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The electrophoretic motion of a non-uniformly charged particle in an Oldroyd-B fluid is
analysed here in the limit of thin electrical double layers. To this end, we analytically
derive expressions for the modified Smoluchowski slip velocity around the particle,
carrying weak but otherwise arbitrary surface charge. Our analysis reveals that the
modified Smoluchowski slip around a particle differs significantly in a viscoelastic
medium as compared with Newtonian fluids. The flow field thus derived is applied to
two special cases of non-uniformly charged particles to obtain a closed-form expression
for their electrophoretic translational and rotational velocities. We show that the particle’s
velocity strongly depends on its size in a viscoelastic medium, even for weakly charged
surfaces, which is in stark contrast to the well-established theory for Newtonian fluids
for weakly charged particles with negligible surface conduction. We further demonstrate
that the presence of non-uniform surface charge enhances the influence of the medium’s
viscoelasticity on the particle’s translational as well as angular velocity and this effect
strongly depends on the nature of surface charge distribution. Such a physical paradigm,
which leads to a breaking of fore–aft symmetry that is unique to complex fluids despite
operating in the regime of creeping flows. Our study provides new theoretical framework
for understanding electrophoresis of charged entities (such as DNA or active matter) in
complex fluids, including biologically relevant fluidic media.
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1. Introduction

Electrophoresis is characterized as the motion of charged particles under the action of
externally imposed electric fields in a liquid medium (Levich 1962; Saville 1977; Anderson
1985; Ohshima 1996; Yariv & Brenner 2003; Ohshima 2006; Khair & Squires 2009;
Schnitzer et al. 2013; Schnitzer & Yariv 2014; Goswami et al. 2017), which may or
may not contain ions in the form of electrolytes (Saville 1977; Ohshima 2006). This
phenomenon has been a prominent area of research over decades owing to its wide
gamut of applications such as colloid science (Ohshima 2006; Khair, Posluszny & Walker
2012) and separation of particles (Ghosal 2006), DNA analysis (Khair & Squires 2009),
gel electrophoresis (Babnigg & Giometti 2004), particle deposition (Besra & Liu 2007)
among many others. In many instances, electrophoretic motion occurs in complex media
(Ramautar, Demirci & de Jong 2006), such as bio-fluids (Babnigg & Giometti 2004;
Kremser, Blaas & Kenndler 2004), polymeric solutions (Li & Koch 2020; Barron,
Sunada & Blanch 1995) etc., whose constitutive behaviours show strong deviations from
the Newtonian paradigm. These facets have been progressively becoming important in
recent times (Berli 2010; Bandopadhyay & Chakraborty 2012b; Bandopadhyay, Ghosh &
Chakraborty 2013; Zhao & Yang 2013; Ghosh & Chakraborty 2015; Ghosh, Chaudhury
& Chakraborty 2016), because of their key roles in medical diagnostics (Madou et al.
2001; Groisman, Enzelberger & Quake 2003), particle focusing (Lu et al. 2015), efficient
micromixing (Lam et al. 2009) to name a few. Some such specific applications include:
gel electrophoresis for proteome sequencing (Babnigg & Giometti 2004), capillary
electrophoresis for separation and purification of biological substances (Karger, Cohen
& Guttman 1989; Kremser et al. 2004; Ramautar et al. 2006), measurements of large
aggregates of viruses, bacteria and eukaryotic cells (Kremser et al. 2004) among
others.

It is well established that fluid media of emerging interest in electrically mediated
transport of biological entities commonly exhibit viscoelastic behaviour (Skalak, Ozkaya
& Skalak 1989; Brust et al. 2013). However, a majority of studies on electrophoresis
(Saville 1977; Baygents & Saville 1991; Ohshima 2006; Khair & Squires 2009) tend to
focus on particle motion in Newtonian fluids, while only a handful of investigations (Hsu,
Yeh & Ku 2006; Hsu & Yeh 2007; Khair et al. 2012; Posluszny 2014; Li & Koch 2020)
have addressed the phenomenon in a non-Newtonian medium. Among those, many of
the investigations concern Carreau-type constitutive models (Bird, Armstrong & Hassager
1987; Khair et al. 2012), which are designed to capture the shear dependent viscosity
exhibited by many polymeric liquids, but are unable to describe many other important
characteristics (such as the ‘normal stress effects’) exhibited by such liquids (Bird et al.
1987; Ghosh et al. 2016). On the other hand, viscoelastic constitutive models, such as
the retarded motion relations (Chan & Leal 1979) as well as the differential constitutive
relations (Bird et al. 1987; Mukherjee & Sarkar 2010; Ghosh & Chakraborty 2015),
hold certain favourable characteristics in capturing many of the essential rheological
features of various polymeric (Bird et al. 1987; Barron et al. 1995; Li & Koch 2020)
as well as biological fluids (Yeleswarapu et al. 1998; Brust et al. 2013). As a result,
numerous types of viscoelastic flows have been widely studied (for instance, Vamerzani,
Norouzi & Firoozabadi 2014; Turkoz et al. 2018) over the years, although rigorous studies
on electrophoretic motion through viscoelastic medium are extremely scarce. Lu et al.
(2014, 2015) have carried out experiments on capillary electrophoresis in viscoelastic
fluids, wherein intriguing streamwise particle oscillations were reported that are otherwise
not witnessed in Newtonian media. Very recently, Li & Koch (2020) have theoretically
investigated electrophoresis in dilute polymer solutions for a uniformly charged particle
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Electrophoresis in viscoelastic medium

and predicted a reduction in the electrophoretic mobility because of the polymeric stresses
inside the electrical double layer (EDL).

Another important feature of most of the reported theoretical studies on electrophoresis
is that they mainly focus on spherical particles with uniform surface charge density (Saville
1977; Ohshima 2006; Khair & Squires 2009; Li & Koch 2020). However, in many cases,
the moving particles might have non-uniformly distributed charges on their surfaces, either
naturally induced or externally imposed. As Anderson (1985) points out, phenomena
like heterocoagulation and crystallinity may lead to non-uniform charge density on a
particle’s surface. In addition, particles like bacterial cells and DNA (Amro et al. 2000;
Velegol 2002), various inorganic particles (Van Riemsdijk et al. 1986; Velegol 2002) and
particles with adsorbed surfactants (Fleming, Wanless & Biggs 1999) might naturally
exhibit non-uniform surface charge density. At the same time, ‘Janus particles’ (Molotilin,
Lobaskin & Vinogradova 2016) might be artificially engineered to have varying surface
properties, which may lead to non-uniform surface charges among other features. In
view of such prevalence of non-uniformly charged particles, several studies (Anderson
1985; Yoon 1991; Velegol 2002) have been carried out to derive expressions for their
electrophoretic mobility, albeit exclusively in Newtonian fluids. Several researchers have
also probed the mobility of non-spherical particles (Fair & Anderson 1989; Solomentsev &
Anderson 1994; Yariv 2005). While these studies clearly predict that the non-uniformity
in the surface charge alters the electrophoretic mobility, the underlying implications in
non-Newtonian fluid medium have not yet been probed.

The interactions between the viscoelastic polymeric stresses and the Maxwell stresses
within the EDL would fundamentally alter the flow dynamics within the same, and
hence hold the potential of resulting in substantial alterations in fluid motion around
the particle. Considering that perspective and realizing an effective compromise between
rheological complexity and analytical tractability, here, we analyse electrokinetics around
a non-uniformly charged spherical particle in a viscoelastic medium, whose constitutive
behaviour is given by the Oldroyd-B model. This constitutive relation is chosen over the
ordered-fluid models, because of its applicability to flows with comparatively higher strain
rates (Bird et al. 1987).

We confine our attention to the thin EDL limit (thin EDL) (Ajdari 1995; Mandal et al.
2015) and first formulate a generalized framework to evaluate the modified Smoluchowski
slip velocity around the particle with arbitrary non-uniform surface charge. In order
to work with a closed-formed theoretical framework, we assume the particle to be
weakly charged; however, the surface charge is otherwise arbitrary and non-uniform. We
illustrate that, for weak surface charge, the viscoelastic effects become subdominant in the
leading-order asymptotes, which essentially results in a small effective Deborah number
(Deeff , defined later).

As simple applications of the modified Smoluchowski slip thus derived, we consider two
specific case studies. First, we explore the electrophoretic translation of a non-uniformly
but axisymmetrically charged particle. Second, we probe the pure electrophoretic rotation
of a non-uniformly and non-axisymmetrically charged particle in a viscoelastic medium.
The analysis is carried out by using a combination of singular and regular asymptotic
expansions. Noting that the applicability of Oldroyd-B model becomes questionable
at relatively moderate to large dimensionless relaxation times, as expressed in terms
of Deborah numbers (defined later), we further report numerical solutions of the
physical problem by employing an illustrative nonlinear viscoelastic model, namely, the
finitely extensible nonlinear elastic (FENE-P) model, in appropriate limiting scenarios.
Subsequent comparisons reveal that the predictions using the Oldroyd-B model agree
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reasonably well with the FENE-P model as long as the surface charge is weak and
the maximum allowed polymer lengths are large. One of the main goals of the case
studies stated above is to bring out the unique effects of non-uniform charge density
on the particle’s mobility in a viscoelastic fluid. To this end, it is demonstrated that the
electrophoretic mobility (both translational and angular velocities) of the particle strongly
depends on the non-uniformity of the surface charge, the relaxation and retardation times
scales as well as the particle’s curvature and may lead to breaking of fore–aft symmetry
even for viscous flows in the low surface charge limits, which is in stark contrast to what
is witnessed in Newtonian fluids. We successfully demonstrate that, under appropriate
limiting conditions, previously reported results for Newtonian as well as viscoelastic fluids
can be recovered as special cases of our theoretical framework.

The rest of the paper is organized as follows. In § 2, we provide a basic outline of
the problem statement, the fundamental governing equations and the essential force and
torque balance around the particle. In § 3, the modified Smoluchowski slip velocity is
computed in the thin EDL limit for effectively weak viscoelastic flows. A more complete
theoretical foundation, which includes the effects of rotation at higher orders of expansion,
is presented in the supplementary material available at https://doi.org/10.1017/jfm.2021.
643. In § 4, a model example of a non-uniformly charged particle is considered and its
electrophoretic mobility is obtained based on the developed theory. Further, subsequent
comparisons with reported results are carried out, to benchmark the theoretical framework
as well as to bring out some of the novel insights specific to our study. In § 5, we explore
how viscoelasticity changes the particle’s angular velocity at a given instant, wherein the
particle carries a non-axisymmetric surface charge. In § 6, we shed light on a potential
experimental set-up, which may be used to validate some of the key predictions of our
analysis. Finally, in § 7, concluding remarks are presented.

2. The physical paradigm and the governing equations

2.1. Description of the system
The prototypical system, as shown schematically in figure 1, consists of a spherical
particle of radius a, carrying an arbitrary non-uniform surface charge of density σ ′(θ, ϕ),
suspended in a viscoelastic medium of viscosity η, permittivity ε, relaxation time (Bird
et al. 1987) λ′1 and a retardation time λ′2. The fluid also contains dissolved electrolytes,
which dissociate into ions and form an EDL around the particle surface (Ohshima 2006;
Poddar et al. 2016), as shown in the schematic. The electrolyte concentration away from the
particle is c′

0. The fluid is assumed to obey the Oldroyd-B constitutive relation. A uniform
electric field (i.e. uniform only far away from the particle) of magnitude E0 is applied to
actuate motion. Without loss of generality, we may choose the direction of the applied
field to be the z-axis. The variables around the particle are expressed using a spherical
polar coordinate (r′, θ, ϕ), with the origin fixed at the particle’s centre, translating but not
rotating with it.

As a result of the electrical forces acting on the particle, it will move with a velocity
U ′êu, where êu is the unit vector pointing towards the direction of the particle’s motion. In
general, êu is not constrained to be oriented along the z-axis (Anderson 1985). In addition,
because of non-uniform surface charge, the particle may also undergo rotational motion
(Anderson 1985; Yoon 1991; Solomentsev & Anderson 1994) with angular velocity Ω ′,
much like other anisotropic particles.

Noting that analysis of electrophoretic motion is quite a formidable problem (Saville
1977), several physically realistic assumptions may be made (Ohshima 1996, 2015;

924 A41-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

64
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.643
https://doi.org/10.1017/jfm.2021.643
https://doi.org/10.1017/jfm.2021.643


Electrophoresis in viscoelastic medium

E0

r

y

z

Electric field

η, ε

Fluid properties

λ1
′, λ2

′

The EDL

Particle

velocity: U

Surface charge

σ ′(θ,ϕ)

ϕ

θ

x

Radius: a

Figure 1. Schematic of a spherical particle of radius a, carrying an arbitrary surface charge density σ ′(θ, ϕ).
The particle is translating with velocity U ′êu in a viscoelastic medium, subject to an externally applied electric
field (magnitude far from the particle E0) along the z direction. The fluid has viscosity η, relaxation time λ′1,
retardation time λ′2 and permittivity ε.

Schnitzer et al. 2013), which can simplify the underlying governing equations significantly,
improving analytical tractability in the process. In the same spirit, we also apply a few
simplifying assumptions, keeping in mind that our main goal here is to assess the role of
viscoelasticity in the presence of non-uniform surface charge.

First, we shall assume the surface charge density to be weak for analytical tractability
without sacrificing the essential physics of interest –we quantify the specific regime
qualifying this ‘weak’ surface charge limit later. Second, we assume the characteristic
EDL thickness (λD) to be much smaller than the particle’s radius (a), which is a reasonably
valid assumption for most practical considerations, since the EDL thickness typically lies
in the tune of ∼1–100 nm (Ajdari 1995; Bandopadhyay & Chakraborty 2012a). Third, we
assume that the ionic Péclet number (denoted by Pe = uca/D′; uc being the characteristic
velocity, as defined later, D′ being the ionic diffusivity), as well as the dimensionless
applied external field (as defined later), to be of the order of unity or less. This is in
line with the consideration that for most particles, Pe ∼ O(1) (Saville 1977). Fourth, the
dimensionless relaxation time of the fluid medium as expressed in terms of the nominal
Deborah number (De, see § 2.2 for definition) remains O(1) or less. Despite invoking this
consideration, later in § 3.4 we establish that, because of the weak surface charge limit
(see the first assumption), the dimensionless velocity scale itself is less than O(1), and
hence the effective Deborah number (denoted as Deeff later) is rendered much smaller
than unity. As a consequence, the overall flow is only weakly viscoelastic, i.e. linear
contributions dominate the leading-order flow stresses. Hence, the mathematical analysis
carried out herein is very similar to an ordered-fluid expansion around the Newtonian
limit (Chan & Leal 1979). However, the Oldroyd-B constitutive relation is used because
of its larger range of applicability as compared with an ordered fluid, which remains valid
only for low strain rates (Bird et al. 1987). Fifth, we shall disregard the presence of a
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depletion layer (Pranay, Henríquez-Rivera & Graham 2012; Mukherjee et al. 2017) and
assume the entire medium to exhibit viscoelastic characteristics. This requires that the
characteristic EDL thickness be much larger than the polymer characteristic dimensions
so that the continuum approximation remains valid inside the EDL. Towards assessing the
validity of this assumption, one may refer to the radius of gyration (Rg) of the polymer
as its representative length scale, which is a measure of the length scale of its random
coil shapes (Israelachvili 2011). To compare physically realistic values of Rg with those
of λD (the characteristic EDL thickness), we consider the example of poly-ethylene glycol
in water (Cruje & Chithrani 2014). With a monomer length of ≈0.35 nm for n = 100
segments, one arrives at Rg ≈ 1.43 nm; for n = 1000 segments, Rg ≈ 4.5 nm. Therefore,
for λD ∼ O(10 nm), the EDL thickness is an order of magnitude larger than the radius of
gyration, which should safely allow us to assume a continuum distribution of polymers
inside the Debye layer, as has been considered in a number of previous studies (Afonso,
Alves & Pinho 2009; Li & Koch 2020). Further, in practice, the polymer molecule includes
only a tiny fraction of the random coil structure, which further justifies this continuum
approximation. Finally, for a rotating particle (i.e. Ω /= 0), its surface charge distribution
may be time variant. Although in § 5 we shall consider rotating particles, we will neglect
such a dynamically evolving surface charge for the theoretical derivations. Nevertheless,
an outline of time variation of the surface charge due to rotation has been provided in § S1
of the supplementary material accompanying this manuscript.

2.2. The characteristic scales
Electrophoretic motion entails several important characteristic scales for a number of
different variables, dictating the flow dynamics. For any variable ξ ′, we denote it’s
characteristic scale by ξc. As such, the following characteristic scales are chosen:
the characteristic potential: ψc = kT/e (where k is the Boltzmann constant, T is the
absolute temperature and e the protonic charge) – this is the thermal potential; the
characteristic length: rc = a; the characteristic velocity: (Saville 1977), uc = εk2T2/e2ηa;
the characteristic concentration: cc = c′

0. Based on these choices, the characteristic
stress reads: τc = ηuc/a, whereas the characteristic surface charge is σc. Finally, the
characteristic relaxation time may be equated to λ0 = max(λ′1, λ

′
2).

