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Putting numbers on risks

Risk is a strange concept. Different disciplines have tried to define it

precisely, but perhaps it is better to be informal and follow more popular

usage. I shall take it as anything to do with situations where ‘bad’ (or ‘good’)

things may, or may not, happen. The crucial elements are that there is

uncertainty, and that the outcomes may be nice or nasty.

A wealth of recent psychological research has shown that we mainly use

‘gut feelings’ to deal with such situations, rather than carefully weighing

up the consequences and assessing numerical probabilities, as more for-

mal approaches would have us do. Our feelings are influenced by culture,

our experiences and those of people close to us, media coverage, emotional

feelings of dread, or hope, and so on, but we manage to get by most of the

time, and it is noticeable how recently, in historical terms, the theory

combining probability and ‘rational’ decision-making was developed.

Even when evidence is available about the ‘size’ of a risk, in sufficiently

stressful situations it may be ignored. Cass Sunstein, a senior adviser

to Barack Obama, claims that people display ‘probability neglect’ when

confronted with vivid images of terrorism, so that ‘when their emotions

are intensely engaged, people’s attention is focused on the bad outcome

itself, and they are inattentive to the fact that it is unlikely to occur’. So

the ‘true’ risks are ignored; it’s been shown that people are, rather illogi-

cally, willing to pay more for insurance against terrorism than insurance

against all risks (which implicitly include terrorism), just because the use

of the word conjures up dread.

But gut feelings might be unreliable in some circumstances, for example

when people are trying to manipulate you to take some action, or when
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the reasoning is complex and a lot depends on the decision. Then a

more analytic, and perhaps rather unnatural, approach can be useful,

whether you are an individual trying to make a personal decision, or you

represent an organisation or government deciding on a policy in the face

of uncertainty.

This more formal approach relies on putting numbers on probabilities

of events, and raises the inevitable question: can we quantify our uncertainty?

In this chapter we will just look at this question, ignoring our knowledge

and feelings about the consequences of actions.

Putting probabilities on events

In some circumstances we can use pure logic to come up with reasonable

probabilities, because of the assumed symmetries in the situation which

allow equally likely outcomes to be specified. These are the classical areas

of probability, with balanced coins, shuffled cards, and so on. For example,

in the UK National Lottery six balls are drawn without replacement from

a drum containing forty-nine numbered balls. If the numbers match the

six numbers on your lottery ticket then you win, or share, the jackpot –

fewer matches win less, with the lowest prize being ten pounds for three

matching numbers.

If we assume that the lottery-drawing mechanism is completely fair

and unbiased, so that each number is equally likely to be drawn, then

we can immediately calculate the probabilities of specific events, such as

a 1 in 13,983,815 chance of winning a jackpot, and a 1 in 56 chance of

matching three numbers. Note the use of the word ‘chance’, deliberately

carrying the connotation of an ‘objective’ number that can be calculated

using the theory of probability.

If these probabilities are assumed to be known, because of the physi-

cal properties of the system, then we can learn nothing from history –

even if the same lottery numbers came up every week we would have

to put it down to luck. But even the slightest suspicion of irregulari-

ties changes everything, and suddenly the reassuring calculations evap-

orate if, for example, you suspect that some of the balls have been

left out of the bag. The vital conclusion is that these ‘classical’ prob-

abilities – chances that are states of the world – are grounded on
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subjective assumptions about the generating mechanism, and hence are

deeply contingent.

An alternative basis for quantifying uncertainty is by using historical

data. If the future follows the same pattern as the past, then frequencies

of events in history should reflect reasonable probabilities for events in

the future. In fact the ‘frequentist’ view defines probability as the limiting

frequency in a (fictitious) infinite replication. For example, sports betting

companies use past data on football matches to propose reasonable odds

for the results of future games. We have tried this, using fairly simple

models involving estimates of the ‘home advantage’, ‘attack strength’ and

‘defence weakness’ of teams, that can be combined to give us expected

numbers of goals in each match and hence, assuming a Poisson distri-

bution around the expected values, a probability for any particular final

score. Our own models have met with mixed success, but the (confiden-

tial) models used by professionals presumably work well enough to make

money.

The assessed probabilities are therefore based on assumptions about the

continuity of past with future, together with an assumed mathematical

model for how various fictitious parameters such as ‘attack strength’

interact to give rise to appropriate odds. The lesson from this kind of

exercise is that such assumptions are known to be false, or at least not

precisely true, and yet the resulting probabilities may be good enough for

the purpose. Again, the final numbers are contingent upon unprovable

assumptions.

