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1. The structure of the normalizer. Let T denote the modular group, consisting of
the Mobius transformations

az + b
z-> a,b,c,deZ, ad-bc = l. (1)

cz + a

As usual we denote the above transformation by the matrix V = ( 1 remembering

that V and — V represent the same transformation. If N is a positive integer we let T0(N)
denote the transformations for which c = 0 mod N. Then F0(N) is a subgroup of index

the product being taken over all prime divisors of N.
In this paper we are interested in the normalizer of T0(N) in the group PSL(2, U) of

all Mobius transformations with real coefficients and determinant one.
This normalizer has acquired significance because it is related to the Monster simple

group [2]. It has also played an important role in work on Weierstrass points on the
Riemann surfaces associated to ro(N), [5], on Modular forms [1] and on Ternary
quadratic forms [6].

We denote the normalizer by TB(N) and define

B(N) = rfl(A0/ro(A0.

Our main result gives the structure of B(N) for all integers N>2. Such a result was given
without proof in [1] but we have found several errors in their list, so it may be worthwhile
to give a careful treatment. We use the description of the normalizer given by Con way
and Norton [2]. No proof was given though a verification can be obtained by the accounts
in [1], [5], [7]. The normalizer is given by the transformations corresponding to the
matrices

' " blh

c — de
h

where all symbols represent integers, h is the largest divisor of 24 such that h2 | N, e > 0 is
an exact divisor of N/h2 and the determinant of the matrix is e. (We say that e is an exact
divisor of M if e \ M and (e, M/e) = 1.)

If M =p"'p"2 • • • p"' is the prime-power decomposition of M then M has T exact
divisors, all of the form p?'p£2.. . pp

r' where j8, = 0 or or, for i = 1, 2 , . . . , r.
We denote the set of exact divisors of M by Ex(Af). Our investigation into B(N) and

rB(N) is facilitated by the observation that Ex(M) is a group with respect to a suitable
binary operation.
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318 M. AKBAS AND D. SINGERMAN

LEMMA 1. // / , m e Ex(M), define * by l*m = lm/(l, m)2. Then * is a binary operation
on Ex(Af) and (Ex(M), *) is a group isomorphic to C2, where r is the number of distinct
prime factors of M.

Proof. We note that 1 is the identity and /*/ = 1 for all / e Ex(M) so that every
element is its own inverse. The only awkward part of the proof is the associative law. This
is proved by observing that if P, Q are the sets of exact prime power divisors of /, m
respectively then the symmetric difference P AQ = (P U Q) - (P C\ Q) is the set of exact
prime power divisors of l*m and that A is a group operation on subsets. Also, as the
group is abelian of order 2r, and every element has order 2, Ex(M) s= C2.

The matrix (3) (of determinant e>0) represent a Mobius transformation. We now
show that the only other rational matrix of the form (3) which represents the same
Mobius transformation is the negative of the matrix. Specifically we prove

LEMMA 2. / /

( a2e2 b2/h^
c2N

d2e2

where kx, k2 are non-zero integers with (kx, k2) = 1 and where the matrices have positive
determinants ex, e2 respectively then ku k2 = ±1 and ex = e2.

Proof. kxbx = k2b2, kxcx = k2c2 so that k2\bx, k2\cx and thus k\\bxcx. Taking
determinants , k\ex = k\e2 so that k\\ex.

As

-¥r— = 1

and h2ex \N, k\\ 1. Thus k2=±l and similarly kx = ±l. As eu e2 are the positive
determinants of the matrices, ex = e2. Thus e is an invariant of the transformation V given
by the matrix (3) and so we can define a function

by E(V) = e.

DEFINITION. We call e the eterminant of the transformation V.

PROPOSITION 1. E is an epimorphism.