A number of important non-dimensional numbers emerge from the above characteristic
scales, which strongly influence the flow around the particle. These include: (i) the

characteristic EDL thickness, λD =
√
εkT/2c′

0e2, with δ = λD/a – as the non-dimensional
EDL thickness; (ii) the characteristic surface potential of the particle (Ajdari 1995), ζc =
σcλD/ε, with ζ̄0 = eζc/kT as the characteristic potential relative to the thermal potential;
(iii) the relative strength of the external field may be expressed through (Saville 1977)
β = eE0a/kT; (iv) the ionic Péclet number may be defined as (Saville 1977) Pe = uca/D;
(v) the nominal Deborah number, which indicates the extent of departure from Newtonian
behaviour, may be defined as De = ucλ0/a. While various alternative approaches to
quantify the extent of viscoelasticity have been reported (Li & Koch 2020); also see § 4.3
for further discussion, the advantage of defining De using uc mentioned as above lies in
the fact that various important asymptotic limits (such as weak surface charge, weak field
limit, thin EDL limit etc.) may be independently explored without necessitating alteration
to the magnitude of the Deborah number under consideration. In other words, the effect
of electrokinetics may be elegantly isolated without requiring us to alter the quantitative
representation of the fluid constitution.
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Electrophoresis in viscoelastic medium

Various assumptions stated in § 2.1 are now quantified in terms of the relevant
non-dimensional numbers. ‘Weak surface charge’ indicates, ζ̄0 � 1; ‘thin EDL’
implicates δ � 1; the strengths of advection and applied field are constrained by: β ∼
O(1) and Pe ∼ O(1). It needs to be clarified here that, despite De ∼ O(1), the limit
of weak surface charge (ζ̄0 � 1) implies that the dimensionless electrokinetic velocity
would scale as O(ζ̄0). Therefore, the confluence of electromechanics and hydrodynamics
would lead to an effective Deborah number given by Deeff ∼ O(ζ̄0De) � 1 – see §§ 3.4
and 3.5. Accordingly, the effect of viscoelasticity remains subdominant in the theoretical
derivations of the flow field under weak surface charge limits, despite the nominal De
being ∼O(1). As a consequence, it is not necessary to further assume low polymer
concentration (Li & Koch 2020), which would require λ′1/λ

′
2 − 1 � 1 – see § 3.5 for

further discussion of this.

2.3. The governing equations
The transport processes are governed by the Poisson–Nernst–Planck–Cauchy momentum
equations (Saville 1977; Ghosh et al. 2016), along with the continuity equation for
conservation of mass and the Oldroyd-B constitutive equations. Since these equations
are well established, we directly start with their dimensionless forms, wherein the
non-dimensional version of the any variable ξ ′ is expressed as ξ = ξ ′/ξc. The
Nernst–Planck equations are reformulated in terms of the net charge density and
concentration, defined as (Schnitzer & Yariv 2014) c = c+ + c− and ρ = c+ − c−
respectively, where c+(−) is the concentration of the positive (negative) ions. In view of
the characteristic scales outlined in § 2.2, the governing equations are written as (Saville
1977; Bird et al. 1987)

Pe(v · ∇c) = ∇2c + ∇ · {ρ∇ψ} , (2.1a)

Pe(v · ∇ρ) = ∇2ρ + ∇ · {c∇ψ} , (2.1b)

δ2∇2ψ = −1
2ρ, (2.1c)

−∇p + ∇ · τ + ∇2ψ∇ψ = 0 and ∇ · v = 0, (2.1d)

τ + Deλ1
∇
τ = 2D + 2λ2De

∇
D. (2.1e)

In the above equations, τ is the stress field, p is the pressure, ψ is the electrical potential,
D is the rate of strain tensor (=1

2 [∇v + (∇v)T]) and v is the velocity field. Further,
∇
τ and

∇
D indicate the first convected derivatives of the stress and strain rate. For any

second-rank tensor A, it’s convected derivative
∇
A is expressed as (Bird et al. 1987)

∇
A = DA/Dt − (∇v)T · A − A · ∇v. The above equations are subject to the following
boundary conditions:

êr · [Pevc − ∇c − ρ∇ψ]r=1 = êr · [Pevρ − ∇ρ − c∇ψ]r=1 = 0 (2.2a)

êr · [∇ψ]r=1 = −ζ(θ, ϕ)
δ

; ζ = σ ′λDe
εkT

and [∇ψ]r→∞ = −β êz (2.2b)

v(r = 1, θ, ϕ) = Ω × êr and v(r → ∞, θ, ϕ) = −U êu (2.2c)

at r → ∞, c = 2 and ρ = 0. (2.2d)
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Note that, in (2.2c), the boundary condition for velocity at the particle surface accounts
for its rotation. In (2.2b), ζ(θ, ϕ) is analogous to the surface potential and ζ ∼ O(ζ̄0)
is it’s characteristic magnitude. For convenience, we define, ζ(θ, ϕ) = ζ̄0ζ̄ (θ, ϕ), such
that ζ̄ ∼ O(1). For electrophoretic motion, U êu and Ω , i.e. the migration velocity of the
particle and it’s angular velocity are the primary unknowns. To compute them, we simply
need to balance the force and the moment around the origin, acting on the particle at steady
state. The resulting balances are as follows (Anderson 1985; Ohshima 2006; Goswami
et al. 2017):

− ζ̄0

δ

∫
Sp

ζ̄∇ψ dS +
∫

Sp

τ · êr dS = 0, (2.3a)

− ζ̄0

δ

∫
Sp

ζ̄ (êr × ∇ψ) dS +
∫

Sp

êr × (τ · êr
)

dS = 0. (2.3b)

It is important to note here that the above ‘force-free’ conditions only remain valid in an
unbounded medium, as previously noted by Yariv (2006). Presence of a wall sufficiently
close to the particle may change the force balance on the same.

The first terms in the above equations represent the force and the moment, respectively,
due to the electric field. The second terms are essentially contributed by the stresses in the
fluid. The integration is carried out over the particle surface Sp. In the limit of a thin EDL,
i.e. for δ → 0, the EDL may also be included within Sp so that the integration is carried
out on a surface just outside the EDL (as δ → 0, the EDL effectively has zero thickness).
Since the net charge in the EDL and on the particle surface are opposite and equal, the net
charge on an imaginary surface just outside of the EDL would be zero. Therefore, the first
terms in both (2.3a) and (2.3b) vanish (Ye et al. 2002; Chen & Keh 2014) and, as a result,
the net force and moment caused by the stresses in the fluid on the imaginary sphere lying
just outside the EDL (i.e. on the object particle + the EDL) becomes zero (Ye et al. 2002;
Chen & Keh 2014). Equations (2.3a) and (2.3b) may then be re-written as∫

Sp

τ · êr dS = 0 and
∫

Sp

êr × (τ · êr) dS = 0. (2.4a,b)

Notice that the integration is to be performed over the surface Sp, which has a radius
r ∼ 1 + δ and includes the EDL as well.

Finally, we note that the potential may be conveniently split into two parts as follows
(Bahga, Vinogradova & Bazant 2010; Ghosh, Mandal & Chakraborty 2017): ψ = φ +
φext, where φext is the contribution from only the externally imposed electric field and φ is
the contribution of the particle’s surface charge to the total electrostatic potential. It may
then be deduced that φext satisfies the equation (Ghosh et al. 2017) ∇2φext = 0, subject to
êr · [∇φext]r=1 = 0 and [∇φext]r→∞ = −β êz. Hence, φext has the solution

φext = −β
(

r + 1
2r2

)
P1(μ), (2.5)

where, μ = cos θ and Pn(x) is the Legendre polynomial of the first kind of order n. As a
consequence, the component φ would satisfy the following equation (derived from (2.1c)):

∇2φ = − ρ

2δ2 , (2.6)
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subject to the following conditions:

êr · [∇φ]r=1 = −ζ(θ, ϕ)
δ

and φ(r → ∞, θ, ϕ) = 0. (2.7a,b)

The Nernst–Planck equations (2.1a) and (2.1b) and the corresponding boundary conditions
(2.2a) may also be similarly modified using the above split, which is not explicitly carried
out here for the sake of brevity.

When particle rotation is present, it will cause the surface potential (ζ ) to change
dynamically. The relation between the particle’s angular velocity and evolution of ζ has
been included in § S1.1 of the supplementary material.

3. The modified Smoluchowski slip in the thin EDL limit

In this section, the electro-hydrodynamics around the particle is analysed asymptotically.
When the EDL is thin, the fluid only experiences an electrical force in a very small region
near the particle surface, wherein all the diffuse charges are located. At the same time, the
effect of the particle’s surface charge and motion in the EDL is transmitted into the bulk
through the Smoluchowski slip velocity (Ajdari 1995; Squires & Bazant 2004; Ghosh et al.
2016). Note that this Smoluchowski slip velocity is nothing but the velocity tangent to the
solid surface at the outer edge of the EDL. This slip velocity is what drives the motion in
the bulk and therefore dictates the viscous resistance exerted by the bulk at the edge of the
EDL. As a result, it becomes necessary to first analyse the transport within the EDL.

From (2.1c), we note that the thin EDL limit (δ � 1) is a singular problem, as also
pointed out by a number of earlier studies (Yariv 2009; Schnitzer & Yariv 2012; Ghosh
et al. 2016). This calls for the application of a matched asymptotic expansion (Leal 2007;
Bender & Orszag 2013), wherein the fluid domain is split into two regions with two distinct
length scales, (a) the EDL, or ‘inner layer’, which has a characteristic length scale δ and
lies next to the particle surface and (b) the bulk, or ‘outer layer’, with characteristic length
scale r ∼ O(1). In both the layers, all variables may be expanded in an asymptotic series
of δ as follows (Leal 2007; Yariv 2009):

ξ = ξ0 + δξ1 + δ2ξ2 + . . . . (3.1)

Note that this expansion also applies to U and Ω . The flow variables have to be matched
asymptotically at the edge of the EDL, where the two regions meet. Keeping in mind that
our aim is to first deduce the modified Smoluchowski slip, it would suffice to only consider
the leading term in the expansion (3.1).

To keep our analysis structured and generic, we shall first outline the governing
equations in the outer region in § 3.1 and the rescaled equations in the inner region in
§ 3.2, followed by appropriate matching conditions in § 3.3. This analysis is presented
without any restriction on the surface charge. However, we consider δ � 1 and De ∼ O(1)
for writing the governing equations in the two layers. As we show later, the inner layer
equations thus derived are distinct as compared with Newtonian fluids and they vividly
bear the consequences of viscoelasticity. Subsequently in § 3.4, we shall invoke the
assumption of weak surface charge (ζ̄0 � 1), which will enable us to pin down regular
asymptotic solutions for the flow field inside the EDL and will lead to closed-form
expressions for the modified Smoluchowski slip for an arbitrary distribution of surface
charge. Solutions to the flow field in the outer region for specific instances of weak but
non-uniform surface charge are reported in §§ 4 and 5, respectively. Because we will only
consider the leading-order terms in the expansion (3.1) for all variables, we will drop the
‘0’ subscript from here onwards.
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3.1. Leading-order equations in the outer layer
Leading-order outer layer equations may be derived by inserting the expansion (3.1) into
the set of equations as outlined in (2.1a)–(2.1e), which take the following form:

ρ = 0; ∇ · (c∇(φ + φext)) = 0 (3.2a)

v · ∇c = ∇2c (3.2b)

−∇p + ∇ · τ + ∇2φ∇(φ + φext) = 0 and ∇ · v = 0 (3.2c)

τ + Deλ1T = 2D + 2λ2DeS. (3.2d)

In (3.2d), T = ∇
τ and S =

∇
D. Detailed expressions for T and S in spherical coordinates

may be found in Bird et al. (1987). Note that, φext has already been determined and thus
there is no need to expand it in δ. The above equations are subject to the following far field
conditions:

at r → ∞, c = 2; ρ = 0; φ = 0, v = −U êu. (3.3)

The boundary conditions at the edge of the EDL (where two layers meet) will be given
in terms of the matching conditions later. Note that the outer layer is electroneutral at
the leading order of δ, and hence it would not experience any force due to the externally
applied electric field (as shown later).

3.2. Leading-order equations in the EDL
A thorough rescaling of almost all quantities is required in the inner layer, so that the
rescaled variables are O(1) in the EDL. To this end, we shall first introduce the rescaled
radial coordinate (Schnitzer & Yariv 2012), R = (r − 1)/δ, which is O(1) inside the inner
layer, since r − 1 ∼ δ. Accordingly, the velocity components would rescale as follows:
uθ → U ∼ O(1), uϕ → W ∼ O(1) and from the continuity equation, ur → δV ∼ O(δ),
with V ∼ O(1). In the above, ur, uθ and uϕ are the radial, polar and azimuthal components
of velocity, respectively. There are no changes in the scaling of the potential, charge and
salt concentration: ϕ → Φ ∼ O(1), c → C ∼ O(1) and ρ → Π ∼ O(1). The rescaling
of the stresses and the strain rates are slightly more involved (Saprykin, Koopmans &
Kalliadasis 2007; Ghosh & Chakraborty 2015; Ghosh et al. 2016) and need to be worked
out based on the constitutive model (2.1e). The order of magnitude of the variables and
their rescaled versions in the inner layer (the EDL) are summarized in table 1. Here, the
rescaled stress, strain and their convected derivatives are denoted by a ‘tilde’ overhead in
the inner layer, whereas the rescaled versions of the primitive variables (velocity, potential,
concentration etc.) are denoted by an uppercase symbol.

There is significant difference between the rescaling mentioned in table 1 and that of
Newtonian fluids. In a Newtonian medium, the shear stress components (such as τrθ )
would scale as O(δ−1). This remains unchanged for viscoelastic fluids. However, the
normal stress components always scale as O(1) inside the EDL for Newtonian fluids. In
stark contrast, for viscoelastic fluids, the normal stresses (such as τθθ ) scale as O(δ−2) in
the inner layer. In addition, similar scaling is also observed for the component τθϕ . These
unusual scalings would have strong implications for the flow dynamics inside the EDL, as
is discussed later in more detail. The scaling mentioned above is also supported by a few
of the previous studies (Saprykin et al. 2007; Ghosh & Chakraborty 2015; Ghosh et al.
2016), where asymptotically large normal stresses as compared with the shear stresses
were reported, albeit for significantly more restrictive flat geometries. Furthermore, note
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Variable Order of magnitude Rescaled version

φ, ρ, c O(1) Φ, Π , C
uθ , uϕ O(1) U and W
ur O(δ) δV
Drr,Dθθ ,Dθϕ,Dϕϕ O(1) D̃rr, D̃θθ , D̃θϕ, D̃ϕϕ
Drθ ,Drϕ O(δ−1) δ−1D̃rθ , δ

−1D̃rϕ

Srr O(1) S̃rr

Srθ ,Srϕ O(δ−1) δ−1S̃rθ , δ
−1S̃rϕ

Sθθ ,Sθϕ,Sϕϕ O(δ−2) δ−2S̃θθ , δ−2S̃θϕ, δ−2S̃ϕϕ
τrr O(1) τ̃rr
τrθ , τrϕ O(δ−1) δ−1τ̃rθ , δ

−1τ̃rϕ
τθθ , τθϕ, τϕϕ, p O(δ−2) δ−2τ̃θθ , δ

−2τ̃θϕ, δ
−2τ̃ϕϕ, δ

−2P
Trr O(1) T̃rr

Trθ ,Trϕ O(δ−1) δ−1T̃rθ , δ
−1T̃rϕ

Tθθ ,Tθϕ,Tϕϕ O(δ−2) δ−2T̃θθ , δ−2T̃θϕ, δ−2T̃ϕϕ
Table 1. Order of magnitude and rescaled forms of the variables in the inner layer.

that the components of S and D do not exhibit the same scaling, contrary to the stress (τ )
and its convected derivative (T ). We insert the rescaled variables as described in table 1
in the governing equations, from which the leading-order inner layer equations may be
obtained as follows:

∂2Φ

∂R2 = −1
2
Π (3.4a)

∂2C
∂R2 + ∂

∂R

(
Π
∂Φ

∂R

)
= ∂2Π

∂R2 + ∂

∂R

(
C
∂Φ

∂R

)
= 0 (3.4b)

∂V
∂R

− ∂

∂μ

(
U
√

1 − μ2
)

+ 1√
1 − μ2

∂W
∂ϕ

= 0 (3.4c)

−∂P
∂R

+ ∂2Φ

∂R2
∂Φ

∂R
= 0 (3.4d)√

1 − μ2 ∂P
∂μ

+ ∂τ̃rθ

∂R
− ∂

∂μ

(
τ̃θθ

√
1 − μ2

)
+ 1√

1 − μ2

∂τ̃θϕ

∂ϕ
− μτ̃ϕϕ√

1 − μ2

+3
2
β

√
1 − μ2 ∂

2Φ

∂R2 −
√

1 − μ2 ∂
2Φ

∂R2
∂Φ

∂μ
= 0 (3.4e)

− 1√
1 − μ2

∂P
∂ϕ

+ ∂τ̃rϕ

∂R
− ∂

∂μ

(
τ̃θϕ

√
1 − μ2

)
+ 1√

1 − μ2

∂τ̃ϕϕ

∂ϕ

+ μτ̃θϕ√
1 − μ2

+ ∂2Φ

∂R2
∂Φ

∂ϕ
= 0. (3.4f )

Recall that μ = cos θ . Also, from (2.5), in the inner layer, Eext
r = 0 and Eext

θ =
−3

2β
√

1 − μ2 to the leading order in δ, where Eext = −∇φext. This is why the external
field does not influence the charge and salt transport at the leading order. The inner
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layer momentum equations (3.4d)–(3.4f ) indicate the consequences of the scaling outlined
earlier.