Finally, the situation may have neither reassuring symmetries nor use-

ful historical precedents. For example, consider the situation in early

2008. The probability of Barack Obama becoming the next President of

the United States could hardly be based on the empirical historical record

of forty-three out of forty-three US Presidents being white. Philosoph-

ically, we might believe there is still some objective ‘propensity’ in the

situation for Obama to be the next President, but this does not seem

practically useful. Instead we are left to make a judgement using existing

information, expressed as the betting odds that we are willing to place

or to lay bets. These lead to the results shown in Figure 2.1, which are

derived from a major online betting exchange. These ‘probabilities’ are not

based on any ‘objective’ state of the world, nor historical data, and change
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‘Probability’ (%) of Obama or McCain winning the 2008 US presidential election
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FIGURE 2.1 ‘Probability’ of Barack Obama (dark line) or John McCain

(light line) winning the 2008 US Presidential election, as reflected in the

odds both taken and offered on a betting exchange, each day in the year up to

the 2008 election.

constantly in receipt of further information. I would still argue that these

are reasonable probabilities, as they reflect reasonable numerical uncer-

tainty concerning the outcome, given the current state of knowledge.

These three circumstances – classical symmetry, historical data and

subjective judgement – all lead to precisely the same conclusions. Prob-

abilities are constructed on the basis of existing knowledge, and are

therefore contingent. This rather dramatic conclusion, although open

to dispute by some statisticians and philosophers of probability, has a

respectable pedigree among the community of Bayesian statisticians.

Indeed a guiding quote throughout my career comes from Bruno de

Finetti:

Probability does not exist.
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I take this to mean that probabilities are not states of the world (except

possibly at the sub-atomic level, about which we are not concerned here),

but depend on the relationship between the ‘object’ of the probability

assessment, and the ‘subject’ who is doing the assessing. This means that,

strictly speaking, we should not use the phrase ‘the probability of X’, but

‘my probability for X’, where ‘my’ refers to whoever is taking respon-

sibility for the probability. This makes clear that probability expresses

a relationship, not a property or an objective fact about X. Sadly, this

phrasing is unlikely to become standard practice.

The second guiding quote for my career comes from a great industrial

statistician, George Box:

All models are wrong, but some are useful.

Again, this emphasises that the mathematical structures that we construct

in order to arrive at numerical probabilities are not states of the world,

but are based on unprovable assumptions. We shall look briefly at the

deeper uncertainties concerned with model-building in a later section.

Representing probabilities

There is a wide range of alternatives for representing probabilities when

communicating with different audiences. Here we discuss a limited list of

options, and briefly summarise some of the psychological research related

to the perception of the magnitudes of probabilities associated with the

different representations.

By putting my personal information through a computer program, for

example, my general practitioner can tell me that I have around a ‘10 per

cent chance’ of a heart attack or stroke in the next ten years. How might

such a quantity be communicated to me? We first consider the use of text,

either using words or numbers:

� Natural language: For example, ‘you might have a heart attack or

stroke’, or ‘it is possible you . . . ’. Such language is widely used in weather

forecasting. The interpretation of such terms is highly dependent on the

subject: if numerical information is to be communicated, a fixed

‘translation’ might be agreed, such as in recent Intergovernmental Panel
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for Climate Change (IPCC) reports in which ‘very likely’ is taken to

mean more than 90 per cent confidence in being correct.
� Numerical probabilities defined between 0 and 1: For example, ‘Your

probability of having a heart attack or stroke is 0.1.’ This format is never

used except in technical discussions.
� Numerical ‘chances’ expressed as percentages: ‘You have a 10 per

cent chance . . . ’. This is widely used in popular discourse, but has

connotations of random devices such as dice, which can appear

inappropriate when discussing serious personal issues.
� Numerical ‘odds’: ‘You have a 1 in 10 chance of . . . ’. This is a more

popular expression, although it is still in terms of chances, but means that

smaller probabilities are associated with larger numbers. Recent evidence

suggests that around 25 per cent of the adult population cannot say

which is the largest risk out of the options ‘1 in 10’, ‘1 in 1000’, ‘1 in 100’.
� Frequencies in populations: For example, ‘Out of 100 people like you,

10 will have a heart attack . . . ’. This is becoming a common text

representation in leaflets and computer programs designed to explain

risks to medical patients. However, it requires one to see oneself as part

of a group of similar people – a ‘reference class’ – and this could conflict

with a self-image of uniqueness and lead to a denial of the relevance of

the statement.
� Frequencies out of ‘possible futures’: ‘Out of 100 ways things might

turn out for you over the next 10 years, you would be expected to have a

heart attack or stroke in 10 of them.’ This is a novel representation

intended to encourage the immediacy and ownership of the risk.

Philosophically it is very shaky: it is an uneasy mixture between a

probability, constructed on available knowledge, and a frequency

interpretation, as a proportion of a population of possible futures.

There is also a range of graphical options, including pie charts, circles

representing the size of the risk, bar charts, icon-plots showing many

small ‘people’, ‘Smilies’ showing multiple iconic faces experiencing differ-

ent outcomes, multiple photos, and word-clouds, in which the size of the

font is proportional to the probability of the event.

None of these presents a universal solution. Challenges that arise

include:

1. Comparing rare and more common events, leading to the frequent use of

graphics on a logarithmic scale, or providing a ‘magnifying glass’ for

zooming in on rarer events.

2. Graphical representation of multiple outcomes for the same individual.
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3. Comparisons between alternative options when each brings a mixture of

potential harms and benefits.

