants. Now consider <t> Ç H^. By 7™,o(<A) < °° , 
we have sup7 |[xm][x]_/x~1/20| < oo. Therefore, [xm]# —* 0 as |x| —> oo for each 
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m. To show [xm]Dx<t> —> 0 as \x\ —> oo , we observe that 

7m,1 ( 0 ) = SUp 

1 = 1 , 

r ^ir i—/*—1/2 - l d , [x ][x] xt — 0 < oo. 

Finally, by induction on k and using (4), we have 

7m.*(0) < oo => [*m]£>/0 -> 0 as |*| -> oo . 

LEMMA 2. / / g w an even positive integer (£ i?1), /Aew #M+ff C #M
 an>d con­

vergence in H^+q implies convergence in H^. 

Proof. It is easy to show that 

(,.-£)"(,.-''••) - (. + â£)(^(*r'£)*'V-«). 
Hence, we have the operational identity 

Let 

A, = ^ - - ^ -

The right hand side of (5) is a sum of 2" terms of A* multiplied by the operator 
T[k](x-1(d/dx))k-n[x]-"-b/i,i.e. 

I 1 + Ê A, + £ A,A;- + . . . + AtA2 . . . A j • 2n[k] 

If now we evaluate 7» ,*(<£) = sup7 |[x'n](:x:_1.D:!:)*[:\;]-''_1/24>| we have 

7i,*(*) ^ 2"M7;+
ti„(0) + C , T S # I , * - + I ( * ) + . . . + c / ^ i ^ . t ( « ) 

where Ci, . . . , C; are constants. The lemma follows by induction on q. 

LEMMA 3. H» is sequentially complete. 

Proof. Let {0y}5Li converge in iJM. Using the seminorms 70,* and the relation 
(4), we have by induction on kt that for each k = {ki, . . . , kn\ the sequence 
of partial derivatives {£>/</>„}?Li converges uniformly on every compact 
subset of I. Therefore, there exists a smooth function </> on I such that for each 
k and x, Dx

k<t)v(x) —» Dx
k<t>(x) as v —-> oo . Again, since {#„} is a Cauchy sequence, 
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for each m and k and a given e > 0 there is a positive number Nmj]c such t h a t 
for every v, y > Nm>kj 

(6) T £ . * ( * > - *,) < €. 

Passing to the limit as 77 —> 00 , we have jm,k(4>p ~~ 4>) ^ « for all *> > iVm,A, i.e. 

(7) 7 Ï . , * ( * r - 0 ) - * O as *>-*oo. 

T o complete the proof, we show t h a t <j> G H? as follows: it is clear t h a t 

(8) <£.*(*) ^ T£ .*(*,) + 7i.*(*. - *). 

By (7) and the fact t h a t y m,k (<!>*) < °° for all v, it follows from (8) t h a t 

7m,* O ) < 00. 

Hp is therefore a Frèchet space, i.e. a complete countably mult inormed 
space. I t s dual is denoted by H/. I t follows t h a t HJ is also complete [4, 
Theorem 1.8-3]. 

T h e following properties are immediate extensions of the one-dimensional 
case, using the relation (4) whenever called for. 

1. 2iï(J), the space of smooth functions with compact suppor t on i", is a 
subspace of H^ for every choice of /x- Convergence in Qf (I) implies convergence 
in ijTM. Thus , the restriction of any / G H'/ to £&(I) is in Sf1'(I). However 
2$ (I) is no t dense in 77M. 

2. For each \x, ifM is a subspace of <o ( / ) , the space of smooth functions on / . 
Hp is dense in (f(I). Moreover, the topology of ifM is s tronger than t h a t 
induced on it by (o (I). I t follows t h a t $*'(I) is a subspace of HJ. 

3. T h e complex number t ha t / G H J assigns to 0 G H^ is denoted by 
( / , <t>). We assign to ff/ the weak topology generated by the seminorms 

V*V) = K/ ,*>l where ^ ffM. 