In order to better understand how the different stress components influence the flow
within the EDL, we may try to appeal to some of the fundamental properties exhibited
by viscoelastic fluids in simple flows. First note that the flow inside the EDL is locally
unidirectional and hence is characterized by strong shear strain rates, because of its small
thickness (δ � 1). It is well documented (Bird et al. 1987) that, in perfectly unidirectional
shear flows (such as Couette or Poiseuille flows), the shear stress (τxy, x being the
direction of flow) varies as τxy = η∗(γ̇ )γ̇ , where γ̇ is the rate of strain and η∗(γ̇ ) is the
appropriately non-dimensionalized shear dependent viscosity. On the other hand, the first
normal stress difference varies as τxx − τyy = ηN,1(γ̇ )γ̇

2, where ηN,1 is the (unitless) first
normal stress coefficient. Because we have considered the Oldroyd-B constitutive model,
it follows that both η∗ and ηN,1 are constants (more discussion on this is provided in
§ 3.6). Since the shear rate in the EDL is γ̇ ∼ δ−1, it immediately follows that in the
EDL on a perfectly plane surface τxy ∼ δ−1 and τxx ∼ δ−2, i.e. the stresses along the
streamwise directions become very large, because the unidirectional flow with strong shear
rate stretches the polymers along those directions. Now, in an EDL adhering to a spherical
particle, locally, the streamwise directions are θ and ϕ, using spherical coordinates. Thus
the stresses in the streamwise directions are τθθ , τϕϕ and τθϕ , while stresses equivalent
to τxy are τrθ and τrϕ . As a result, we expect that τrθ , τrϕ ∼ O(δ−1) and τθθ , τϕϕ, τθϕ ∼
O(δ−2), as is indeed verified from table 1. We would like to point out here that similar
scalings of stress components in viscoelastic flows have been previously shown in earlier
studies, albeit only for motion over flat surfaces (Saprykin et al. 2007; Ghosh et al.
2016).

On a perfectly flat surface with uniform surface charge, the streamwise stresses (τxx
etc.) would be uniform and hence they would not affect the flow. However, on the surface
of a spherical particle, the streamwise stresses (such as τθθ , τϕϕ etc.) would vary on a
length scale of O(1), provided that the surface charge on the particle also varies at a
scale of O(a) (dimensionless O(1)). Therefore, the gradients of the streamwise stresses
would vary as O(δ−2). At the same time, because the cross-stream gradients of τrθ and
τrϕ govern the velocity field, these gradients also scale as δ−2, despite τrθ and τrϕ scaling
as δ−1. As a result, the gradients of the extensional stresses and the shear stress both have
the same order of magnitude inside the EDL and thus both together dictate the velocity
field therein. The reasoning presented above physically justifies the equations (3.4) that
govern the leading-order motion inside the EDL. This is distinct from Newtonian fluids,
where the streamwise stresses do not contribute to the velocity field at the leading order
of δ. Further, note that, even when the surface charge is uniform, the streamwise gradients
in the extensional stress components remain non-zero because of the particle’s curvature.
This argument indicates that a Newtonian fluid cannot ‘feel’ the curvature of the particle’s
surface at the leading order of δ. The only way curvature affects the flow is through
the θ component of the external electric field. In contrast, a viscoelastic fluid is able to
‘see’ the curvature of the particle surface even at the leading order of δ, because of its
asymptotically large normal stresses. One of the major consequences of such behaviour is
that the particle’s shape plays a crucial role in modifying the Smoluchowski slip velocity
at the edge of the EDL, as shown later. The changes thus brought about in the slip velocity
also alter the overall electrophoretic velocity of the particle, as discussed in detail in the
next section.
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The rescaled Oldroyd-B constitutive relation may be expressed in the inner layer as
follows:

τ̃ij + λ1DeT̃ij = 2[D̃ij + λ2DeS̃ij], when ij ≡ rr, rθ and rϕ, (3.5a)

τ̃ij + λ1DeT̃ij = 2λ2DeS̃ij, when ij ≡ θθ, θϕ and ϕϕ. (3.5b)

The detailed expressions for the rescaled convected derivatives (T̃ and S̃) are given in
Appendix A. Derivation of the above equations for a selected few stress components is
outlined in § S1.3 in the supplementary material. The equations in the inner layer are
subject to the following boundary conditions at the particle surface:

∂C
∂R

+Π
∂Φ

∂R
= ∂Π

∂R
+ C

∂Φ

∂R
= 0 (3.6a)

∂Φ

∂R
= −ζ̄0ζ̄ (θ, φ) (3.6b)

U = Γ (θ, ϕ); W = χ(θ, ϕ); V = 0 at, R = 0. (3.6c)

In (3.6c), Γ = (Ω × êr) · êθ = Ωy cos(ϕ)−Ωx sin(ϕ) and χ = (Ω × êr) · êϕ = −(Ωx
cos(ϕ)+Ωy sin(ϕ)) cos(θ)+Ωz sin(θ) are respectively the θ and ϕ components of
velocity at the particle surface due to it’s rotation.

3.3. Asymptotic matching and the Smoluchowski slip
The matching conditions for the primitive variables (such as velocity, potential, charge
density etc.) at the edge of the EDL (where the inner and outer regions overlap) are given
by (Ghosh et al. 2016, 2017)

lim
R→∞

[U, δV,W] = lim
r→1

[uθ , ur, uϕ], (3.7a)

lim
R→∞

[δ−2P, Φ,Π,C] = lim
r→1

[p, ϕ, ρ, c]. (3.7b)

In addition, the net salt and charge fluxes across the EDL–bulk interface also need to be
matched (Yariv 2009; Ghosh et al. 2016, 2017) to ensure that the EDL does not lose or
gain net charge or salt at steady state. It may be shown (see § S1.2 in the supplementary
material for further details) that, at the leading order, the matching conditions mentioned
above predict the following boundary conditions for bulk salt concentration and potential
at the edge of the EDL (Yariv 2009; Ghosh et al. 2016):

∂c
∂r

= ∂φ

∂r
= 0, at, r = 1. (3.8)

Finally, it is important to note that the quantities, limR→∞ U and limR→∞ W may be
combined to write vS = limR→∞[Uêθ + W êφ] − Ω × êr. We identify the quantity vS as
the ‘modified Smoluchowski slip’ at the edge of the EDL and it denotes the tangential slip
velocity experienced by the outer layer fluid, owing to the presence of electrokinetic flow
inside the EDL. Note that the slip velocity is defined relative to the particle surface. Once
the slip velocity is known, the outer layer momentum and continuity equations, i.e. (3.2c)
may be solved subject to (3.3) in the far field and v = Ω × êr + vS and ur = 0 at r = 1.
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3.4. Analysis for weak surface charge
The analysis within the EDL would ultimately lead to the ‘modified Smoluchowski slip’,
for which one needs to first solve the inner layer equations, subject to the relevant boundary
and matching conditions. In order to derive the closed-form analytical solutions, it is
necessary to assume the surface charges to be weak (ζ̄0 � 1). Accordingly, all the variables
(both in the inner and outer layers) may be further expanded (Ghosh et al. 2017) in a regular
asymptotic series of ζ̄0 as

ξ = ξ0 + ζ̄0ξ1 + ζ̄ 2
0 ξ2 + . . . . (3.9)

Here, ξ may represent any variable such as U,V, v, φ, . . . and so on. Recall that the
above expansion is applied to the variables which already denote leading-order terms
in δ. We re-emphasize that, in the regular expansion, ζ̄0 is defined in terms of the
characteristic surface charge (see § 2.2), which is assumed to be small here. Using (3.9),
in the subsequent subsections we shall determine the modified Smoluchowski slip for
arbitrary distribution of surface charge. In the next section, the slip velocity thus derived
will be used in a representative example of a non-uniformly charged particle to determine
its electrophoretic mobility, by solving the outer layer equations.

3.4.1. Simplified outer layer equations
From the conditions in (3.8), it is easy to deduce using (3.2a) and (3.2b) that the solutions
for the potential and concentration in the outer layer are (at the leading order of δ): c =
2 and φ = 0. The equations governing the fluid motion in the outer layer then take the
following form:

−∇p + ∇ · τ = 0 and ∇ · v = 0, (3.10a)

τ + Deλ1T = 2D + 2λ2DeS. (3.10b)

These are subject to the following boundary conditions:

at r → ∞, v = −U êu, (3.11a)

at r = 1, ur = 0; uθ = lim
R→∞

U; and uϕ = lim
R→∞

W. (3.11b)

3.4.2. Solutions to the inner layer equations
The leading order (in δ) inner layer equations may also be solved using the asymptotic
expansion mentioned in (3.9), subject to conditions (3.6a)–(3.6c). To this end, we note
that the inner layer variables exhibit the following expansions in ζ̄0:

C = 2 + ζ̄0C1 + ζ̄ 2
0 C2 + . . . ; (Π,Φ) = ζ̄0(Π1, Φ1)+ ζ̄ 2

0 (Π2, Φ2)+ . . . (3.12a)

(U,V,W) = ζ̄0(U1,V1,W1)+ ζ̄ 2
0 (U2,V2,W2)+ ζ̄ 3

0 (U3,V3,W3)+ . . . (3.12b)

(P, T̃ , S̃) = ζ̄ 2
0 (P2, T̃ 2, S̃2)+ ζ̄ 3

0 (P3, T̃ 3, S̃3)+ . . . . (3.12c)

Implications and the physical basis of the asymptotic expansions mentioned above deem
further elaboration. Notice that, at the leading order of ζ̄0, the nonlinear polymeric
contributions to the stresses are absent, which indicates that at O(ζ̄0), the flow inside
the EDL remains asymptotically Newtonian, despite the viscoelastic stresses appearing
in (3.4) and (3.5). This apparent contradiction may be resolved by noting that in the
weak surface charge limits, the dimensionless velocity (U and W) inside the EDL scales
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as O(ζ̄0). As a result, the rescaled Newtonian part of the stresses (also refer to table 1)
would scale as O(ζ̄0) and the convected derivatives (T̃ and S̃), which arise from the
polymeric contributions to the stresses, would scale as O(ζ̄ 2

0 ), as evident from their
expressions in Appendix A. Here we would like to clarify that the ‘Newtonian part’ of
the stresses as mentioned above refers to the linear part of the constitutive relation given
in (2.1e), obtained by substituting λ1 = λ2 = 0. Therefore, at the leading order of ζ̄0, i.e.
at O(ζ̄0), the flow is asymptotically Newtonian and the nonlinearities arising from the
polymeric stresses only contribute from O(ζ̄ 2

0 ) onwards, stemming from the corresponding
convected derivatives.

Following the discussion after (3.4), we note that inside the EDL, the linear (or
Newtonian) parts of the shear stress gradients (such as ∂τrθ /∂r) scale as O(ζ̄0δ

−2) for weak
surface charge, since inside the EDL, r ∼ 1 + δ and τrθ , etc. ∼ O(δ−1). On the other hand,
the normal stress derivatives (terms like ∂/∂μ(τθθ

√
1 − μ2)) scale as O(ζ̄ 2

0 δ
−2) under the

same conditions, since the normal stresses themselves are O(δ−2) (see table 1), whereas T̃
and S̃ ∼ O(ζ̄ 2

0 ) – see (3.5). Since ζ̄0 � 1 (weak surface charge), the linear (i.e. Newtonian)
parts of the stresses dominate both inside and outside the EDL. From the above discussion,
it immediately follows that, despite nominally De being O(1), the effective flow is only
weakly viscoelastic, since the Newtonian, i.e. the linear, component of the stress–strain
relation dominates. Below, we report the order-wise velocity components in the inner layer
and the resulting slip velocity.

(i) The O(ζ̄0) velocity field: at O(ζ̄0),Φ1 = ζ̄ (θ, ϕ)e−R, while C1 = 0 andΠ1 = −2Φ1.
This is the first approximation and essentially amounts to the Debye–Huckel linearization.
The charge density, concentration and the potential can be found by solving the inner
layer Nernst–Planck and Poisson equations, as outlined in (3.4a)–(3.4b), subject to the
boundary conditions, (3.6a) and (3.6b). As already mentioned, at this order, the velocity
field is identical to that of a Newtonian fluid, when nominally De ∼ O(1). The velocity
field thus has the solution

U1 = Γ1(ϕ)− 3βω1(μ, ϕ)√
1 − μ2

(1 − e−R), (3.13a)

W1 = χ1(μ, ϕ), (3.13b)

V1 = 3βω1,μ(μ, ϕ)(1 − R − e−R)− ω2(μ, ϕ)R. (3.13c)

In the above, ω1(μ, ϕ) = ζ̄ (θ, ϕ)Q1(μ), ω2(μ, ϕ) = (χ1,ϕ + μΓ1)/
√

1 − μ2 and ω1,μ =
∂ω1/∂μ, ω1,μμ = ∂2ω1/∂μ

2, χ1,ϕ = ∂χ1/∂ϕ etc., while Qn(x) is the Gegenbauer
polynomial of the first kind and order n (Leal 2007), expressed as Qn(x) = ∫ x

−1 Pn(u) du.
For example (Leal 2007), Q1(x) = (x2 − 1)/2, Q2(x) = xQ1(x), etc. Further, we have
defined Γk(ϕ) = Ω

(k)
y cos(ϕ)−Ω

(k)
x sin(ϕ) and χk(μ, ϕ) = −(Ω(k)

x cos(θ)+Ω
(k)
y sin(θ))

sin(ϕ). The leading-order slip velocity without rotation is thus given by

v
(1)
S = lim

R→∞
[U1êθ + W1êϕ] − Ω(1) × êr = −3βω1(μ, ϕ)√

1 − μ2
êθ . (3.14)

(ii) The O(ζ̄ 2
0 ) velocity field: at O(ζ̄ 2

0 ), the nonlinear components of the viscoelastic
stresses play a key role in altering the velocity field, through the convected derivatives. The
leading-order terms in the expansion of the convected derivatives may be easily evaluated
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from their expressions given in Appendix A. Further note that, at O(ζ̄ 2
0 ), Φ2 = Π2 = 0,

C2 = Φ2
1 and from the r-momentum equation, P2 = 1

2 ζ̄
2e−2R. Combining (3.4c)–(3.4f ),

along with (3.5), it may be shown that, U2 and W2 are governed by the following equations:

∂2U2

∂R2 = 2(λ2 − λ1)De

[
∂

∂μ

{√
1 − μ2S̃(2)θθ

}
− ∂S̃(2)rθ

∂R

]
, (3.15a)

∂2W2

∂R2 = (λ1 − λ2)De
{
ω3(μ, ϕ)

∂2U1

∂R2

}
. (3.15b)

In the above, ω3 =
√

1 − μ2χ1,ϕ + μχ1/
√

1 − μ2. Equation (3.15) may be solved for U2
and W2 subject to the no-slip condition at the particle surface and the constraint that both
the velocity components remain bounded, to obtain

U2 = De(λ1 − λ2)[A1(R, μ)ω2
1 + A2(R, μ)ω1 + A3(R, μ)ω1,μ + A4(R, μ)ω1,ϕ] + Γ2,

(3.16a)

W2 = χ2 − De(λ1 − λ2)ω3(μ, ϕ) (U1 − Γ1) . (3.16b)
Expressions for A1,A2, . . . etc. are included in Appendix B. The continuity equation may
be used to obtain V2

V2(R, μ, ϕ) =
∫ R

0

{
∂

∂μ

(√
1 − μ2U2(x, μ, ϕ)

)
− 1√

1 − μ2

∂W2(x, μ, ϕ)
∂ϕ

}
dx. (3.17)

The O(ζ̄ 2
0 ) contribution to the slip velocity is therefore,

v
(2)
S = lim

R→∞
[U2êθ + W2êφ] − Ω(2) × êr = v

(2)
S,θ êθ + v

(2)
S,ϕ êϕ, (3.18a)

v
(2)
S,θ = v

(2)
S · êθ = De(λ1 − λ2)

[
− 9μβ2

2
(
1 − μ2

)3/2ω2
1 + ω1

{
3βμ

1 − μ2Γ1 − 27β2√
1 − μ2

ω1,μ

− 3β√
1 − μ2

ω2

}
+ 3βΓ1ω1,μ + 3β

1 − μ2χ1ω1,ϕ

]
, (3.18b)

v
(2)
S,ϕ = v

(2)
S · êϕ = De(λ1 − λ2)

3βω1ω3√
1 − μ2

. (3.18c)

More discussion on the nature of the velocity profiles at O(ζ̄ 2
0 ) have been included in § 3.5.