Proof.

bjh\/a2e2 bjh\ (A B/h'

-!-• . II C2^ , I = I CN
—— dxex ) \ —— d2e2 I \ — D

. h J\ h } \ h
where A, B, C, D are all divisible by (e,, e2) and the final matrix has determinant exe2.
Also, as eu e2eEx(N/h2), we find that A and D are both divisible by the least common
multiple of ex and e2 which is exe2/(ex, e2).

Thus final matrix is (ex, e2) times the matrix

(a3(ex*e2) b3/h \

\ c3N/h d3(ex*e2))
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of determinant exe2/(ex, e2)
2 = ex*e2. Thus the eterminant of the product transformation

is ex *e2, so E is a homomorphism. That E is onto follows from the Conway-Norton
descrption of the normalizer.

We also note the following properties of the eterminant which follows from the
result, of Lemma 1, that Ex(M) = C2.

COROLLARY, (i) E(V) = E(V~l)
(ii) E(VX V2) = 1 if and only if E(VX) = E(V2).

Thus the two matrices of TB(N) which belong to the same r0(N)-coset have the same
eterminant (but not always conversely as we shall see). In fact if

v,-l °* T\ <-'•'
both have eterminant e then by calculating VxV2

xwe deduce the following result which will
be useful later.

LEMMA 3. Vx and V2 belong to the same r0(N)-coset if and only if axb2 = a2bx mod h,
cxd2 = c2dx mod h.

DEFINITION. The transformations in FB(N) of eterminant one will be denoted by
rc(A0-

As FC(N) is the kernel of E:FB(N)^>Ex(N/h2) we see that TC(AO is a normal
subgroup of TB(N) of index 2P where p is the number of distinct prime factors of N/h2.
Also T0(N) < TC(N), as TC(N) belongs to the normalizer.

PROPOSITION 2. The index \TC(N):T0(N)\ = h2x where x = (2)
e<(iY2 and where

£ f l if 22, 2\ 261| N £ = f l if9\\N,

1.0 otherwise ' 10 otherwise.

Proof. As TC(N) is the set of transformations of the form ( , , . , ) of
\c(N/h) d I

determinant 1, we have TC(N) = H~lr0(N/h2)H where # = („ A Thus

h P

n
plN~ -• (using (2))

n
= h2x where r =- 1 . 2 . • P l "

p | Nlh2 \ p

Now for each integer r, write h(r) to be the largest divisor of 24 such that (h(r))2 \ r.
Then by writing N as a product of prime powers, N = 2Q3'3 . . . we see that x =£ 1 if and
only if 2a = (h(2a))2 or 3" = h(3p))2. That is, if a = 2, 4, 6 or 0 = 1. The expression for x
given in the theorem now follows.
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320 M. AKBAS AND D. SINGERMAN

COROLLARY. | F B ( N ) : F0(N)| = 2ph2r, where p is the number of distinct prime factors
ofNlh2.

REMARKS. (1) This formula coincides with the one stated by Ogg [7].
(2) Our group TC(N) is denoted by Fo(« | /i) in Conway-Norton [2]. We have

T0(N) < Fc(Af) < TB(N). In order to understand the elements of TB(N) not contained in
rc(Af) we introduce the Atkin-Lehner transformations. Such a transformation is
represented by the matrix

I ae b\
We = I I where e \\N and the determinant is e

\cN del

(All such transformations with a given e belong to the same F0(N)-coset and we can use

the notation We to represent any of them. For example, WN = ( I, which is

called the Fricke transformation.)
As we can write

bhlhje)

(h(e))2

we see that as this matrix has the form (3), so We is an element of TB(N) of eterminant
e || N

e/(h(e))2. Note that 2 —^. (The definition of h(e) is given in the proof of

Proposition 2.) As in Proposition 1 we see that WeiWe2= Wej,e2 and then we see that the
Atkin-Lehner transformations form a group which we denote by TW(N). We then have
an epimorphism E' :rw(N)—*Ex(N) whose kernel is T0(N). The quotient group
rw(N)/Y0(N) = C2, where r is the number of prime divisors of N, and so W2

e e F0(A )̂, for
all Atkin-Lehner transformations We.