For e a c h / G i f / , there exist a positive cons tant C and a non-negative integer r 
such t h a t 

Recall t h a t pf = m a x 0 ^ , ^ r TSI .* (0) • 
4. Let / ( # ) be a locally Lebesgue integrable function on I such t h a t f(x) 

is of slow growth as \x\ —> 00 and [x]M+1/2/(x) is absolutely integrable on 
0 < xv < 1, *> = 1, 2, . . . , n. Then f{x) generates a regular generalized 
function / in H"/ defined by 

. . . I / ( * ! , . . . , x n )^ (x i , . . . , xn)dxidx2. . . dxn, ^ G #"„. 
0 ^ 0 

This s t a t ement follows from the mean value theorem for w-dimensional 
integrals (see [5, p . 155]) and the fact t h a t <j> is of rapid descent. 
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3. Operations on i7M and HJ. 

LEMMA 4. For any positive or negative integer n and for any /x, the mapping 
4>(x) —» [x]n<j)(x) is an isomorphism from H^ onto H^n. Thus, the operator 
f(x) —» [x]nf(x) which is defined by 

<[xf/(x),0(x)> = </(*),[*]»*(*)> 

is an isomorphism from H^ù onto HJ. 

Proof. If <t> e H» then 

iT* CM» = sup {[xnix-^nxr-'^ixr^ 
= 7m,k ( * ) . 

We now define the following operators on i7M: 

A7 _ „ 0+1/2 _ ^ _ ^ -M- l /2 
iV fr — Xi Xf 

dXi % 

M+l/2 & r , - ^ - 1 / 2 

^^^.. .^^w—^^—^-w 
-M-l/2 d M+l/2 

Af^ — Xf Xi 
OXi 

M„ = ATVM2M . . . Mn, = [xy~ln ^ d" dXn [xf+v\ 

Also, we define an inverse operator to N^ as follows: 

A V V = xf+1/2 f1 rM-1/2<t>(t, * , , . . . , xn)dt 

r^~1/20(xi, * , . . . , xn)dt 
oo 

and so on. 

. . . I \tr-xil<i>{t)dtn...dh. 

That NfT1 is truly the inverse to N^ follows from the fact that <t> is smooth 
and of rapid descent. 

LEMMA 5. 0 —> iVM0 is an isomorphism from H^ onto H^+i. 
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Proof. 

T£* (#,*) = sup |[*H(*~1A,)*[*r_1"-1/X*l 

= sup | [*"](x-1P,)M*[*]-^1 / ,*| = -£.*•*(*). 

This shows that iVM is a continuous linear mapping of i7M into i?M+i. To com­
plete the proof, let <t> £ i^+i- Let k be a fixed integer in i?w. Then 

. . . [tr-i/2ct>(t)dtn...dh 
J oo 

Hence 

(9) 7i.* W 1 * ) = T S £ - » ( * ) for m = 0, 1, 2, . . . ; * , ^ 1. 

For &v = 0, for all v. 

|xi . . . xn (xi. . . xn) Nn 4>\ ^ xi . . . xw 

/

oo T o o 

. . . J I ( / L . . tn)-fi-1/24>(t)\dtn...dtl 

/

'oo /*oo -1 

xi J xn I *i - r 1 

mi+3\ 1 
> / • • • , 2 

'n + 1 

dtn . . . dt\ x ( /r^ + C"4-3)^.../,)-^372* 

/

»00 J . /»00 7. 

X (/1..<K)-"-3/V(0l 
Therefore, 

(io) T:,»(iv;V) ^-^-[7ÎSi.o (*) + . . . + 7Ï+1..0 (<#>)!, « = 0,1,2 

Finally, for the case where some but not all kv are zero, a similar inequality 
to (10) can easily be obtained. It follows then that <f> —> iVM

_10 is a continuous 
linear mapping of H^+i into H^. Since 7VM and iVM

-1 are inverses, these mappings 
are one-to-one. Therefore, N» is an isomorphism from H» onto H^+i. 

L E M M A 6. <f> —> ikfM# w a continuous linear mapping of i7 M + i onto iJM . 
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Proof. For <t> 6 H^+i and each pair of m, k, 

7m,k (Afn*) = S UP . ^ i / ^ ^ n \^r^i~2^—1 
[xmKx-lDt)'[x. d„ 

dxi. . . dxn 

sup |(2M + 2)n[xm](x-1Dx)
k[xr-in4> 

[x] 
IAH-1/2 

+ [xm] (x-1!?,)*!*]1 (aT'P.) [x]-"-3 /2^| 

= sup {2» + 2)n[xm){x-lDx)
K[x} -M-3/2 . 