(iii) The O(ζ̄ 3
0 ) velocity field: at O(ζ̄ 3

0 ), Φ3 = 1
48 ζ̄

3(θ, φ)(e−3R − 3e−R) and the charge
density has the form, Π3 = −2Φ3 − 1

3Φ
3
1 . The governing equations for the velocity

components may be derived by inserting the O(ζ̄ 3
0 ) stresses into the governing equations

for the inner layer. It may be verified that the O(ζ̄ 3
0 ) velocities satisfy equations of the

following form:

∂2U3

∂R2 = 2(λ1 − λ2)De∇̃ ·
[(

S̃ − λ1De �
)

· êθ
]

− 3
2
β

√
1 − μ2 ∂

2Φ3

∂R3 , (3.19a)

∂2W3

∂R2 = 2(λ1 − λ2)De∇̃∗ ·
[(

S̃ − λ1De �
)

· êϕ
]
, (3.19b)

where, ∇̃ = êr(∂/∂R)− êθ (∂/∂μ)
√

1 − μ2 + êϕ(∂/∂ϕ) and ∇̃∗ = êr(∂/∂R)− êθ (∂/∂μ)√
1 − μ2 + êϕ(μ/

√
1 − μ2). In the above, components of � can be deduced from (3.5)
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in combination with (A1) and (A2) in Appendix A. Detailed expressions for various
components of � have been included in the supplementary material – see § S1.4 therein.

The solutions for U3 and W3 may be computed by integrating the above equations
twice, subject to the boundary conditions, U3 = Γ3 and W3 = χ3 at R = 0 and both
remain bounded as R → ∞. Although the process is straightforward, the results are rather
cumbersome to represent and hence we do not give them here; they will be made available
upon request to the authors. That said, it is worth noting that the O(ζ̄ 3

0 ) contribution to the
slip velocity without particle rotation, takes the following form:

v
(3)
S = lim

R→∞
[U3êθ + W3êφ] = v

(3)
S,θ êθ , (3.20a)

v
(3)
S,θ = De2β3(λ1 − λ2)√

1 − μ2

[
27(11λ1 − 18λ2)ω1ω

2
1,μ + 81(4λ1 − 5λ2)

2(1 − μ2)
ω2

1ω1,μ

+27
4
(21λ1 − 34λ2)ω

2
1ω1,μμ + 3(λ1 − λ2)(37μ2 + 29)

2(1 − μ2)2
ω3

1

]
+ βζ̄ 3Q1

8
√

1 − μ2
. (3.20b)

The complete modified Smoluchowski slip velocity at O(ζ̄ 3
0 ) accounting for particle

rotation, has been included in the supplementary material – see § S1.4 therein. The
modified Smoluchowski slip for a viscoelastic fluid in the presence of arbitrary surface
charge is thus given by (up to O(ζ̄ 3

0 ))

vS = ζ̄0v
(1)
S + ζ̄ 2

0 v
(2)
S + ζ̄ 3

0 v
(3)
S + . . . . (3.21)

The contributions at the individual orders of ζ̄0 are given in (3.14), (3.18) and (3.20).

3.5. Effect of viscoelasticity on the Smoluchowski slip: the key features
There are several interesting points to note from the modified slip velocity derived above.
First, recall that the regular expansion to incorporate the effects of viscoelastic stresses is
in ζ̄0, instead of De, which in many cases is the usual choice (Bird et al. 1987). In this
regard, it should be noted here that, although nominally De ∼ O(1), because the velocity
is O(ζ̄0) (on account of weak surface charge), the effective Deborah number becomes
Deeff = ζ̄0De � 1. Therefore, the regular expansion in ζ̄0 may also be treated as a regular
expansion in Deeff . Note that the fluid actually ‘sees’ the effective Deborah number (Deeff )
to manifest the interplay of the electro-mechanics and viscoelastic hydrodynamics and not
the nominal one (De) and hence the overall flow here is only weakly viscoelastic in nature
(as also stated in § 2.2). As a consequence, the expansion in (3.21) is exactly equivalent
to an ordered expansion around the Newtonian limit, carried out for an Oldroyd-B
fluid. For example, the O(ζ̄ 2

0 ) solution is equivalent to the O(Deeff ) correction in an
ordered-fluid expansion. This indicates that one does need to further impose the limit
of small polymer concentration (C � 1), which translates into λ1/λ2 − 1 � 1, to derive
closed-form analytical solutions. Later, in § 4.3.2, we explore the limit of low polymer
concentration to compare our solutions with previously reported studies in the literature
(Li & Koch 2020).

The basic physics behind the O(ζ̄ 2
0 ) and the O(ζ̄ 3

0 ) equations may be appreciated as
follows. The leading-order flow (at O(ζ̄0)) is effectively Newtonian, which stretches the
polymers in the EDL, thus giving rise to excess polymeric stresses at O(ζ̄ 2

0 ). These excess
polymeric stresses are non-uniform along the particle surface, because of its curvature
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and variations in ζ̄ (θ, ϕ). As a result, the gradients of these excess stresses drive a flow
at O(ζ̄ 2

0 ), which is observed in (3.15). Because of the nonlinear constitutive relation of
the fluid itself, this O(ζ̄ 2

0 ) velocity field and the leading-order Newtonian contribution
interact between each other and give rise to additional polymeric stretching, which results
in higher-order stresses, as reflected in the O(ζ̄ 3

0 ) equations in (3.19).
From the discussion in § 3.2 following table 1, it is evident that, inside the EDL, the

polymeric stresses play a major role in governing the local flow patterns. This can be
better understood by defining a characteristic Deborah number inside the EDL as DeEDL =
ucλ0/λD = δ−1De, since the effective length scale inside the EDL is O(δ). If De ∼ O(1),
it follows that DeEDL � 1, which indicates that, for U ∼ O(1), the polymeric stresses play
a key role in governing the motion inside the EDL. This is exactly equivalent to the fact
that the stress components τθθ , τϕϕ and τθϕ all scale as δ−2 inside the EDL, which are
also signatures of strong polymeric stretching therein. This assertion becomes clear from
a detailed rescaling of the constitutive equations inside the EDL, which has been provided
in § S1.3 of the supplementary material. The same may also understood from (3.5), which
for the rθ component (as an example) may be rewritten as

τ̃rθ + λ1δDeEDLT̃rθ = 2
(

D̃rθ + λ2δDeEDLS̃rθ

)
, (3.22)

where T̃rθ and S̃rθ are given in Appendix A and they denote the effects of polymeric
stresses inside the EDL. Since DeEDL ∼ δ−1 � 1, δDeEDL ∼ O(1) and hence these terms
cannot be neglected, although they are multiplied with δ. In the outer region (addressed
in the next section), the Oldroyd-B constitutive model should be applicable as long as the
effective Deborah number is small (Deeff � 1). As a result, it may be inferred that the
analysis in § 3.4 is indeed valid when De ∼ O(1), which would imply Deeff = ζ̄0De �
1 in the outer region, for weakly charged particles. In other words, in the outer region,
effectively the Deborah number is small and hence, despite De (the nominal Deborah
number) being O(1), the Oldroyd-B constitutive relation should apply. On the other hand,
when the motion inside the EDL is considered, our analysis is valid when δDeEDL ∼ O(1),
as indicated in (3.22) above.

Further note from (3.14), (3.18) and (3.20) that the Smoluchowski slip depends on
the quantity ω1 = ζ̄ (θ, ϕ)Q1(μ) and its derivatives, which encodes information about
variations in surface charge density as well as the particle’s curvature. While ω1 itself
determines the Smoluchowski slip at the leading order, its derivatives and their products
appear in the higher-order corrections, as may be observed in (3.18) and (3.20). The
derivatives of ω1 contain ζ̄ (θ, ϕ) and its derivatives, which underscore the effects of
variations in surface charge density, while the factor Q1(μ)/

√
1 − μ2 bears the signature

of the particle’s curvature. Notice that, even for ζ̄ = a constant, i.e. for a uniformly charged
particle, the derivatives of ω1 are in general non-zero because of Q1(μ) appearing in
them, which indicates that the curvature will affect the slip velocity, appearing in the
O(ζ̄ 2

0 ) and O(ζ̄ 3
0 ) terms. Recall that the effect of the particle’s curvature influences the

velocity inside the EDL because of the anomalous scaling shown by the normal stresses,
as discussed in § 3.2. As a consequence, the modified Smoluchowski slip would depend
on the particle’s radius (a) in a viscoelastic fluid. All of these features are in stark contrast
to what is observed in Newtonian fluids (Ajdari 1995; Yariv 2009). Although it is difficult
to understand this facet from the general expression given in (3.21) for an arbitrary surface
charge, the explicit effect of particle curvature becomes clear when one considers a
uniformly charged particle, as done in the next section.
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Further, note that the linear relation observed between the applied external fields and
the Smoluchowski slip for Newtonian media gets lost in viscoelastic fluids, because of the
appearance of nonlinear terms in β, as evident from (3.18) and (3.20). The third important
point to note is that, for λ1 = λ2, one recovers the slip velocity for a Newtonian fluid – this
is of course an intrinsic property of the Oldroyd-B constitutive relation (Bird et al. 1987).
The same limit may also be recovered by enforcing De = 0.

Finally, we shall quickly summarize the most interesting outcome of particle rotation
on the modified Smoluchowski slip, as noted in (3.18) and § S1.4 of the supplementary
material, where the O(ζ̄ 3

0 ) contributions have been reported. Notice from (3.18) that,
in presence of particle rotation (when ω3 /= 0), the slip velocity at O(ζ̄ 2

0 ) also has a
component along the êϕ direction, resulting in anisotropic motion. When the medium
is Newtonian, i.e. De = 0, this component vanishes. We therefore conclude that the slip
velocity (vS) in a viscoelastic medium does depend on the particle’s angular velocity; this
is again in stark contrast to Newtonian fluids. Because of the nonlinear rheology of the
fluid combined with the fact that rotational motion leads to differential velocity at various
points on the surface, the angular velocity of the particle gets embedded in the motion
within the EDL, from O(ζ̄ 2

0 ) onwards.
Although the expression of the Smoluchowski slip velocity derived above applies

to an arbitrary distribution of ζ̄ , we shall now look into two specific examples of
non-uniformly charged particles and apply the analysis carried out herein to derive their
electrophoretic motion. In the first instance, we shall consider pure translation of a particle,
carrying non-uniform but axisymmetric charge. The second example will explore pure
electrophoretic rotation of a particle with non-axisymmetric surface charge density.

3.6. On the choice of the constitutive model
In our analysis, the Oldroyd-B constitutive model has been used, considering a specific
vision. This model does not suffer from many of the limitations of its predecessors (e.g.
the second-order model only applies to small strain rates). At the same time, it is able
to capture many critical behaviours exhibited by polymeric fluids, which include, for
instance, growth of shear stress at low to moderate shear rates; it also correctly predicts
that the first normal stress difference varies as γ̇ 2 (γ̇ is the shear strain rate) in polymeric
liquids. In addition, some of the key physics of confluence between non-uniformity in
the surface charge distribution and the viscoelastic rheology may indeed be probed by
appealing to this model, as evidenced by the results presented later.

That said, the Oldroyd-B model is not without its limitations (Bird et al. 1987). Perhaps
two of its biggest shortcomings are that it fails to account for shear dependent viscosity and
normal stress coefficients, exhibited by polymeric liquids. Moreover, the Oldroyd-B model
also predicts infinite extensional viscosity, beyond a critical rate of strain. Therefore, this
model should be used with caution when the flow is strongly extensional in nature. It is
generally accepted that, for flows with large elongational stresses, use of the Oldroyd-B
model requires special care to ensure that the elongational viscosity remains finite. For
further insight, one may refer to the book of Bird et al. (1987).

In view of the above, one may therefore conclude that the strong stretching rates
inside the EDL call into question the accuracy of the Oldroyd-B model used here. As
a result, it is perhaps judicious to compare its predictions with those from more robust
nonlinear viscoelastic models (Bird et al. 1987; Afonso et al. 2009) that remain valid for
strong polymer stretching. To this end, in § 4.4 we have carried out numerical simulations
for electrophoretic motion of a non-uniformly (but axisymmetric) charged particle in a
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FENE-P fluid (Afonso et al. 2009). This model is one of the simplest nonlinear viscoelastic
models that is able to physically account for shear thinning in polymeric liquids. In the
appropriate limiting case (see § 4.4 for further details), the numerical solutions have been
compared with the analytical ones from the Oldroyd-B model. Overall, we observe that
the analytical predictions for the electrophoretic velocity using the Oldroyd-B model
remain reasonably accurate, when the surface charge is sufficiently small and shear
thinning effects are subdominant. However, in spite of its well-known limitations, the
importance of Oldroyd-B model in developing insights into the dynamics of complex
fluids remains undisputed, as evidenced from the vast body of existing literature (see for
instance Phan-Thien 1983; Bird et al. 1987; Tan & Masuoka 2005; Aggarwal & Sarkar
2008; Mukherjee & Sarkar 2011) premised on this model. As a consequence, it is perhaps
justified to assert that the predictions based on the Oldroyd-B model can indeed capture
much of the essential physics of some of the complex fluids.

4. Case study-I: electrophoretic translation of a non-uniformly charged particle

4.1. Overview of the analysis
As the first representative example, we take up the case of a spherical particle
carrying non-uniform but axisymmetric surface charge and derive an expression of its
electrophoretic mobility in the thin EDL limit. This particular example has been chosen
for its relatively simpler demand of algebraic manipulation as well as the light it sheds
on the essential physics governing electrophoresis in a viscoelastic medium even without
bringing the particle’s rotation into purview. A generic axisymmetric but otherwise
non-uniform charge density on a particle may be expressed as ζ̄ (μ, ϕ) =∑∞

n=0 anPn(μ).
Here, to keep the algebra tractable, we choose a0 /= 0 and a1 /= 0, while an = 0, ∀n �
2; hence, the charge density is given by ζ̄ (μ, ϕ) = a0P0(μ)+ a1P1(μ) = a0 + a1μ.
It may be checked that, in this case, the particle carries a net charge (appropriately
non-dimensionalized) amounting to 4πa0. Since we are only considering axisymmetric
flow, we may straight away make a couple of assertions as follows: (i) the particle will not
rotate, i.e. Ω = 0 and (ii) the particle will translate along the z-axis, i.e. êu = êz.

It may be easily verified from (3.14), (3.18) and (3.20) that, for a particle with
axisymmetric charge density, the ‘modified Smoluchowski slip’ takes the following form:

vS = vS,θ êθ , and vS,θ = ζ̄0v
(1)
S,θ + ζ̄ 2

0 v
(2)
S,θ + ζ̄ 3

0 v
(3)
S,θ + . . . . (4.1a,b)

Inserting ζ̄ = a0 + a1μ into (4.1a,b), we deduce that the slip velocity for this particular
case looks as follows:

v
(1)
S,θ = − 3β√

1 − μ2
(a0Q1 + a1Q2) (4.2a)

v
(2)
S,θ = Deβ2(λ1 − λ2)√

1 − μ2

[
9
10

a0a1Q1 − 9(77a2
0 + 9a2

1)

28
Q2 − 252

5
a0a1Q3 − 153

7
a2

1Q4

]

(4.2b)

v
(3)
S,θ =

[
1
8

a3
0β + 3

40
βa0a2

1 + De2β3(λ1 − λ2)

{
− 3

20
(λ1 + 8λ2)a3

0

− 3
20

(
57
7
λ1 − 48

7
λ2

)
a0a2

1

}]
Q1√

1 − μ2
+ h.o.t in Qn’s. (4.2c)
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In (4.2c), components up to Q6 contribute to the modified Smoluchowski slip, although
we only require the term associated with Q1 to compute the electrophoretic mobility
at this order. Therefore, we do not mention the other higher-order terms here and their
mathematical expressions will be made available upon request. Note that the special case
of a uniformly charged particle may be recovered by inserting a0 = 1 and a1 = 0 (i.e.
ζ̄ = 1). It may be easily verified that, in such a case,

v
(3)
S,θ = De2β3 (λ2 − λ1)√

1 − μ2

{
3
20
(λ1 + 8λ2)Q1(μ)+ 3

10
(802λ1 − 1369λ2)Q3(μ)

}

+ βQ1(μ)

8
√

1 − μ2
. (4.3)

The components v(1)S,θ and v(2)S,θ may also be evaluated by inserting a0 = 1 and a1 = 0 into
(4.2a) and (4.2b), respectively. Here, we would like to emphasize that the special case of a
uniformly charged particle explicitly filters out the influence of its curvature on the liquid
motion as well as on its electrophoretic mobility. Since the derivatives of the surface charge
with respect to the polar angle (μ = cos θ ) vanish, the only alterations to the slip velocity
comes from the curvature of the particle, as denoted by the factor Q1(μ)/

√
1 − μ2.