PROPOSITION 3. Every element V of TB(N) can be written as a product WT where
WeTw(N), TeTc(N).

Proof. Suppose that E(V) = e where e \\ N/h2. We look for an / e Ex(N) such that
E{Wf) = e. Let N = 2a3fiN0, (N0)6) = l. If h(2a) = 2u, /i(3^) = 3u then N/h2 =
2"-2u. 3f>~2v. No. As e || N/h2 we have e = 2'3W, with i = a - 2« or 0, / = j8 - 2v or 0 and
Nx || N. Now let

if

, , - - . if . . .
1 S 3% if , = 0 , 7 ^ 0 ,

Then E(Wf) =f/(h(f))2 = e. Thus E(Wf) = E(V) so that E{WJlV) = l and WJXV e
YC(N). Therefore V = WT where W is an Atkin-Lehner transformation and T e TC(N).

As Tc(N)<iTB(N) we can write TB(N) = TC(N)TW(N) and we have a subgroup
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diagram

rc(N)
\ /

or denning B(N) = rB(N)/r0(N), C(N) = rc(N)/r0(N), W(N) = rw(N)/TQ(N)

W(N) C(N)
\ /

From our work, in particular Proposition 2, we have \C(N)\ = h2x, \B{N)\ = 2ph2x,
\W{N)\ = 2r and thus \W(N) nC(N)\ = 2r~p. Here r is the number of distinct prime
factors of N and p is the number of distinct prime factors of N/h2. Thus |W(N)n
C(N)\ = 4 if 32 || N and 226 \\N, 8 = 1,2 or 3, \W(N) n C(N)\ = 2 if 321| N or 226 || N but
not both, and \W(N) n C(N)\ = 1 otherwise. (Thus only in the later case is B(N) a
semi-direct product of W(N) and C(N).)

As W(N) = Cr
2, the elements of W(N) - {/} commute and all have order two. They

are called Atkin-Lehner involutions. The above paragraph tells us that C(N) contains
Atkin-Lehner involutions if 22, 24, 26\\ N or 32\\N, and not otherwise.

2. The structure of B(N). In this section we find the structure of the finite
groups B(N). Note that if N is not divisible by 4 or 9 then h = 1 and so B(N) = C\. We
are interested in the cases where h > 1. The basic idea is that B(N) is "almost" a direct
product of groups B(p") where pa\\N {p prime) and that the subgroups C(pa) are
"almost" abelian; see Lemma 4, Proposition 6.

The elements of B(N) are r0(Af)-cosets and as a matter of notation we shall use
lower-case letters to represent r0(N)-cosets while the corresponding capital letters denote
the transformation in TB(N).

PROPOSITION 4. C(N) is generated by the T0(N)-cosets

1 0\ / I l//i
= \o i l

Proof. We have rh=sh = I and by Lemma 3, (r) n (s) = {/}. Thus {rV | 0< i < h,
Q<j <h} consists of h2 elements so that if |C(N)| = h2, the result follows. By Proposition
2 this occurs in all cases except when N is exactly divisible by 22, 24, 26, or 32. Thus we can
assume that N = 22a32pNi where a = 0, 1, 2 or 3, 0 = 0 or 1 and (N,,6) = l. Then
h = 2a3p, (h,N/h2) = l and therefore we can find integers k,l¥=Q such that 1 +
ifc/N//i2 = 0 mod h. Now

/1 + MVM2 klh\ / 1 ;/fc \
\ IN/h 1 / ' V1W//1 1 + ijN/h2)
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so by Lemma 3, skr' =£rV for any i, j . Thus {r, s), the group generated by r and s, has
more than h2 elements and as |C(A^)| <2A2, by Proposition 2, we conclude that
(r,s)=C(N).