(11) g {(2M + 2)" + 2-MJ7&1 (*) + L 2re-iCi(^)T;+
+

12i.,+i (*), 

where C<(&) are appropriate sums of products of k„. For example, for n = 3: 

ylAMrf) ^ {(2M + 2)3 + 8 ^ 2 * 3 b ^ M 

+ 4(*i*, + fcifc3 + ^ b l + W i M 
+ 2{kl + k, + h)y*ni 

Lemmas 5 and 6 imply 

LEMMA 7. 

d n «TO 

r i 2 u + l (/ M^Nf, = [x] -M-l/2 

d # i . . . dxn 
[x] 

dXi . . . dxn 
[x] -/x-1/2 

i f \dxt
2 4xt

2 I 

is a continuous linear mapping of i7M into itself. 

In the dual spaces, we define 7VM and ikfM as weak differential operators by 

(12) <#„/, </>> = </, ( - i m ^ > / e HS, <t> e H,+1 

(13) (MJ, <j>) = </, (-l)»tfM*> / 6 ff^+i', * G ffM. 

Thus we also have 

(14) (M.N.f, </>> = </, J M U > / G 27M', 0 <E £TM. 

These definitions are consistent with the usual meaning of weak derivatives. 
In view of lemmas 5, 6 and 7, we have 

LEMMA 8. (i) The weak differential operator N^, defined by (12) is a continuous 
linear mapping of H J! into Hp+i. 

(ii) The weak differential operator M^ defined by (13) is an isomorphism 
from Hp+i onto H,/. 
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(iii) The weak differential operator ikfMiVM, given by (14) is a continuous 
linear mapping of H^ into itself. 

4. The w-dimensional Hankel transformation. We shall define the 
w-dimensional classical juth order Hankel transformation /*M by 

(A, . . . I 0 ( * i , . . . Xn) I n (xùi)ll2Jn(*iyt) )dxl • • • d *n . 

(15) 

For ju ̂  —1/2, the Hankel transform Qi^) (y) exists for every </> Ç H». This 
is due to the facts that 0 is smooth and of rapid descent as \x\ —» oo while 
(Xiyi)1/2J^(Xiyt) = 0(XiM+1/2) as xt—» 0+ and it remains bounded as x f - > o o . 
These properties of <£(xi, . . . , xw) also ensure the validity of the classical 
inversion theorem [6, Theorem 19] when extended to w-dimensions. 

THEOREM 1. For JJL ^ —1/2, the Hankel transformation h^ is an automorphism 
on H». 

Proof. Let $(y) = hil{4>(x)). Then 

[y"](y-1^)*b]^-1 / ,*(y) 

/

'oo /*oo 

... I *(*)(-i)(*>M1/2 
0 " 0 

n 

x n *.tyr^'+"',ylH.*,(*o'»)<&i ...dxn 

. . . I 0(*)(-i)w)[*r 
0 " 0 

Q^ J yv xv Jil^r]lvjrmv\xvyv)ax\ . . . axn 

(i7) = (-i)<»+<»> fœ... f œ ( n x/"+^+m'+i) 

x ((x-^nxp-1'2<»(*)) n ( x ^ . r " - ' - / ^ ^ ^ ^ , ) ^ ! . . . ^ . 

Equation (15) is obtained by differentiating under the integral sign and a 
repeated use of 

(18) j-y'^JAxy) = -xy-'J^+tixy). 

Equation (16) follows from ra„-times application of the identity 

(19) y^J.ixy) = j-^J^ixy) 
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and equation (17) is obtained by integration by parts through each variable 
The limit terms vanish since <t>{x) is of rapid descent for large x 

while x^V^iXiji) = 0(xt), 4>(x) = 0(1) asx*—>0. 
As z~,t~kvJll^.kv+mv{z) is bounded on 0 < z < oo, by say Bv, the integral in 

(17) converges uniformly for all y £ I so that $(y) is smooth on 7. 
If pv is an integer no less than fj, + kv + \{mv + 1), then 

x2»+2lcV+mv+l < ( 1 + X2)PV for Xv > 0 . 

Hence, equation (17) yields 

u ( * ) è r... f"ri (i + */)''+1K*-1D,)"[*r*"1/,*(* 
•^ o «/ o * = i 

s(i)" [5] E c^,)7Si.»(*) 

x 4ï ïT i ^7) < f X l - - - & " 

where Q is some integer and C}(pv) are appropriate constants involving pv. 
This proves that $ Ç i7M whenever <£ Ç i7M, and that the linear mapping &M 

is also continuous from i7M onto 7^. The classical inversion theorem together 
with the fact that h^r1 = h^ [6] ensure that h^ is one-to-one, whenever 
M ^ —1/2. Hence &M is an automorphism on H^. 