The electrophoretic velocity U may be ascertained by solving the governing equations
in the outer layer, i.e. (3.10a) and (3.10b), subject to the far field condition (3.11a) and
the matching condition (3.11b) at the particle surface, wherein vS (=vS,θ êθ ) is given by
(4.2) (also see the discussion after (3.8)). The final step is to apply the force balance at
the edge of the EDL, as outlined in (2.4a,b). Here, the force balance effectively reduces
to the following form (Leal 2007): Fz = 2π

∫ π

0 [(−p + τrr)μ−
√

1 − μ2τrθ ]r=1 dμ = 0.
Following the analysis for the EDL, the outer layer variables are also expanded in a regular
asymptotic series of ζ̄0. Therefore, the electrophoretic velocity and the net force on the
particle are expanded as

U = ζ̄0U1 + ζ̄ 2
0 U2 + ζ̄ 3

0 U3 + . . . (4.4a)

Fz = ζ̄0F
(1)
z + ζ̄ 2

0 F
(2)
z + ζ̄ 3

0 F
(3)
z + . . . , (4.4b)

where,

F
(k)
z = 2π

∫ π

0

[
(−pk + τ (k)rr )μ−

√
1 − μ2τ

(k)
rθ

]
r=1

dμ = 0. (4.4c)

All other variables may also be expanded in a similar way. The kth-order (in ζ̄0) outer layer
equations may be expressed as (for k = 1, 2, 3, . . . etc.)

−∇pk + ∇ · τ (k) = 0 and ∇ · vk = 0, (4.5a)

τ (k) + Deλ1T (k) = 2Dk + 2λ2DeS(k). (4.5b)

These are subject to the following boundary conditions:

at r → ∞, vk = −Ukêz, (4.6a)

at r = 1, u(k)r = 0; u(k)θ = v
(k)
S,θ . (4.6b)

The force balance at every order of ζ̄0 reads F
(k)
z = 0, which may be used to derive

Uk. Note that, using (4.5b), the momentum equation (4.5a) may be rewritten as
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follows: −∇pk + ∇ · [∇vk + (∇vk)
T] + De∇ · (2λ2S(k) − λ1T (k)) = 0 and ∇ · vk =

0. For an axisymmetric flow, (4.5a) may be solved using a streamfunction
(Leal 2007), defined as (for kth order of ζ̄0) u(k)r = −(1/r2)(∂Ψk/∂μ) and u(k)θ =
−(1/r

√
1 − μ2)(∂Ψk/∂r), where Ψ is the streamfunction. As such, the momentum

equation at any order of ζ̄0 may be expressed in terms ofΨ as follows (Leal 2007; Goswami
et al. 2017):

E4Ψk =
√

1 − μ2

(
f (k)θ + r

∂f (k)θ
∂r

)
+ (1 − μ2)

∂f (k)r

∂μ
, (4.7)

where (Leal 2007), E2 = ∂2/∂r2 + ((1 − μ2)/r2)(∂2/∂μ2); f (k)θ = De∇ · (2λ2S(k) −
λ1T (k)) · êθ and f (k)r = De∇ · (2λ2S(k) − λ1T (k)) · êr.

4.2. Solution for the streamfunction and the particle velocity
Following the outline of § 4.1, it is straightforward to write the solutions to the
streamfunction, apply the force balance and subsequently find the electrophoretic velocity
at successive orders of ζ̄0. At O(ζ̄0) the flow behaves exactly the same as that of a
Newtonian fluid. The streamfunction satisfies the equation E4Ψ1 = 0, subject to (4.6a) at
the far field and (4.6b) at the particle surface (with k = 1), where v(1)S,θ is given by (4.2a).
The resulting solutions for the streamfunction and the particle velocity read

Ψ1 = βa0

(
r2 − 1

r

)
Q1(μ)+ 3

2
βa1

(
1 − 1

r2

)
Q2(μ), (4.8a)

U1 = βa0. (4.8b)

At O(ζ̄ 2
0 ), the streamfunction satisfies the equation E4Ψ2 = β2De(λ1 − λ2)

∑4
n=1 N

(2)
n

(r)Qn(μ), subject to (4.6a) and (4.6b), where v(2)S,θ is given by (4.2b). Here, N (2)
1 =

−216a0a1/r8, N (2)
2 = 1296a2

1/7r9(r2 − 25/6), N (2)
3 = −648a0a1/r8 and N (2)

4 = 3240
a2

1/7r9(r2 − 3). Carrying out the force balance yields the following solutions for the
electrophoretic velocity and the streamfunction at O(ζ̄ 2

0 ):

Ψ2 = β2De(λ1 − λ2)

4∑
n=1

M(2)
n (r)Qn(μ), (4.9a)

U2 = −3
5
β2De(λ1 − λ2)a0a1. (4.9b)

Expressions for M(2)
k values (k = 1, 2, . . .) are included in Appendix B. The analysis

at O(ζ̄ 3
0 ) also follows the same pattern as that of the previous orders. It may be

shown that the streamfunction, Ψ3 satisfies the following equation: E4Ψ3 = De2β3(λ1 −
λ2)
∑6

n=1 N
(3)
n (r)Qn(μ). As already mentioned, to compute the electrophoretic mobility,

only the contribution from the mode n = 1 will be adequate. As such, the expressions
for N (3)

1 have been included in the supplementary material (see § S2.1 therein).
The streamfunction has the form Ψ3 =∑6

n=1 M
(3)
n (r)Qn(μ); expressions are given in
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Appendix-B. Carrying out the force balance yields the following expressions for the
electrophoretic mobility:

U3 =−20 819
5720

β3De2(λ1−λ2)

[(
λ1− 16 445

20 819
λ2

)
a3

0+ 55 749
104 095

(
λ1− 41 101

130 081
λ2

)
a0a2

1

]

− βa0

(
a2

0
24

+ a2
1

40

)
. (4.10a)

Recall that the total electrophoretic mobility is given by U = ζ̄0U1 + ζ̄ 2
0 U2 + ζ̄ 3

0 U3 + . . . ,
where U1, U2 and U3 are given in (4.8b), (4.9b) and (4.10), respectively. More insight may
be gained from the dimensional form of the electrophoretic velocity, expressed as

U ′ = ζ̄0α + ζ̄ 2
0 α

2
(
λ0

a

)
G1 + ζ̄ 3

0

{
α3
(
λ0

a

)2

G2 − αa0

(
a2

0
24

+ a2
1

40

)}
+ O(ζ̄ 4

0 ),

(4.11a)
where,

α = ε

η

(
kT
e

)
E0, and G1 = −3

5
(λ1 − λ2)a0a1, (4.11b)

G2 = −20 819
5720

(λ1 − λ2)

[(
λ1 − 16 445

20 819
λ2

)
a3

0 + 55 749
104 095

(
λ1 − 41 101

130 081
λ2

)
a0a2

1

]
.

(4.11c)

For the special case of a uniformly charged particle (ucp), a0 = 1 and a1 = 0 and hence
G1 = 0 and G2 = −(λ1 − λ2)(

20 819
5720 λ1 − 23

8 )λ2) and thus

U ′
ucp = ζ̄0α + ζ̄ 3

0

[
−α3

(
λ0

a

)2

(λ1 − λ2)

(
20 819
5720

λ1 − 23
8
λ2

)
− α

(
1
24

)]
+ . . . .

(4.12)
The complete solution for the O(ζ̄ 3

0 ) streamfunction for a uniformly charged particle has
been included in the supplementary material (see § S2 therein). Further discussion is
included in the next subsection.

4.3. Comparison with previous studies
We shall first compare our results for the electrophoretic velocity (U ′) with two of the
previous studies: (i) non-uniformly charged particle in a Newtonian medium, carried out
by Anderson and coworkers (Anderson 1985; Fair & Anderson 1989) and (ii) uniformly
charged particle in a viscoelastic medium with weak polymeric viscosity, investigated by
Li & Koch (2020). This is followed by a comparison with numerical simulations using the
FENE-P constitutive model in § 4.4, where the accuracy of the Oldroyd-B model itself is
assessed.

4.3.1. Comparison with results for Newtonian fluids
Anderson and coworkers (Anderson 1985; Fair & Anderson 1989) have investigated
electrophoresis of non-uniformly charged spherical particles in Newtonian fluids and
reported general analytical solutions for the mobility for arbitrary ‘zeta’ potentials in the
thin EDL limit. We shall use a different notation to represent their results herein. The zeta
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potential of the particle is denoted as φ′
P (non-dim. φP = φ′

P/ψc), while the electrophoretic
velocity (with units) in Newtonian fluids is denoted by U ′

N . Anderson (1985) showed that
the electrophoretic velocity for an arbitrary distribution of φ′

P on the particle surface is
given by

U ′
N = ε

η

[
〈φ′

P〉I − 1
2

H ′
2

]
· E∞, (4.13)

where E∞ is the far-field imposed electric field (uniform), H ′
2 = 〈φ′

PY 2〉 is the quadrupole
moment of φ′

P and Y 2 = 3n̂n̂ − I is the second spherical harmonic. Also, 〈·〉 denotes
the average over the particle surface. Referring to the description in § 4.1, we note that,
here, E∞ = E0êz, U ′

N = U ′
N êz, n̂ = êr and φ′

P is related to the dimensionless surface
charge density (σ = ζ̄0ζ̄ ) as φ′

P = 2ψc sinh−1(1
2 ζ̄0ζ̄ (μ)). As a result, for ζ̄0 � 1, φ′

P
has the expansion, φ′

P/ψc = ζ̄0ζ̄ − 1
24 ζ̄

3
0 ζ̄

3 + . . . , where ζ̄ = a0 + a1μ. Equation (4.13)
may then be simplified to U ′

N = 3εE0/2η[〈φ′
P〉I − 〈êr êrφ

′
P〉] : êzêz and hence U ′

N may be
expanded as U ′

N = ζ̄0U ′(1)
N + ζ̄ 2

0 U
′(2)
N + ζ̄ 3

0 U
′(3)
N + . . . , when ζ̄0 � 1. It can be verified that

U ′(1)
N = 3εψcE0/2η[〈ζ̄ 〉I − 〈êr êrζ̄ 〉] : êzêz, U ′(2)

N = 0 and U ′(3)
N = εψcE0/16η[−〈ζ̄ 3〉I +

〈êr êrζ̄
3〉] : êzêz. Taking ζ̄ = a0 + a1μ, we obtain 〈ζ 〉 = a0 and 〈êr êrζ 〉 = 1

3 a0I and hence,
U ′(1)

N = αa0. At the same time, 〈ζ̄ 3〉 = a0(a2
0 + a2

1) and 〈êr êrζ̄
3〉 = a0(a2

0/3 + a2
1/5)I +

2
5 a0a2

1êzêz, which implies, U ′(3)
N = −αa0(a2

0/24 + a2
1/40). Combining the O(ζ̄0) and

O(ζ̄ 3
0 ) results, Anderson’s analysis yields the following electrophoretic velocity for the

given surface charge distribution:

U ′
N = ζ̄0(αa0)− ζ̄ 3

0

[
αa0

(
a2

0
24

+ a2
1

40

)]
+ O(ζ̄ 5

0 ). (4.14)

It may be noted that, by inserting λ0 = 0 (Newtonian limit) in (4.11a), the velocity reported
in (4.14) above is exactly recovered. We therefore conclude that our analysis can correctly
reproduce the mobility of non-uniformly charged particles in the Newtonian limit.

4.3.2. Comparison with results for viscoelastic fluids
Li & Koch (2020) have analysed the electrophoretic mobility of a uniformly charged
sphere in a Giesekus fluid. They considered the limit of small polymeric viscosity (C � 1,
defined later), weak surface charge (ζ̄0 � 1) and thin EDL. Note that we have used
different symbols (to those used by Li & Koch) to express their results. Li & Koch (2020)
derive their results for C = ηP/ηS � 1, where ηS is the solvent viscosity and ηP is the
polymeric viscosity. The Oldroyd-B limit in Li and Koch’s work is obtained by equating
the ‘mobility factor’ (denoted by α in their work) to zero (Bird et al. 1987). Then, it may

shown that the polymeric stresses (τ ′
P) are governed by τ ′

P + λ1
∇
τ ′

P = 2ηPD′, whereas the
solvent stress (τ ′

S) satisfies τ ′
S = 2ηSD′, while the total stress is τ ′ = τ ′

P + τ ′
S. Noting that

η = ηS + ηP and non-dimensionalizing stresses with the characteristic scales of § 2.2, it

may be shown that the total stress satisfies τ + De
∇
τ = 2[D + De(1 + C)−1

∇
D]. Comparing

it with the constitutive relation of our study, as mentioned in (2.1e), we note that C =
λ1/λ2 − 1. Assuming C = λ1/λ2 − 1 � 1, Li and Koch expressed the electrophoretic
velocity (U∗) as an asymptotic expansion in C as: U∗ = U (0)∗ + CU (1)∗ + . . . , where
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U (0)∗ = 1 and U (1)∗ = −1 − 2187
2860 De2∗, enforcing the ‘mobility factor’ to be zero. Here,

De∗ is the Deborah number defined in Li and Koch’s work and it is related to our work
as: De∗ = βφP(1 + C)De and φP is the dimensionless potential on the particle surface,
defined in § 4.3.1. For a uniformly charged particle with a0 = 1 and a1 = 0, we write,
φP = ζ̄0 − 1

24 ζ̄
3
0 + . . . . Also, in Li and Koch’s work, the characteristic velocity was taken

as uc,LK = α(1 + C)φP. Hence the dimensional form of U∗ becomes

U ′
∗ = αφP − αφP

2187
2860

De2
∗C + . . . . (4.15)

Further, inserting the expansion for φP as mentioned above with De∗ = βφPDe(1 + C)
and only retaining terms up to O(C), (4.15) simplifies to

U ′
∗ = αζ̄0 − αζ̄ 3

0

[
1
24

+ 2187
2860

De2β2C
]

+ . . . . (4.16)

At the same time, in (4.12), enforcing λ1 = 1, λ2 = (1 + C)−1 and retaining terms only
up to O(C), it may be shown that the velocity reported in (4.16) is exactly recovered. We
have therefore shown that our analysis is also able to successfully reproduce the reported
results for uniformly charged particles, in viscoelastic fluids.

4.4. Comparison with numerical simulations of nonlinear viscoelastic models
As discussed in § 3.6, the Oldroyd-B constitutive model is known to produce quantitatively
inaccurate results in the presence of strong elongational stresses. Here, such stresses are
likely to be present within the EDL, wherein τθθ , τϕϕ and τθϕ all scale as δ−2. Therefore, it
is instructive to assess the accuracy of Oldroyd-B model itself, by comparing our analytical
results with numerical solutions, carried out for more robust nonlinear viscoelastic models,
which do not necessarily suffer from the same shortcomings. To this end, in this subsection
we shall compare our results for the Oldroyd-B model with the numerical solutions
obtained using the FENE-P constitutive model (Li & Koch 2020), which is one of
the simplest nonlinear viscoelastic models that has reasonable mathematical tractability
without sacrificing the essential physics of interest.

4.4.1. The simplified governing equations for FENE-P model
We shall directly start with the dimensionless version of the governing equations, where all
the variables are non-dimensionalized using the characteristic scales described in § 2.2. We
reiterate that the electrostatic potential (φ) is governed by the Poisson–Boltzmann equation
(Kilic, Bazant & Ajdari 2007) and the velocity field is governed by the Cauchy momentum
equation along with the continuity equation for mass conservation. These equations are
expressed as

∇2φ = δ−2 sinhφ, (4.17a)

−∇p + ∇ · τ + δ−2 sinh(φ)∇φext = 0 and ∇ · v = 0. (4.17b)

Here, φext is the externally imposed potential and is given by (2.5). The total stress τ for
a FENE-P fluid may be written as τ = τ S + τP, where τ S and τP are the solvent and
polymeric stresses respectively (Li & Koch 2020; Bird et al. 1987). Following § 4.3.2, we
may define C = ηP/ηS as the ratio of polymeric and solvent viscosity and η = ηS + ηP
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as the total viscosity, appearing in §§ 2.1 and 2.2. Then, τ S = 2(1 + C)−1D, while the
polymeric stress satisfies the equation (Oliveira 2002; Li & Koch 2020)[

�2

�2 − 3
+ De(1 + C)

�2C Tr(τP)

]
τP + De

∇
τP = 2

(
�2

�2 − 3

)( C
1 + C

)
D, (4.18)

where � is called the extensibility parameter, which is the ratio of the maximum allowed
length of the springs in a bead-spring model of polymers to their equilibrium length
(Oliveira 2002). Therefore, the total stress (τ ) is governed by the following equation:

[
�2

�2 − 3
+ De(1 + C)

�2C Tr(τ )
]

τ + De
∇
τ = 2

⎡
⎣{ �2

�2 − 3
+ De
�2CTr(τ )

}
D + De

∇
D

1 + C

⎤
⎦ ,

(4.19)
which indicates that λ1 = 1 and λ2 = (1 + C)−1. It is well established that the FENE-P
model can account for shear thinning of polymeric liquids, owing to the parameter �.
Equation (4.19) reduces to the Oldroyd-B model of (2.1e), when � → ∞. Since our
analysis is valid for O(λ1) ∼ O(λ2), we shall compare the analytical solutions of § 4.2
with the numerical solutions of (4.17) in the limiting case of � � 1 and C ∼ O(1).

The electrophoretic velocity of the particle (U êu) may be evaluated by holding the
particle stationary and letting the surrounding fluid flow over it. Then, the far-field velocity
will be equal to −U êu. Here, we shall consider an axisymmetric flow, where êu = êz.
Therefore, in a frame fixed at the particle centre (see § 2.1), the following boundary
conditions are satisfied:

êr · ∇φ = −δ−1ζ(μ); v = 0, at, r = 1, (4.20a)

τ → 0, p → 0, φ → 0, as r → ∞. (4.20b)

The desired quantity may be obtained by noting that U = |v(r → ∞)|.