The structure of B(pa). From Proposition 2 we can calculate the order of B(pa)
for all prime powers p". We obtain the following table:

p" 2 4 8 16 32 64 2*(a">7) 3 9 3"(/3&3) p"(p*5)
\B(pa)\ 2 6 8 24 32 96 128 2 12 18 2

Now in B(par) the only Atkin-Lehner involution is the Fricke involution wp« (the coset of
the Fricke transformation Wp«). This has eterminant pa/(h(pa))2 which is equal to 1 if
and only if pa = 22, 24, 26 or 32. We thus have

LEMMA 4. C(p") = B(pa) if and only ifpa = 22, 2\ 26 or 32. In all other cases C(pa)
has index 2 in B(pa).

The following result, which follows directly from Proposition 4, is of interest.

PROPOSITION 5. Each group B(pa) is generated by two elements, one of which has
order 2.

Proof. The element of order 2 is w = wp«. We have wsw = r~l and (r, s) = C(pa)
which has index one or two in B{pa). If it has index 2 then w $ C(p"), by Lemma 4 and
the remark above it. Hence (w, s) = B(p").

We now investigate the structure of C(p a)

PROPOSITION 6. C(N) is abelian if and only if h3 \ N. In these cases C(N) = Ch x Ch.

Proof. Direct computation shows that RSR~lS~l e ro(N) if and only if h31 N.
Therefore by Proposition 4.

C(N) a (r, s\rh=sh = I \rs = sr) =Chx Ch.

This occurs only for the prime powers 2, 8, 2a(a>9), 3, 3^(/3>3), pa(p>5).

COROLLARY. For these prime powers N = pa, B(N) has presentation

(w,s | w2 = sh = I, (ws)2 = (sw)2).

Proof. As wsw = r~l and r and s commute we obtain the relation (ws)2 = (sw)2. This
presentation does define a group of order 2h2 as s and wsw generated an abelian subgroup
of index 2 and of order h2.

We now deal with the prime powers N for which h2 = N, i.e. those of Lemma 4,
namely N = 22, 24, 32 and 26. Direct computation gives the relations w2 = sh = (ws)3 = I.
In the first three cases h = 2, 3, 4 and as the orders of B(N) are 6, 12 and 24 we obtain
fl(4) = D3, B(9)=A4, fl(16) = S4. If/ i=26, h = 23, \B(N)\ = 96 and w2 = s8 = (ws)3 = I.

LEMMA 5. B(26) has presentation

(w, s\w2 = s* = (ws)3 = (ws~lws)3 = I).

Proof. Direct computation shows that Htf~'w.y does have order 3, so we just need to
show that this presentation does define a group of order 96. This in fact is well-known
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(see, e.g. [10]) but we outline a proof. Consider the subgroup generated by the elements
of order 2, s4 and ws4w; we show that this is normal and we can deduce from the relations
that their product has order 2. Thus the normal subgroup generated by s4 has order 4 and
if we factor out by this normal subgroup we get a group isomorphic to 54 of order 24.
Thus the above presentation does define a group of order 24 x 4 = 96.

The only prime powers not dealt with are 2s, 27 and 28 and we take these in turn.
N = 25. Here h = 2s so if we let

0 - 1 \ / I 1/4l/4\J
then w and s generate B(25) and we find w2 = s4 = (ws)4 = (ws lws)2 = I. However, a
group with the above generators and relations has order 32 ([3]) so that these relations do
define the group.

N = 21. Here h = 23. We begin by finding C(27) which has order 64. This is generated
by

/ 1 0\ _ / l l /8\

We find by calculation that r2s2 = s2r2 and that (r2) n (s2) = {/}. Thus r2 and s2 generate
an abelian subgroup N isomorphic to C4 X C4 and of index 4. We further calculate that
r~ls2r = r V and s~*r2s = r V so that N is normal. Clearly C(21)/N = C2xC2 so we can
use a standard method (e.g. [4, p. 149]) to find the following presentation for C(27).