We may now define the w-dimensional distributional Hankel transformation 
hy! on HJ as the adjoint of h„ on H». Let JU ^ —1/2. For ^ ^ ^ a n d / G i 7 / , 
the Hankel transform F = h^f is defined by 

(K'f, *> = </, *„*>• 

THEOREM 2. Tor JU è —1/2, /Ae distributional Hankel transformation hj is 
an automorphism on i 7 / . 

Proof. See [4, Theorem 1.10-2] and Theorem 1 above. 

We now establish some transform formulas on H^ and i 7 / . 

LEMMA 9. Let n è —1/2. 7/ 0 £ i7M, then 

(20) * H - I ( [ - * ] * ( * ) ) = NX<t>M 

(21) K+^Nrf) = [-y]M 

(22) M M 2 * ) = (-ITM.N^ 

(23) KiM^Nrf) = ( - l ^ Q y ] ^ . 

7 / 0 6 7^M+i, /^w 

(24) *„([*]*) = AfA+i* 

(25) ftM(JM) = M V i * . 
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Proof. Let $ = (h^) (y), where </> Ç H». Then 

*> *, *, [y]-"-1/2^(y) = j . . . J 0(x)M1/2„ a -
d y i . . . «tytt «/ 0 J 0 0 3 / 1 . . . dyn 

X \Tl yi ^JÀXiJi)) dxi. . . dxn. 

By the identity (18), the right hand side of (26) becomes 

(-ir fœ... r 0(x)M3/2br ( n j ^ i j i ) ) *ci... <&». 
«/ 0 • / 0 \ t=i I 

We may differentiate under the integral sign in (26) because for \x ^ —1/2, 
Iî*=i Jn+ii^iji) is a smooth bounded function on I and <£(x)[x]3/2 is of rapid 
descent. Thus, (26) is a uniformly convergent integral on every compact 
subset of / . Hence 

NM = iyf+1/2
 dyi *",dyJy^~1/2^y) = **-!([-*]*(*)) 

which is (20). 
To prove (21), we use the formula (19) together with integration by parts. 

Thus, 

. •••J„ l ^ b ^ 1 ^ ) 
n 

X I I xll+lJtl+i(xiyi)dxn • • • dxi 

- W" / r • • • X"5TT5-;{*<J: ,<" • • • *-r""" 

- J [x]~M""1/2</>(x)^x/+1JM(xw^)^xnr 

n - 1 

X n x f+1 Jn+i(xtyi)dxn-! . . . dx\. 
i=l 

The limit terms vanish since 4>(x) is of rapid descent as xn —•» 00 and 
xn

1/2JM+i(xn3/n) = 0(#n) while </>(#) = 0(1) as xn —•> 0. Continuing the inte­
gration by parts through the succeeding components xn_i, . . . , x2l Xi, we obtain 
the result (21). 

Formulas (24) and (25) are proved in a manner analogous to the proofs for 
(20) and (21). Combining (20) and (24), we obtain (22). Indeed 

M^NJi^ = IA+!( [ -x ] ( / ) (x ) ) = /*M((-l)w[x]24>(x)). 

xn = co 
Xn = 0 
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Similarly, (23) follows from (21) and (25): 

KiM.N^) = [y]K+1(N^) = ( - l ) W M . 

Lemma 9 enables us to prove the following theorem, whose proof follows 
analogous arguments to Theorem 3 of [1] using the appropriate definition of 
weak operators (12), (13), and (14). 

THEOREM 3. Let /x ^ - 1 / 2 . / / / G HJ, then 

W((-i)wM/) =NM 
KW(NJ) = {-\Y[y}hJf 
V((-i)nM2/) = M.NX'J 
h'(MM) = ( - l f M V / . 

Iffe ffM+i', then 

K'{[x]f) = M A + i 7 
K'{M»f) = [y-\K+l'f. 

Remarks, (i) The results in the present work reduce to the one-dimensional 
case in [1] when n = 1. 

(ii) By a similar device as in this work, it might be possible to extend the 
w-dimensional Hankel transformation to generalized functions of exponential 
descent [2] and certain distributions of rapid growth [3]. 
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