4.4.2. The numerical model
The numerical model is depicted in figures 2(a) and 2(b). Since we are looking into
an axisymmetric flow, it is sufficient to consider any one half of the flow domain. The
particle is held fixed with its centre at the origin. A cylindrical coordinate system (z, ρ)
is used to compute the numerical solutions, where r =

√
z2 + ρ2. The particle carries

a surface charge density of the form ζ(θ, ϕ) = ζ̄0(a0 + a1μ). The relevant boundary
conditions on all the surfaces are pictorially represented in the schematic 2(a). For the rest
of this subsection, we have fixed the following parameters: a0 = a1 = 0.5, De = β = 1
and δ = 0.005.

The numerical simulations are carried out in COMSOL Multiphysics 5.6, which uses
finite element-based discretization. To ensure that the far-field free boundary is accurately
represented, we have chosen Lz = 7.5 and Lρ = 10. The flow domain is discretized using
an unstructured triangular mesh. As our analysis suggests, the velocity and the stresses
vary rapidly within the EDL and the polymeric stresses can be extremely large therein.
Therefore, to accurately capture the variations within the EDL, an extremely fine mesh
is taken within a distance 5δ from the particle surface at r = 1. Outside the EDL, a
relatively coarser mesh has been used. In particular, within the EDL, a ‘scaling factor’
of 30 is chosen while outside the same it is taken as 2. As a result, the minimum element
size is 3 × 10−4 and the maximum element size (close to the boundaries) becomes 0.15.
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Figure 2. (a) Schematic of the numerical model is depicted for an axisymmetric flow, with a cylindrical
coordinate system (z, ρ) fixed at the particle centre. The particle carries a surface charge density of the form
ζ(μ) = ζ̄0(a0 + a1μ). The domain size is 2Lz × Lρ , where Lz = 7.5 and Lρ = 10. All the stresses and the
potential vanish on the boundaries and along ρ = 0, all the derivatives vanish. (b) Close-up of the mesh around
the particle is shown. The domain is discretized using a triangular unstructured mesh. A large number of grid
points are taken within a distance 1 + 5δ from the particle, to accurately capture the variations within the EDL.

In the region 1 < r < 1 + 5δ, there are 8562 domain elements while in aggregate there are
98 706 domain elements after discretization. Panel (b) represents a close-up view of the
mesh around the particle surface. It may be clearly observed that the mesh size is extremely
fine close to the particle and gradually becomes coarser away from it. The linear direct
solver ‘MUMPS’ with relative tolerance 10−3 has been used to compute the numerical
solutions. A representative example of the velocity contours obtained from the numerical
simulations has been included in § S3 of the supplementary material.

4.4.3. Comparison with analytical solutions
Figure 3(a,b) compares the electrophoretic velocities obtained from the analytical
solutions using the Oldroyd-B model as reported in (4.11a) and the numerical solutions
obtained using the FENE-P model. Panel (a) compares U as a function of ζ̄0, whereas
in panel(b) U vs �−2 is plotted; values of other relevant parameters are mentioned in the
caption. As mentioned in § 4.4.1, the numerical simulations have been carried out in the
limit of �2 � 1 in order to recover the Oldroyd-B model.

From panel (a), we observe that the Oldroyd-B model can accurately predict the
electrophoretic velocity until approximately ζ̄0 ≈ 0.15 when �2 = 200, given the particular
choices of other relevant parameters. Recall that C = 0.5 implies λ1 = 1 and λ2 = 2/3.
This indicates that the Oldroyd-B model can reasonably describe the polymer stretching
within the EDL only when two conditions are simultaneously met: (i) the surface
charge density is small and (ii) the maximum allowable length of the polymers is large.
When ζ̄0 > 0.15, the Oldroyd-B model underpredicts the electrophoretic velocity. This is
expected, because the FENE-P as well as many other nonlinear viscoelastic models predict
shear thinning, which becomes especially important within the EDL, where the stretching
rates are large. Therefore, as ζ̄0 becomes larger, the shear thinning behaviour becomes
increasingly important, which the Oldroyd-B model fails of capture. Noting that shear
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Figure 3. (a) Comparison between numerical solutions for the FENE-P model (symbols) and the analytical
solutions (lines) as reported in (4.11a) for the Oldroyd-B model. Variation of U with ζ̄0 has been plotted here.
Other relevant parameters are C = 0.5 and �2 = 200. (b) Comparison of U vs �−2 between the Oldroyd-B
analytical (dotted lines) solutions and the numerical solutions for the FENE-P model (symbols) for different
choices of ζ̄0 = 0.025, 0.05, 0.1 and 0.15. We take C = 1.

thinning essentially reduces the effective viscosity, the resulting electrophoretic velocity
will naturally be larger as compared with that predicted by the Oldroyd-B model, as evident
from panel (a). We have further observed that the comparison between the FENE-P and
the Oldroyd-B model becomes more favourable when C is small (∼0.1). The reason may
be attributed to the fact that, when C = 0, Newtonian behaviour is recovered from (4.19)
and hence, for small values of C, both the Oldroyd-B and FENE-P models exhibit flow
characteristics close to those of a Newtonian fluid, which results in a relatively better
comparison between the two.

Panel (b), on the other hand, shows the comparison between the Oldroyd-B and FENE-P
models for the electrophoretic velocity as a function of �−2, for different choices of ζ̄0. Of
course, U calculated using the Oldroyd-B model is independent of � and hence these are
represented by the horizontal straight lines in the figure. We observe that, for very small
values of ζ̄0 (0.025 and 0.05), the Oldroyd-B and the FENE-P models agree closely for
all values of � � 1. In other words, the polymer’s maximum allowable length has very
little influence on the translational velocity when the surface charge is weak. However,
for larger values of ζ̄0, especially when ζ̄0 � 0.15, large differences are observed between
the Oldroyd-B and the FENE-P models, which underlines the limitations of the former.
The main reason may be attributed to the shear thinning behaviour embedded in the
FENE-P model that eventually dominates when ζ̄0 increases beyond a critical value (here
0.15). In essence, one may therefore conclude that the Oldroyd-B model can predict the
electrophoretic translational velocity in the thin EDL limit in a polymeric liquid with
reasonable accuracy, when the surface charge is weak and the maximum permissible
polymer lengths are very large. In other words, the effective Deborah number in the
bulk, Deeff = ζ̄0De, needs to be small (close to 0.1 or smaller) for favourable comparison
between the Oldroyd-B and other nonlinear viscoelastic models. The condition related to
the permissible length of the polymers stems from the fact that both the FENE-P and
Oldroyd-B models are derived by treating the polymers as beads connected by springs
(Van Heel, Hulsen & Van den Brule 1998). However, the Oldroyd-B model assumes the
springs to be Hookean and infinitely extensible, while in FENE-P the springs are nonlinear
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and can only be stretched up to a maximum length (Van Heel et al. 1998). Therefore, it
is easily realized that when this maximum allowable length is very large (� � 1), the
FENE-P and the Oldroyd-B models should exhibit similar characteristics, as is indeed
observed in figure 3. Finally, we note from figure 3 that the accuracy of the predictions
using the Oldroyd-B model is far more sensitive to ζ̄0 than �.

The differences between the Oldroyd-B and the FENE-P models, particularly inside
the EDL, can be better understood by looking into a simple example of unidirectional
electroosmotic flow over a flat plate, carrying uniform surface/zeta potential ζ̄0. For
analytical simplicity, we shall consider the special case of C � 1, i.e. very large polymeric
viscosity as compared with the solvent viscosity. For this particular example, the x-axis
runs along the plate and the y-axis runs vertical to the plate. Choosing the characteristic
length scale as H (e.g. the plate length), taking δ = λD/H and keeping all other
characteristic scales and the non-dimensionalization scheme intact as in § 2.2, the FENE-P
constitutive model simplifies to the following form for the flow under consideration
(Oliveira 2002): (

�2

�2 − 3
+ De
�2 τxx

)
τxx = 2Deτxy

du
dy
, (4.21a)

(
�2

�2 − 3
+ De
�2 τxx

)
τxy = 2

(
�2

�2 − 3

)
du
dy
. (4.21b)

Invoking the Debye–Huckel linearization for ζ̄0 � 1, the potential distribution takes the
form φ = ζ̄0e−y/δ . Accordingly, it may be shown that the velocity field takes the form
(y = 0 on the flat plate)

u = −βζ̄0
(
1 − e−y/δ)− 2

3
(�2 − 3)2

�6 De2β3δ−2ζ̄ 3
0

(
1 − e−3y/δ

)
+ . . . . (4.22)

Our analytical solutions for the Oldroyd-B model assume that viscoelasticity inside the
EDL remains subdominant so that the velocity field scales similarly to that of a Newtonian
fluid. However, we observe from (4.22) that the viscoelastic contribution to the velocity
scales as δ−2 when shear thinning effects are present and hence this component may easily
dominate in the thin EDL limit (δ � 1), when ζ̄0 is larger than a critical value. As a result,
the analysis of flow within the EDL, as outlined in § 3, remains valid for the FENE-P
model as well so long as the viscoelastic contributions are negligible at the leading order of
ζ̄0. From (4.22), we note that such a paradigm is realized when ζ̄ 2

0 � δ2�6(�2 − 3)−2. By
inserting the values of δ and � used in figure 3(a), we observe that this condition is satisfied
when ζ̄0 � 0.07, which is in line with the conclusions drawn at the end of the previous
paragraph. We would like to clarify that the above constraint on the value of ζ̄0 only applies
when the FENE-P or another similar nonlinear viscoelastic model is being considered. As
far as the Oldroyd-B model is concerned, ζ̄0 � 1 is sufficient for the validity of the analysis
in § 3.4. Further, we note from (4.21) that the scaling τxx ∼ O(τ 2

xy) equally holds for the
FENE-P model as well, despite its distinctive velocity field, which underlines the ability
of the Oldroyd-B model in capturing many of the critical flow features within the EDL.

4.5. Physical perspectives
There are a number of interesting points to note from the expressions for velocity
derived in § 4.2, as comparative as well as distinctive to previously reported
scenarios. First, as a special case, the electrophoretic mobility for a fluid obeying the
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upper convected Maxwell (UCM) relation may be recovered by enforcing λ2 = 0
and λ1 = 1 (Bird et al. 1987), as U = ζ̄0βa0 − ζ̄ 2

0 (
3
5β

2Dea0a1)− ζ̄ 3
0 {De2β3(20 819

5720 a3
0 +

55 749
28 600 a0a2

1)+ βa0(a2
0/24 + a2

1/40)} + . . . . Similarly, the electrophoretic velocity for
the special case of a second-order fluid with vanishing second normal stress
coefficient (Bird et al. 1987) may be obtained by enforcing λ1 = 0 and λ2 = 1; the
resulting velocity reads U = ζ̄0βa0 + 3

5 ζ̄
2
0 Deβ2a0a1 − ζ̄ 3

0 {De2β3(23
8 a3

0 + 123 303
200 200 a0a2

1)+
βa0(a2

0/24 + a2
1/40)} + . . . . Notice that, for both kinds of fluids, the resulting

electrophoretic velocity may either decrease or increase compared with that in a Newtonian
fluid, depending on the value of a1. However, for a uniformly charged particle (a1 = 0),
the electrophoretic velocity trivially decreases.

Second, it is interesting to note the unique curvature dependence of the electrophoretic
velocity of the particle, as evident from (4.11). Recall that, for a Newtonian fluid,
the electrophoretic velocity is independent of its size, as evident from the expression
for U ′

N mentioned above (as also reported previously in the literature, see Ohshima
2006). However, notice from (4.11a) that the particle’s radius a explicitly appears
in the expression for the velocity and is always associated with the characteristic
relaxation/retardation time scale λ0 – a viscoelastic property of the fluid. Further, observe
that particles of larger sizes tend to cause smaller deviations from the Newtonian behaviour
– this non-intuitive coupling between the particle’s curvature and the fluid rheology is
unique to the complex fluid under consideration here. While this coupling is present for
a uniformly charged particle, it is augmented by non-uniform surface charge, as evident
from the λ0/a appearing in the O(ζ̄ 2

0 ) term in the particle velocity. Another point to note in
this regard is that the particle size and the non-uniformity in charge density are intricately
coupled in controlling the net change in the velocity (whether positive or negative) as
compared with the case of a Newtonian fluid medium – more discussion on this is included
later. Third, it is to be noted that the electrophoretic velocity is not proportional to the
applied external field β, as is expected for Newtonian fluids, in the presence of thin
EDLs. The O(ζ̄ 2

0 ) and O(ζ̄ 3
0 ) corrections introduce nonlinear dependence on the external

field through the β2 and β3 factors respectively. These corrections are valid irrespective
of the strength of the surface charge. However, for Newtonian fluids, the nonlinear
relation between U ′ and β may feature only for strongly charged surfaces, when the
effect of surface conduction becomes important (Schnitzer & Yariv 2012; Schnitzer et al.
2013).

Fourth, it is well established that, for flow past spherical or cylindrical objects
in polymeric liquids, when De ∼ O(1) or more, the polymers just behind the rear
stagnation point witness strong extension rates. This leads to the formation of the
so-called ‘birefringent strands’, wherein the extensional viscosity of the solution is greatly
enhanced, even in dilute solutions – see the work of Harlen and coworkers (Harlen,
Rallison & Chilcott 1990; Harlen, Hinch & Rallison 1992; Becherer, van Saarloos &
Morozov 2009) for further details. This can profoundly alter the force on the particle
and hence change its mobility significantly. Interestingly, formation of these strands has
been found in both FENE-P (Harlen et al. 1990) as well as UCM type constitutive models
(Becherer et al. 2009). However, in the present study, despite De ∼ O(1), the effective
Deborah number is actually Deeff ∼ O(ζ̄0) � 1, on account of the weakly charged particle
(see § 3.5). As a result, the stretching of polymers remains limited and they are likely
to retain their random coil shapes (Harlen et al. 1992) which hinders the formation of
birefringent strands. Hence, it is expected that formation of such polymeric strands will
not play a key role in the scenarios described within the scope of the present model.
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For completeness, in the supplementary material (see § S4 therein), we have shown an
example of the variation in the polymeric stresses in the outer layer, around the particle.

Finally, it is intriguing to note the effect of non-uniform charge (i.e. a1) density in
combination with the medium’s viscoelasticity on the particle’s mobility. For a Newtonian
fluid, non-zero a1 always slows down (see the expression for U ′

N) a particle’s velocity,
which indicates that a non-uniformly charged particle would move slower than a uniformly
charged one, at least when the surface charge is weak. However, in a viscoelastic medium,
the sign of a1 dictates whether the particle would speed up or slow down. For an Oldroyd-B
fluid, λ1 > λ2, as required for elongational viscosity (Bird et al. 1987). Therefore, from
(4.9b), we note that for a1 < 0, a non-uniformly charged particle would speed up in a
viscoelastic medium; the reverse is true when a1 > 0. On the other hand, the O(ζ̄ 3

0 )
contribution always slows down the particle, regardless of the sign of a1. Perhaps the
most striking feature of non-uniform surface charge and viscoelasticity is the appearance
of the O(ζ̄ 2

0 ) correction to the velocity, as evident from (4.11a). Notice that this term is
absent when the particle is uniformly charged or the medium is Newtonian. Therefore, it
is a unique outcome of the confluence of a non-uniform surface charge and the medium’s
viscoelasticity. One of its major consequences is that the presence of non-uniform charge
augments the influence of the medium’s viscoelasticity on the particle’s electrophoretic
velocity. Since this correction is proportional to ζ̄ 2

0 , it naturally leads to the breaking
of fore–aft symmetry in electrophoresis of axisymmetric particles. More discussion is
included in § 4.6.

Another promising way to probe the effects of non-uniform surface charge on the
particle’s mobility is to explore the influence of multipole moments of the surface charge,
following the lead of Anderson and coworkers (Anderson 1985; Fair & Anderson 1989).
They showed that (see (4.14)) in a Newtonian medium, subject to a uniform external
electric field, a particle’s velocity would depend on the zeroth (i.e. the average) and the
quadrupole (i.e. second) moments of the ‘zeta potential’. On the other hand, the dipole
(i.e. the first) moment of φ′

P governs the angular velocity of the particle. These results were
exact (at least in the thin EDL limit), while the particle velocity was essentially a linear
combination of contributions from the zeroth and quadrupole moments of the potential.
However, in a viscoelastic medium, because of the nonlinear constitutive relation, we
expect that the various multipole moments will interact with each other to influence the
particle velocity. At the same time, moments other than the quadrupole and the zeroth
moment may also contribute to the particle’s mobility. Here, we shall only consider
contributions from up to the quadrupole moments of the surface potential.