(r> s\ r
8 = s8 = I, r2s2 = s2r2, r~ls2r = r V , s~lr2s = r V , r~ W s = r2s2).

The last relation is found by calculation and is just the relation in the quotient group
C(27)/N, saying that this group is abelian, pulled back to C(27).

To find the presentation for B(27) we just introduce the generator w and add the
relations w2= 1 wsw = r~l. We then obtain the following presentation for B(27).

(w, s | w2 = s8 = I, (ws2)2 = (s2w)2, s2ws~1w = ws3ws2, ws2ws =s~3ws2w, (ws)4 = 1),

and we see that the penultimate relation follows from the previous one.
N = 2S. Again we start by finding C(28). Its generators are

/ 1 0\ / I 1/8
r ~ \ 3 2 1/' S ~ \ 0 1

and we calculate that s commutes with r2. As r8 = s8 = I, s and r2 generate a subgroup
isomorphic to C8 x C4 of index 2. We compute that r~xsr = r4s5 so C(28) has presentation

(r, s | rs = s8 = 1, r2s =sr2, r~lsr = r4s5)

and so B(28) has presentation

(»v, s I w2 = s8 = I, ws2ws =s2wsw, sws~lw = sw3ws~3).

We present our results in the following table. In the final column we describe B(N), if
possible, as a known abstract group. The notation (/, m,n\q) denotes the group

(A, B | A' = Bm = (AB)n = (A-xB-xAB)q = / ) ;

the notation Ch ~ C2 denotes the particular extension of Ch x Ch obtained by adjoining
the automorphism which interchanges the generators of the factors.
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The groups B(N), N = p", with generators

\/h\
)

1\

oh
N

2
4
8

16
32
64

128

256

2a(a>9)
3
9

3^03 a 3)
p"(p>j)

h

1
2
2
4
4
8
8

8

8
1
3
3
1

w

w2--
W2 =

r

|

w2

w

w

Relations

w2 = s = /
w2 = s2 = (wv)3 = /

2 = s2 = I, (ws)2 = (sw)2

W2 = S* = (lV5)3 = /

= S 4 = (>Vi)4 = (lVi~1H'^)2 = /

= ,s8 = (ws)3 = (ws" ' ^ ) 3 = /
w

2 = s8 = (n>$)4 = /, -)
(Wi2)2 = (S2W)2, 1

* - , « = / , (W5)2=(W)2

w2 = s = I
W1 = S

3 = (WS)3 = 1
2 = s3 = I, (ws)2 = (sw)2

W2 = S = I

\B(N)\

2
6
8

24
32
96

128

128

128
2

12
18
2

B(N) =

C2

D3

•£»
(2, 4, 4; 2)
(2, 8, 3; 3)

Cg~Cz

c2

C3~C2
C2

3. The product structure. In [1] it was claimed that B(N) can always be expressed
as a direct product <S)B(pa) over all exact prime power divisors pa of N. This is not
always the case. For an example we consider N = 18. By the corollary to Proposition 2,
|B(18)| = 24. Also B(N) contains

w =
0 - 1 \ / I l/3J nd (

As »v2 = s3 = (ws)4 = / it is easy to see that B(18) = 54 which can not be written as a direct
product in a non-trivial way. In this section we investigate circumstances in which B(N) is
a direct product. We first show that if M \\ N then B(N) contains a subgroup isomorphic
to B(M). We will then investigate when this subgroup is normal.

PROPOSITION 7. Let M \\N. Then the elements of B(N) of the form

ae blh{M)\
KcN/h(M) de )- c

vv/iere, as before, h(M) is the largest divisor of 24 such that (h(M))2 \ M, where
e || M/(h(M))2 and the determinant is e, form a subgroup of B(N) which is isomorphic to
B(M).

Proof Write N = MK where (M, K) = 1. Then

ae

cNh(K)
h(N) 6
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showing that / e B(N). It is easy to see that these elements form a subgroup which we
denote by B'(M). We also let rB.(M) denote the corresponding set of matrices in TB(N).