Noting that the characteristic scale for all the multipole moments is ψc, these may
be written as (in non-dimensional form) (Anderson 1985): (i) zeroth moment 〈φP〉 =
(4π)−1 ∫ 2π

0 dϕ
∫ 1
−1 dμφP(μ, ϕ); (ii) dipole moment H1 = −〈φPêr〉 and (iii) quadrupole

moment H2 = 〈φP(3êrêr − I)〉 (see § 4.3.1). Since φP has the expansion, φP = ζ̄0ζ̄ −
1

24 ζ̄
3
0 ζ̄

3 + . . . , it follows that the multipole moments may also be expanded in ζ̄0 as
H j = ζ̄0H (1)

j + ζ̄ 2
0 H (2)

j + . . . , for j = 1, 2. It may be deduced that, 〈φ(1)P 〉 = a0, 〈φ(3)P 〉 =
− 1

24 a0(a2
0 + a2

1) for the zeroth moment; H (1)
1 = 1

3 a1êz, H (2)
1 = 0 and H (3)

1 = − 1
24 a1(a2

0 +
1
5 a2

1)êz for the dipole moment and H (1)
2 = H (2)

2 = 0, H (3)
2 = 1

60 a0a2
1(I − êzêz) for the

quadrupole moment.
Next, we shall try to express the velocity reported in (4.11a) using the imposed electric

field, E∞ = E0êz and the multipole moments mentioned above, in tensor form. We
further define, νE = εψc/η as the electrophoretic mobility. Then, the structure of the
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electrophoretic velocity in (4.11a) suggests that it may be rewritten order-wise in the
following general form:

U ′ = ζ̄0U ′
1 + ζ̄ 2

0 U ′
2 + ζ̄ 3

0 U ′
3 + . . . , (4.23a)

where,

U ′
1 = νE

(
〈φ(1)P 〉I − b11H (1)

2

)
· E∞ (4.23b)

U ′
2 = b21ν

2
E〈φ(1)P 〉H (1)

1 · E∞E∞ (4.23c)

U ′
3 = νE

(
〈φ(3)P 〉I − 1

2
H (3)

2

)
· E∞

+ν3
E

(
b31H (3)

2 + b32〈φ(1)P 〉H (1)
1 H (1)

1 + b33〈φ(3)P 〉I
)

: E∞E∞E∞. (4.23d)

Admittedly, only an axisymmetric analysis is not enough to obtain all of the coefficients
b11, b31, . . . and so on. That said, based on Anderson’s work (Anderson 1985) and (4.23d)
we can conclude that b11 = 1

2 . Further, comparing (4.23c) and (4.11a), we note that b21 =
−9

5 (λ0/a)(λ1 − λ2). Also, taking the example of a uniformly charged particle, whence
H2 = H1 = 0, it follows from (4.12) that b33 = 24(λ0/a)2(λ1 − λ2)(

20 819
5720 λ1 − 23

8 λ2).
The coefficients b31 and b32 are also functions of λ1, λ2, a etc.; however, it is not possible
to comment further on these coefficients based on the present analysis alone.

There are two key features of the equation (4.23), which are distinct from what is
observed in a Newtonian medium. First, notice from (4.23c) that the dipole moment also
contributes to the overall mobility in a viscoelastic fluid – this is what ultimately leads to
symmetry breaking, as discussed in § 4.6. Second, it is quite obvious that, in a complex
fluid, the electrophoretic velocity also has contributions from the interactions between
the various multipole moments of the surface potential. The coefficients b21, b31, . . .
etc. bear the signature of the medium’s viscoelasticity and the associated interactions
between various moments on the mobility of the particle. It is naturally expected that
the higher-order moments may also influence the particle velocity, although they have not
been considered here. Hence, the coefficients (such as b21) are expected to have errors of
O(||H3||).

4.6. Results for electrophoretic velocity
Figure 4(a,b) demonstrates the contours of U/UN as a function of a0 and a1, while values
of other relevant parameters are given in the caption. In panel (a), contours for a1 < 0
are shown, whereas, in (b), contours for a1 > 0 are depicted. The assertions made in
§ 4.5 are clearly observed in these two panels. We note that, for a1 < 0, the maximum
increment in the velocity compared with a Newtonian medium is obtained when a0 is
small and a1 is relatively large. It is further important to note that, for a0 = 0, U = 0 –
this is expected because a0 = 0 indicates that the particle does not carry any net charge
and hence its net velocity is constrained to be zero. When a1 = 0, U < UDe=0 always; this
reduction occurs owing to the O(ζ̄ 3

0 ) correction to U , which does not vanish even when the
particle is uniformly charged. The O(ζ̄ 3

0 ) correction underscores the effects of streamwise
stretching of polymers inside the EDL due to the particle’s curvature on its mobility – see
§ 3.2 for more discussion. Finally, it is interesting to note that a change in the sign of a1
dictates whether the particle’s velocity increases or decreases in a viscoelastic medium –
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Figure 4. (a) Contour plot of U/UN vs a0 and a1 (<0), for De = 1, λ1 = 1, λ2 = 0.5, β = 1, ζ̄0 = 0.25.
(b) Same contour plot, but for a1 > 0.

this is in stark contrast to Newtonian fluids. This indicates that, in a viscoelastic fluid, a
particle’s mobility strongly depends on how the charge is distributed around its surface. It
is to be noted that changing the sign of a1 does not change UDe=0 and hence the relative
change in U between panels (a,b) indicates fore–aft symmetry breaking in a viscoelastic
medium. Recall that this symmetry breaking occurs owing to the contributions from the
dipole moment to the particle velocity, which comes at O(ζ̄ 2

0 ). This symmetry breaking
is a unique feature of the rheological paradigm considered here, since symmetry always
prevails in Newtonian media in the Stokes flow regime (Leal 2007). In the next section,
we further show that a similar feature also prevails in case of pure particle rotation in a
viscoelastic medium, subject to an external electric field, provided that the surface charge
is non-axisymmetric.

5. Case study-II: electrophoretic rotation of a non-uniformly charged particle

As a second example, we consider pure electrophoretic rotation of a particle, carrying
non-uniform surface charge. In an effort to keep things simple and focused, we shall only
consider the particle’s angular velocity at a given instant, when the charge distribution on
its surface is known. Further, in this section, we shall only report up to the first correction
to the angular velocity occurring at O(ζ̄ 2

0 ), caused by viscoelasticity.
Any arbitrary non-axisymmetric surface charge ζ̄ (μ, ϕ) may be represented using

surface harmonics as (Happel & Brenner 2012) ζ̄ (μ, ϕ) =∑∞
n=0 Sn(μ, ϕ), where

Sn(μ, ϕ) =∑n
m=0(An cos mϕ + Ân sin mϕ)Pm

n (μ) is the surface harmonic of order n and
Pm

n (x) is the associated Legendre polynomial (Happel & Brenner 2012) of orders n
and m. In order to keep the algebra simple, we choose ζ̄ (μ, ϕ) = sin θ sinϕ + cos θ =
P0

1(μ)− P1
1(μ) sinϕ, which indicates that the particle does not carry any net charge and

hence U = 0. As we will establish shortly, the particle will rotate with angular velocity
Ω , which has an asymptotic expansion of the form Ω = ζ̄0Ω

(1) + ζ̄ 2
0 Ω(2) + . . . . Finally,

we note that the fluid velocity vanishes far away from the particle (v → 0 as r → ∞).
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5.1. The reciprocal theorem
The total stresses in a viscoelastic fluid may be expressed at any order of ζ̄0 as (say, at kth
order of ζ̄0) τ

(tot)
k = −pkδ + 2Dk + τ

(exc)
k = σ k + τ

(exc)
k , where σ k = −pkδ + 2Dk is the

Newtonian contribution to the stresses and τ
(exc)
k is the excess polymeric stress, which

may be written as τ
(exc)
k = De(2λ2S(k) − λ1T (k)), see (4.5b). As a consequence, the

momentum conservation equation in the outer layer at the kth order becomes ∇ · τ
(tot)
k = 0

(see (3.2c)), along with the continuity equation, ∇ · vk = 0. This may be rewritten as
∇ · σ k + bk = 0, where bk = ∇ · τ

(exc)
k may be treated as the body force caused by the

polymeric stresses. An auxiliary Newtonian flow with stresses σ̂ and body force b̂ would
satisfy (inertia is neglected) ∇ · σ̂ + b̂ = 0 and ∇ · v̂ = 0, v̂ being the auxiliary velocity
field. Assuming that both viscoelastic flow and the auxiliary flow vanish sufficiently far
away from the particle, the generalized reciprocal theorem may be written as (Masoud &
Stone 2019; Li & Koch 2020)∫

Sp

êr · σ k · v̂ dS −
∫

Sp

êr · σ̂ · vk dS =
∫
V

v̂ · bk dV −
∫
V

vk · b̂ dV . (5.1)

In the above equation, the integration on the left-hand side is carried out over a spherical
surface just outside the EDL, as mentioned in (2.4a,b) and the ones on the right-hand side
are carried out over the entire outer region. Therefore, on Sp, v̂k = Ω(k) × êr + v

(k)
S – see

§ 3.3. As the auxiliary flow, we choose the velocity field generated by an identical sphere
rotating with angular velocity ê (a constant unit vector) in a Newtonian fluid. As such, b̂ =
0 and v̂ = ∇ × (r−3ê · rr), which yields (Pozrikidis & Jankowski 1997) êr · σ̂ = −3ê × êr
and v̂ = ê × êr on Sp.

In the leading order of ζ̄0, τ
(exc)
1 = 0 (no excess polymeric stresses) and hence

b1 = 0. Therefore, with the auxiliary flow field mentioned above, at O(ζ̄0), (5.1) leads
to,
∫

Sp
êr · σ 1 · (ê × êr) dS = −3

∫
Sp
(ê × êr) · (Ω(1) × êr + v

(1)
S ) dS. Recall from (2.4a,b)

that, because the particle is torque free,
∫

Sp
êr × (êr · σ 1) dS = 0, while it is well known

that for the auxiliary flow,
∫

Sp
êr × (êr · σ̂ ) dS = −8πê. Therefore, the angular velocity

Ω(1) may now be computed from the simple relation

Ω(1) · ê = − 3
8π

ê ·
∫ 2π

0
dϕ
∫ 1

−1
dμ
(

êr × v
(1)
S

)
. (5.2)

Noting that v
(1)
S is given by (3.14), the O(ζ̄0), i.e. the Newtonian, rotational velocity for

any arbitrary distribution of surface charge may be evaluated using (5.2). Interestingly, we
do not need to explicitly solve for the flow field to determine this angular velocity.

At O(ζ̄ 2
0 ), it may be easily shown that (from (4.5b)) τ

(exc)
2 = 2De(λ2 − λ1)

∇
D1

and hence b2 = 2De(λ2 − λ1)(∇ · ∇
D1), where

∇
D1 = ∂D1/∂t + v1 · ∇D1 − (∇v1)

T ·
D1 − D1 · ∇v1. The torque free condition at this order becomes

∫
Sp

êr × {êr · (σ 2 +
τ
(exc)
2 )} dS = 0. On the particle surface Sp, v2 = Ω(2) × êr + v

(2)
S , where v

(2)
S is given

by (3.18). Using the aforesaid relations along with the auxiliary flow mentioned above,
the reciprocal theorem in (5.1) at O(ζ̄ 2

0 ) may be simplified to deduce the following
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relation for Ω(2):

Ω(2) · ê = − 3
8π

ê ·
∫

Sp

(
êr × v

(2)
S

)
dS + De(λ2 − λ1)

4π

[
Q · ê +

∫
V

v̂ ·
(

∇ · ∇
D1

)
dV
]
,

(5.3a)
where,

Q =
∫

Sp

êr ×
(

êr · ∇
D1

)
dS. (5.3b)

Notice that, in order to apply (5.3a), the O(ζ̄0) velocity field must be completely known,
to determine the last two terms on the right-hand side, both of which require knowledge

about
∇
D1. The angular velocity components along various directions may be evaluated by

choosing ê appropriately in both (5.2) and (5.3a).

5.2. The O(ζ̄0) flow field
For ζ̄ (θ, ϕ) = cos θ + sin θ sinϕ, at O(ζ̄0), the velocity on the particle surface
(r = 1) may be expressed as (using (3.14)) v1(r = 1, μ, ϕ)− Ω(1) × êr = v

(1)
S =

{3
2β
√

1 − μ2(
√

1 − μ2 sinϕ + μ)}êθ . The resulting velocity field may be determined
using Lamb’s general solution (Happel & Brenner 2012), whereby v1 may be written as

v1 = ∇ ×
(

Ω(1) · rr
r3

)
+

∞∑
n=1

[
∇ × (rΛ−(n+1)

)+ ∇Θ−(n+1) − n − 2
2n(2n − 1)

r2∇p−(n+1)

+ n + 1
n(2n − 1)

rp−(n+1)

]
, (5.4)

where Λ−(n+1), Θ−(n+1) and p−(n+1) are solid harmonics and have the following
expressions:

Λ−(n+1) = r−(n+1)
n∑

m=0

[
Am

n cos mϕ + Âm
n sin mϕ

]
Pm

n (μ). (5.5)

The rest of the solid harmonics also have analogous expressions and are not explicitly
shown here for brevity. The velocity profile in (5.4) trivially satisfies the condition that
the fluid velocity vanishes far away from the particle. Following the procedure outlined
by Brenner (1964), we compute the quantities, êr · v

(1)
S , −r∇ · v

(1)
S and r · ∇ × v

(1)
S , from

which the spherical harmonics can be uniquely determined. It may be easily verified that

p−3 = 9
2βr−3

[
1
2 P1

2(μ) sinϕ − P0
2(μ)

]
; Θ−3 = 1

2βr−3
[

1
2 P1

2(μ) sinϕ − P0
2(μ)

]
,

(5.6a)
and

Λ−2 = 3
4βr−2P1

1(μ) cosϕ, (5.6b)

while all other harmonics vanish. The resulting velocity at O(ζ̄0) then becomes

v1 = ∇ ×
(

Ω(1) · rr
r3

)
+ ∇ × (rΛ−2)+ ∇Θ−3 + 1

2
rp−3. (5.7)

The net torque on the particle at O(ζ̄0) is given by (Happel & Brenner 2012)
N1 = −8π∇(r3Λ−2)− 8πΩ(1). Noting that N1 = 0 (see (2.3a)), it follows that the
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leading-order (Newtonian) contribution to the angular velocity of the particle becomes

Ω(1) = 3
4β êx. (5.8)

It may be easily verified that (5.2), derived using the reciprocal theorem, also yields the
same result, albeit without actually requiring the O(ζ̄0) velocity field. Nevertheless, this
velocity field will be essential for calculating the O(ζ̄ 2

0 ) contribution to Ω , as we show
next.

5.3. The O(ζ̄ 2
0 ) correction

The O(ζ̄ 2
0 ) correction to the angular velocity of the particle may be directly evaluated

using the reciprocal theorem, as outlined in (5.3a), since we have already determined the
complete O(ζ̄0) velocity field. The leading-order shear strain components (D1) may be
easily evaluated from the expression for v1 in (5.7). Subsequently, its convected derivatives

(
∇
D1) may be evaluated, by noting their components in spherical coordinate – see the book

by Bird et al. (1987) for detailed expressions. For the sake of brevity, we do not mention

the components of
∇
D1 here explicitly. Once the convected derivatives of D1 are known, it

is straightforward to show that
Q = 0, (5.9a)

and ∫
V

v̂ ·
(

∇ · ∇
D1

)
dV =

∫ 2π

0
dϕ
∫ 1

−1
dμ
∫ ∞

1
dr r2v̂ ·

(
∇ · ∇

D1

)
= − 15

224
β2π,

when, ê = êx.

⎫⎪⎬
⎪⎭
(5.9b)

From the leading-order angular velocity, it may be noted that χ1 = −3
4βμ cosϕ and Γ1 =

−3
4β sinϕ. This allows us to compute ω2 and ω3, which are required for evaluating the

O(ζ̄ 2
0 ) slip velocity. It then follows from (3.18) that

v
(2)
S = −153Deβ2(λ1 − λ2)

4
√

1 − μ2

[(
μ5

2
− 31μ3

34
+ 7μ

17

)

+ 1
34

√
1 − μ2

(
34μ4 − 387μ2 + 5

)
sinϕ + 9

34
μ(μ2 − 1)

]
êθ

+ 9
8

Deβ2(λ1 − λ2)μ

[√
1 − μ2

{
μ2 − 1 + μ sinϕ cosϕ

+(1 − μ2) cos2 ϕ
}

+ μ2 cosϕ + μ(μ2 − 1) sinϕ
]

êϕ. (5.10)

Notice that, at O(ζ̄ 2
0 ), there is an azimuthal component of the slip velocity (v(2)s,ϕ), purely

because of the viscoelasticity of the fluid and rotation at the leading order, which makes
ω3 /= 0. In other words, this component of the slip velocity actually originates from the
interactions between particle rotation at O(ζ̄0) and the excess polymeric stresses inside
the EDL. This serves as an example of how the particle’s angular velocity influences the
Smoluchowski slip, as discussed in § 3.5. Expressions in (5.9) and the O(ζ̄ 2

0 ) slip velocity
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in (5.10) can be inserted in (5.3a) to deduce the O(ζ̄ 2
0 ) correction to the angular velocity

of the particle, which reads

Ω(2) = 4107
4480

Deβ2 (λ1 − λ2) êx. (5.11)

The total angular velocity of the particle, up to O(ζ̄ 2
0 ) is thus given by

Ω =
(

3
4
β êx

)
ζ̄0 +

{
4107
4480

Deβ2 (λ1 − λ2) êx

}
ζ̄ 2

0 + . . . . (5.12)

5.4. General discussion on particle rotation
There are several interesting points to note from the angular velocity reported above. First,
just like the translational velocity as discussed in § 4.2, the first viscoelastic contribution to
the angular velocity also appears at O(ζ̄ 2

0 ), when the particle bears a non-uniform surface
charge. Interestingly, this contribution does not change upon reversing the direction of
the electric field, which essentially indicates that the angular velocity may either increase
or decrease depending on the direction of the imposed electric field. This is another
example of symmetry breaking in viscoelastic media, which naturally comes about for
non-uniformly charged surfaces, as already discussed in §§ 4.5 and 4.6. Further, the sign of
|Ω(2)| also depends on the choice of the constitutive model, given the charge distribution.
For the Oldroyd-B model (where λ1 > λ2) or, the UCM model (λ2 = 0), the O(ζ̄ 2

0 )
viscoelastic correction increases Ω , while for a second-order model with vanishing second
normal stress coefficient (λ1 = 0), the rotation actually slows down.

In a Newtonian medium Ω(2) = 0 identically, even if the particle carries non-uniform
and non-axisymmetric surface charge. The next correction in such cases would come
at O(ζ̄ 3

0 ). Interestingly, it is straightforward to verify (using the procedure outlined in
§ 5.3) that, if one chooses ζ̄ (θ, ϕ) = sin θ sinϕ, Ω(2) = 0 identically and then the first
viscoelastic correction comes at O(ζ̄ 3

0 ). Therefore, the dominant viscoelastic correction
to particle’s rotation strongly depends on how the charge is distributed across its surface.
Finally, we note that particle rotation will alter its surface charge distribution with respect
to a non-rotating frame and the mathematical form of ζ̄ (θ, ϕ) would continually change
and thus the Ω reported in (5.12) is only valid at the instant when ζ̄ (θ, ϕ) = sin θ sinϕ +
cos θ . Although we do not actively pursue how the surface charge evolves and how that
change in turn alters the particle’s motion here, the rate of change of ζ̄ may be determined
from equations (S2) in the supplementary material.

6. Experimental perspectives

In this section, we briefly discuss a potential experimental set-up that can be used to
test some of the key predictions of our analysis. In this regard, it should be noted that
experimental studies on electrophoresis in complex fluids are scarce (Lu et al. 2014, 2015;
Malekanfard et al. 2019), while any focused investigation on the effects of viscoelasticity
on single particle electrophoresis is completely missing, to the best of our knowledge.

Figure 5 depicts a possible experimental set-up, which is very similar to those used
by Malekanfard et al. (2019) as well as Liang et al. (2010). The set-up consists of
two reservoirs connected by a conduit, containing a viscoelastic liquid. Several polymer
solutions such as aqueous poly-ethylene oxide (PEO) solution with added electrolytes
(such as NaCl/HCl) may be used as the viscoelastic medium (Ardekani et al. 2009).
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Inverted microscope

Particle

Electrode

Milli/microchannel

DC voltage source

V

Viscoelastic

fluid (Polymer

soln.)

Figure 5. Schematic showing a possible experimental set-up to test the prediction of the theoretical analysis
reported herein. The set-up consists of a fluidic conduit with two reservoirs at the two ends, wherein two
electrodes have been placed to impose a DC electric field. Particle motion can be captured using an inverted
microscope placed above the set-up. Polystyrene beads may be used as particles and Polyethylene solution can
be used as a viscoelastic medium.

Aqueous 0.75 % PEO solution (wt. fraction) has a relaxation time of ∼0.18 s. Spherical
polystyrene beads (Liang et al. 2010) with a ∼ O(5–10 μm)may be used as particles; these
particles can acquire surface charge, which may result in a ‘zeta potential’ of the order
of 20–200 mV (El-Gholabzouri, Cabrerizo-Vílchez & Hidalgo-Álvarez 2006). Buffer
solutions may be added to the viscoelastic medium to make the particle concentration
lower, so that the conditions approach that of a single particle electrophoresis. A DC
electric field of O(10 kV m−1) can be applied by placing electrodes inside the reservoirs
and an inverted microscope may be used to capture particle motion (Liang et al. 2010).
The channel should be large enough so that its walls do not influence the particle velocity
(see Liang et al. 2010; Malekanfard et al. 2019).

We will end this section by noting the specific predictions which may be compared
with experimental results. First, it is expected that a uniformly charged particle would
move slower as compared with a Newtonian fluid with comparable viscosity. Second,
particles with different sizes should move at different velocities; in particular, for a
uniformly charged particle, larger particles will move faster than smaller ones. For weakly
and non-uniformly charged particles, the velocity may either increase or decrease in a
viscoelastic fluid, depending on how the charge is distributed around the surface; however,
this change is expected to be far more pronounced in a viscoelastic medium. Finally,
our analysis predicts breaking of fore–aft symmetry for non-uniformly charged particles.
This can be tested by noting whether the particle’s mobility changes upon changing the
direction of the imposed DC field in the channel.

7. Conclusions

The present study delves into the electrokinetics around a weakly charged spherical
particle in a viscoelastic fluid, in the limit of thin EDLs. Analytically, we apply singular
perturbation to shed light on the dynamics within the EDL and subsequently use a
regular power series expansion in the characteristic potential ζ̄0, which is assumed
to be small and hence effectively renders the resulting flow weakly viscoelastic. We
develop a generic framework to evaluate the modified Smoluchowski slip velocity for
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an arbitrarily charged particle, which might undergo arbitrary motion. We further assess
the accuracy of the results derived using the Oldroyd-B model, by comparing them
with numerically computed results for the FENE-P model, which is one of the simplest
nonlinear viscoelastic models that remains valid in the presence of strong elongational
stresses. Our analysis revealed that the modified slip velocity shows a strong dependence
on the variability of the surface charge, as well as the particle’s curvature and angular
velocity. These features are unique to the complex fluid considered here and are not
witnessed in Newtonian fluids; most of them occur because the normal stress components
within the EDL become asymptotically large as compared with the shear stresses and
hence they play a key role in governing the momentum transport. To demonstrate an
application of the modified Smoluchowski slip thus derived, we separately considered two
specific cases of electrophoretic translation and rotation of a particle carrying non-uniform
surface charge.

Our analysis reveals that the electrophoretic velocity in a viscoelastic fluid depends on
the particle’s curvature, even in the regime of thin EDLs and weak surface charges –
in sharp contrast to Newtonian fluids. As a result, particles of different sizes move with
different velocities, when acted upon by the same external electric field. We further
demonstrated that the particle’s radius, the medium’s viscoelasticity as well as the extent
of non-uniformity of the surface charge together dictate the particle’s velocity through the
fluid. We subsequently explore how the multipole moments of the particle’s potential (φP)
influence its movement. To this end, we establish that, because of the nonlinear nature
of the constitutive model of viscoelastic fluids, the multipole moments interact between
each other to alter the particle’s velocity. In particular, the dipole moment results in an
O(ζ̄ 2

0 ) contribution to the mobility, which is absent in a Newtonian medium. As a result,
the particle’s velocity may either increase or decrease, depending on the nature of surface
charge distribution; the same is not true for a Newtonian fluid. At the same time, the
fore–aft symmetry, which prevails in Stokes flows, is broken in a viscoelastic medium,
because of the O(ζ̄ 2

0 ) contribution from the dipole moment of φP. As a consequence, the
particle’s radius plays a more important role in determining its velocity, when it carries a
non-uniform surface charge. The mobility of a uniformly charged particle may be derived
as a special case of the analysis and recovers the result that a viscoelastic medium will
trivially slow down the particle under such conditions.

Comparison with numerical simulations of the FENE-P model reveals that the
predictions using the Oldroyd-B model are reasonably accurate, so long as the surface
potential is sufficiently weak and the maximum permissible spring length in a bead-spring
model of polymers is large. This ensures that shear thinning behaviour remains
subdominant, which enhances the applicability of the Oldroyd-B model. The comparison
between the two models also works well in the limit of low polymer viscosity (C �
1). Beyond a critical value of ζ̄0, however, the Oldroyd-B model underpredicts the
electrophoretic mobility of the particle, as the shear thinning behaviour starts to dominate.
The accuracy of the Oldroyd-B model, when compared with the FENE-P model is,
however, far more sensitive to the strength of the surface charge, as compared with � –
representative of the maximum permissible length of the polymers.

The second case study on pure electrophoretic rotation of a non-axisymmetrically
charged particle was carried out using a combination of Lamb’s general solution and the
generalized reciprocal theorem. It was shown that the medium’s viscoelasticity may alter
the angular velocity of the particle in a very similar way as observed for the translational
velocity. For instance, the angular velocity may both increase or decrease because of the
medium’s viscoelasticity, depending on the direction of the applied electric field as well
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as the fluid properties. This brings out another example of fore–aft symmetry breaking in
polymeric liquids, driven by non-uniformity of the surface charge on the particle.

In summary, the present analysis provides a platform to improve the state of the art
understanding of the transport of charged species in biologically relevant fluidic media,
offering a new design paradigm for in vitro analytics. Further studies, however, are deemed
essential to focus on some more exclusive aspects of the fluid rheology that do not fall in
the purview of the constitutive model that has been considered in the present work, as well
as the implications of temporal variations in the surface charge due to particle rotation.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.643.

Funding. We are thankful to the three referees (unnamed) for their critical review of the work, which has
significantly improved the manuscript. U.G. is thankful to the Department of Science and Technology, Govt.
of India for supporting this work through the Core Research Grant no. CRG/2019/000241. S.C. acknowledges
Department of Science and Technology, Government of India, for a Sir J. C. Bose National Fellowship.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Uddipta Ghosh https://orcid.org/0000-0001-8157-5639;
Suman Chakraborty https://orcid.org/0000-0002-5454-9766.

Appendix A. The convected derivatives in the inner layer

The leading-order (in δ) components of the convected derivatives in the inner layer are
given here. The components of T take the following form:

T̃rr =
(

Ṽ · ∇̃τ̃
)

rr
− 2

[
τ̃rr
∂V
∂R

− τ̃rθ

√
1 − μ2 ∂V

∂μ
+ τ̃rϕ√

1 − μ2

∂V
∂ϕ

]
(A1a)

T̃rθ =
(

Ṽ · ∇̃τ̃
)

rθ
− τ̃rr

∂U
∂R

− τ̃rθ

(
∂V
∂R

−
√

1 − μ2 ∂U
∂μ

)
− τ̃rϕ√

1 − μ2

∂U
∂ϕ

+τ̃θθ
√

1 − μ2 ∂V0

∂μ
− τ̃θϕ√

1 − μ2

∂V
∂ϕ

(A1b)

T̃rϕ =
(

Ṽ · ∇̃τ̃
)

rφ
− τ̃rr

∂W
∂R

+ τ̃rθ

(√
1 − μ2 ∂W

∂ϕ
+ μW√

1 − μ2

)

−τ̃rϕ

(
1√

1 − μ2

∂W
∂ϕ

+ ∂V
∂R

+ Uμ√
1 − μ2

)
+ τ̃θϕ

√
1 − μ2 ∂V

∂μ
− τ̃ϕϕ√

1 − μ2

∂V
∂ϕ

(A1c)

T̃θθ =
(

Ṽ · ∇̃τ̃
)
θθ

− 2

[
τ̃rθ
∂U
∂R

− τ̃θθ

√
1 − μ2 ∂U

∂μ
− τ̃θϕ√

1 − μ2

∂U
∂ϕ

]
(A1d)

T̃θϕ =
(

Ṽ · ∇̃τ̃
)
θϕ

− τ̃rϕ
∂U
∂R

+ τ̃θθ

(
μW√
1 − μ2

+
√

1 − μ2 ∂W
∂μ

)
− τ̃rθ

∂W
∂R

−τ̃θϕ
(

1√
1 − μ2

∂W
∂ϕ

−
√

1 − μ2 ∂U
∂μ

+ μU√
1 − μ2

)
− τ̃ϕϕ√

1 − μ2

∂W
∂ϕ

(A1e)
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T̃ϕϕ =
(

Ṽ · ∇̃τ̃
)
ϕϕ

− 2

[
τ̃rϕ
∂W
∂R

− τ̃θϕ

(√
1 − μ2 ∂W

∂μ
+ μW√

1 − μ2

)

+τ̃ϕϕ
(

1√
1 − μ2

∂W
∂ϕ

+ μU√
1 − μ2

)]
. (A1f )

The components of S read (in the inner layer)

S̃rr =
(

Ṽ · ∇̃D̃
)

rr
− 2

[
D̃rr

∂V
∂R

− D̃rθ

√
1 − μ2 ∂V

∂μ
+ D̃rϕ√

1 − μ2

∂V
∂ϕ

]
(A2a)

S̃rθ =
(

Ṽ · ∇̃D̃
)

rθ
− D̃rr

∂U
∂R

− D̃rθ

(
∂V
∂R

−
√

1 − μ2 ∂U
∂μ

)
− D̃rϕ√

1 − μ2

∂U
∂ϕ

(A2b)

S̃rϕ =
(

Ṽ · ∇̃D̃
)

rϕ
− D̃rr

∂W
∂R

+ D̃rθ

(√
1 − μ2 ∂W

∂ϕ
+ μW√

1 − μ2

)

−D̃rϕ

(
1√

1 − μ2

∂W
∂ϕ

+ ∂V
∂R

+ Uμ√
1 − μ2

)
(A2c)

S̃θθ = −2D̃rθ
∂U
∂R

; S̃θϕ = −D̃rϕ
∂U
∂R

− D̃rθ
∂W
∂R

; S̃ϕϕ = −2D̃rϕ
∂W
∂R

. (A2d)

In the above equations, (Ṽ 0 · ∇̃A)ij (where A is a second-rank tensor) reads(
Ṽ · ∇̃A

)
ij

= V
∂Aij

∂R
− U

√
1 − μ2 ∂Aij

∂μ
+ W√

1 − μ2

∂Aij

∂ϕ
. (A3)

Components of the the strain rate tensor in the inner layer are given by

D̃rr = ∂V
∂R

; D̃rθ = 1
2
∂U
∂R

; D̃rϕ = 1
2
∂W
∂R

(A4a)

D̃θϕ = 1
2

[
1√

1 − μ2

∂U
∂ϕ

− (1 − μ2)
∂

∂μ

(
W√

1 − μ2

)]
; (A4b)

D̃θθ = −
√

1 − μ2 ∂U
∂μ

D̃ϕϕ = 1√
1 − μ2

∂W
∂ϕ

+ μU√
1 − μ2

. (A4c)

Appendix B. Expressions for various functions mentioned in §§ 3 and 4

Expressions for the functions A1,A2, . . . etc. in (3.16a) are

A1 = 9μβ2

2
(
1 − μ2

)3/2
(

e−2R − 1
)

; A2 = A21Γ1 + A22ω1,μ + A23ω2 (B1a)

A21 = 3βμ
(
1 − e−R)

1 − μ2 ; A22 = −9β2 (3 − 3e−R − Re−R)√
1 − μ2

(B1b)

A23 = −3β
(
1 − e−R)√
1 − μ2

; A3 = 3β(1 − e−R)Γ1; A4 = 3β(1 − e−R)χ1

1 − μ2 . (B1c)
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The functions M(2)
1 ,M(2)

2 , . . . etc. in (4.9a) have the following expressions:

M(2)
1 = −3

5
a0a1

(
r2 + 1

2r
− 3r

2

)
+ 6

5
a0a1

(
1
r

− 3r
4

− 1
4r4

)
(B2a)

M(2)
2 = 99

8
a2

0

(
1 − 1

r2

)
+ a2

1
56

(
63 − 99

r2 + 72
r3 − 36

r5

)
(B2b)

M(2)
3 = a0a1

20

(
315
r

− 738
r3 + 54

r4

)
(B2c)

M(2)
4 = a2

1
14

{
306
r2 − 171

r4 − 27
(

3
r3 + 2

r5

)}
. (B2d)

The function M(3)
1 (r) appearing in the solution for Ψ3 is given by the following:

M(3)
1 (r) = U3

(
r2 − 3r

2
+ 1

2r

)
+ De2β3(λ1 − λ2)M(3)

11 (r)

+ 1
16
β

(
a3

0 + 3
5

a0a2
1

)(
1
r

− r
)

(B3a)

where,

M(3)
11 (r) = a3

0M(r)+ a0a2
1M∗(r), (B3b)

and

M(r) = −
(

62 457
11 440

λ1 − 69
16
λ2

)
r +

(
99 843
11 440

λ1 − 543
80
λ2

)
1
r

− 9
5720

[
1573(λ1 − λ2)

1
r4

+λ1

(
572r3 − 68

r9

)]
(B3c)

M∗(r) =
(

369 909
400 400

λ2 − 167 247
57 200

λ1

)
r +

(
1 122 813
400 400

λ1 − 259 713
400 400

λ2

)
1
r

+ M̃(r),

(B3d)
where,

M̃(r) = 9
400 400

[
λ1

{
67 067

r4 + 27 885
r6 + 33 072

r7 − 85 800
r8 − 58 020

r9 + 21 120
r11

}

+λ2

{
−98 527

r4 + 92 235
r6 − 4992

r7 − 960
r9

}]
. (B3e)
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