Now t e B(N) represents a coset T0(N)T where T e rB(N) is the above matrix. The
form of the matrix given in the proposition shows that T e r s (M) as well, so we can
define

F:B'(M)-*B(M) by F(ro(N)T) = ro(M)T,
and we note that this is well-defined as T0(N) £ ro(M). To show that F is one-to-one we
prove the

LEMMA. rB,(M) n ro(M) < ro(N).

Proof. If

then h(M) | /3, M

so that N
yN

yN

KM)'
ThusM

yMK
h(M)

so that h(M) \ yK. As (h(M), K) - 1, h(M) \ y

and therefore V, e T0(N).
h(M)

This lemma shows that the kernel of F is trivial so that F is one-to-one. We now show
that F is onto. By Propositions 3 and 4 (and the equation r = wMs~lwM) we see that B{M)
is generated by the Atkin-Lehner involutions in B(M) together with the element

I I. As remarked after their definition in §1, any two Atkin-Lehner transfor-

mations of FB(M) with a given e belong to the same r0(M)-coset. Hence for each e \\ M
there is a unique Atkin-Lehner involution we e B(M). The Atkin-Lehner involutions

in B'(M) have the form I 1 where e\\M so that these map, under F, to
\cN del

1 N \
the Atkin-Lehner involutions in B(M) (just write N = — Ml. Also the coset of

\ Ml

I ) in B'(M) maps under F to the coset of this element in B(M). Thus

the generators of B(M) lie in the image of F so that F is onto.
We use the same ideas to find the condition for B'(M) to be a normal subgroup of

B(N), N- MK, (M, K) = 1. We note that if wf is an Atkin-Lehner involution then wf

normalizes B'(M); for every element of B'(M) can be written as wev' where e \\M and
v' eB'(M) has eterminant one. Now wf{wev')wjl = wewfv'Wf (as Atkin-Lehner involu-
tions commute^—see end of §1) and a simple calculation shows that wfv'wf e B'(M). Thus
the condition for B'(M) to be a normal subgroup is just

ri l/*(AOir ae b/hWUl -Vh
Lo 1 ilcN/h(M) de JLo 1

The product of the matrices is

/ae + cN/h(M)h(N) *
\ cN/h(M) -cN/h(M)h(N)
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where

b de ae cN
* = h(M) + h(N) ~ h(N) ~h(M)(h(N))2'

Now N/h(M)h(N) = KM/h(K)(h(M))2 is exactly divisible by e so that the condition
for normality is that * =u/h(M) where ueZ. This reduces to h{K) \e(d — a) and as
(h(K), e) = 1 the condition for normality is just that a = d mod h{K).

As h(K) | 24 this is equivalent to the statement that ad = 1 mod h(K) (by the
"curious" property of 24 cited at the beginning of Section 3 of [2], i.e. h | 24 implies that
ad = 1 mod h if and only if a = dmodh.) Now ade - bcMK/e(h(M))2= 1 so that
ade = 1 mod h(K) is equivalent to the condition e = 1 mod h(K). We thus have

PROPOSITION 8. If N = MK where (M,K) = 1 then B'(M)<B(N) if and only if
e = \ mod h(K) for all exact divisors e of M.

If N = pVp"2 • • • p"' ' s t n e prime power decomposition of N and if II, = N/pf then
we have the following result.

C O R O L L A R Y . B(N) = ® B ' ( p p ) if and only i f p " ' = l m o d h(Tl,) f o r i = l,..., r.

For example if N = 2 a3p where a > 3 and /3 > 1 then B (N) = B' (2 °) x B' (3p) if and only
if a and /3 are even. This is because 22 = lmod3 and 32 = lmod8. Also noting that
p2=\ mod 24 for all primes p s 5 we see that B(N) = <8> B'(pf') whenever N is a square.

4. The automorphism group of X0(N). We end with a few elementary remarks
about the automorphism group of the associated Riemann surfaces. Let Y{)(N) be the
quotient of the upper half plane by ro(A0 and let XO(N) be the compact Riemann surface
obtained by filling in the punctures at the projections of the parabolic fixed points. By the
formula for the number of classes of elliptic fixed points of ro(A0 ([9]) we find that
ro(2

ff3^) is torsion-free when a> 1, fi>\. Hence in these cases every automorphism of
Y0(N), and hence of X()(N), can be lifted to an element of rB(N) and so Aut X()(N) =
B(N), and can be calculated by the results of §2, 3. In general ro(N) will have elliptic
fixed points and then it might happen that Aut X0(N) properly contains B(N). See [8].

There are some cases which are worth noting. If N = 26 then \B(N)\ = 96 and the
genus of XQ(N) is 3 ([9]). Thus we obtain a Riemann surface of genus 3 with 96
automorphisms. This is the Riemann surface of genus 3 with the second largest
automorphism group, (the largest being Klein's Riemann surface with 168 automorph-
isms). As described in [11 §8] there is a corresponding regular map which in this case is
Dyck's map with 12 vertices, 32 faces and 48 edges ([10]). It could be built by choosing
the 12 vertices to be the punctures of Y0(N). Similarly, if N = 2s we get one of the regular
maps on the torus of type {4,4}, and if N = 2, 4, 8, 9, 16 we get regular maps on the
sphere, (platonic solids) which explains why in these cases B(N) is a finite rotation group.
UN = 21 we find that the genus of X0(N) is 9 and |B(A0| = 128. This gives an example of
a Riemann surface of genus g admitting a nilpotent group of automorphisms of order
16(g - 1 ) , which by [12] is the largest possible order for a nilpotent group of
automorphisms.

ACKNOWLEDGEMENT. We would like to thank Colin Maclachlan for pointing out an
error in the first version of this paper.

https://doi.org/10.1017/S001708950000940X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000940X


THE NORMALIZER OF T0(N) IN PSL(2, U) 327

REFERENCES

1. A. O. L. Atkin and J. Lehner, Hecke operators on ro(m). Math. Ann. 185 (1970)
134-160.

2. C. Conway and S. Norton, Monstrous moonshine. Bull. London Math. Soc. 11 (1979)
308-339.

3. H. M. S. Coxeter, The abstract group Gmnp. Trans. Amer. Soc. 45 (1939) 73-150.
4. D. L. Johnson, Presentation of groups. London Math. Soc. Lecture Notes No. 22,

(Cambridge University Press, 1976).
5. J. Lehner and M. Newman, Weierstrass points on T0(N). Ann. of Math. 79 (1964)

360-368.
6. C. Maclachlan, Groups of units of zero ternary quadratic forms. Proc. Roy. Soc.

Edinburgh Sect. A, 88 (1981) 141-157.
7. A. P. Ogg, Modular functions in Proceedings Santa Cruz Conference on Finite Groups,

Proc. Symp. Pure Math. 37 (A.M.S. 1980).
8. A. P. Ogg, "Uber die Automorphismengruppe von Xa(N)". Math. Ann. 228 (1977)

279-292.
9. B. Schoeneberg, Elliptic modular functions. (Springer-Verlag, 1974).

10. F. A. Sherk, The regular maps on a surface of genus three. Canad. J. Math. 11 (1959),
452-480.

11. D. Singerman, Symmetries of Riemann surfaces with large automorphism group. Math.
Ann. 210 (1974), 17-32.

12. R. Zomorrodian, Nilpotent automorphism groups of Riemann surfaces, Trans. Amer.
Math. Soc. 288 (1985) 241-255.

FACULTY OF MATHEMATICAL STUDIES,

THE UNIVERSITY,

SOUTHAMPTON.

https://doi.org/10.1017/S001708950000940X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000940X