4. Uncertainty, in the sense that we may be more confident about some

probabilities than others. While in principle this is of limited relevance,

and may only add additional complexity, it could be an option for more

sophisticated users.

All these formats deal with probabilities of single events, rather than

uncertainty about continuous quantities such as future income, where a

wide range of additional graphical tools would be necessary. Uncertainty

about the time until an event, such as death, requires a representation

for the distribution of possible survival times, for which there is a further

range of options which are not explored here.

When it comes to evaluating different formats, it is important to be

clear about the purpose of the representation. Broadly, we can divide the

aims into:

� Gaining immediate attention and interest.
� Communicating information to be retained.
� Influencing continuing behaviour.

There are clear similarities between these objectives and those of com-

modity and service marketing. It would be intellectually satisfying to find

that the three objectives follow a nice causal pathway: gaining interest

leads to knowledge retention which influences behaviour. However, the

research literature suggests that the relationship between these objec-

tives is complex, if it exists at all. We must therefore be clear about

what we are trying to achieve. For shared-care decisions in health, for

example, we may want to provide information so that everyone feels they

have made an informed choice, but without necessarily directly trying to

influence behaviour in one direction or another. Research suggests that

many people strongly welcome information provision, but then seek a

fairly paternalistic form of advice (‘I really appreciate you telling me all

this, doctor, but what do you think I should do?’)

There are possibilities for combining many of these representations

within a single interface using interactive animations. Given that there is

no single ‘best’ representation, this seems an appropriate policy so that

users can essentially choose, or be guided towards, the format that they

23

https://doi.org/10.1017/CBO9780511735950.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511735950.002


David Spiegelhalter

find most natural and comprehensible. And of course we must remember

that people are likely to be much more influenced by their trust in the

information source, their personal experiences and their feelings about the

possible outcomes, than they are by the particular choice of format. Nev-

ertheless, it seems a reasonable duty to try and do our best to make sure

that the available evidence is permitted to play a role in personal decisions.

Communicating small lethal risks

There are particular problems in comparing and communicating small

lethal risks, and yet this is what many of us are faced with in our daily

lives. Ideally we need a ‘friendly’ unit of deadly risk. A suggestion made

in the 1970s by Ronald Howard is the use of the micromort, or a one-in-

a-million chance of death. This is attractive as it generally means that

we can translate small risks into whole numbers that can be immediately

compared. For example, the risk of death from a general anaesthetic (not

the accompanying operation), is quoted as 1 in 100,000, meaning that in

every 100,000 operations we would expect one death. This corresponds

to ten micromorts per operation.

We can also consider the 18,000 people out of 54 million in England

and Wales who died from non-natural causes in 2008, such as accidents,

murders, suicides, and so on. This corresponds to an average of 18,000 /

(54 x 365) ≈ 1 micromort per day, so we can think of a micromort as the

average ‘ration’ of lethal risk that people spend each day, and which we do

not unduly worry about. A one-in-a-million chance of death can also be

thought of as the consequences of a bizarre game in which twenty coins

are thrown in the air, and if they all come down heads the thrower has

to commit suicide. It is interesting to explore, in a fictitious context, the

amount people would accept as payment to take part in the game.

A measure such as a micromort needs a unit of exposure to accompany

it, and different sources of risk naturally give rise to different levels of

exposure. Here we briefly consider transport, medical events, and leisure

activities. Of course, we can only quote ‘average’ risks over a population,

which neither represent ‘your’ risks nor necessarily those of a random

person drawn from the population. Nevertheless they provide useful

‘ballpark’ figures from which reasonable odds for specific situations might
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FIGURE 2.2 Distance travelled per micromort (one-in-a-million chance of

death) for different forms of transport in the UK, based on assumption of

constant risk within transport type and over time.

be assessed. As we have already emphasised, we do not consider that

numerical risks exist as fully estimable properties of the world.

Transport

Options for comparing forms of transport include miles per micromort,

micromort per 100 miles, micromorts per hour, and so on. We compare the

first two options below. Although the general advice is that larger num-

bers should correspond to larger risks, ‘miles per micromort’ seems attrac-

tive, especially when used to provide a ‘calibration’ against other risks.

We have not included trains and planes as they would require a change

in axes, and the rarity of fatalities (even though they are given great

coverage) makes assessment of ‘average’ risk of limited value.

Medical events

Since these are specific, discrete occurrences, the natural measure is risk

per event, for example giving birth, having a Caesarean section or having

a general anaesthetic. The exception is spending time in hospital, which
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FIGURE 2.3 Micromorts per distance travelled for different forms of

transport in the UK, based on assumption of constant risk within transport

type and over time.

is expressed as micromorts per night spent in hospital, considering only

deaths that were not due to natural causes.

Examination of Figures 2.2 and 2.4 is informative. For example, hav-

ing a general anaesthetic carries the same risk of death, on average, as

travelling 60 miles on a motorbike. The high value for a night in hospital

is derived from the National Patient Safety Agency reports of adverse

events resulting in death. If anything, this is an underestimate.

Leisure activities

We assume that the risk comes from a specific ‘accident’ in what is an

otherwise safe activity with no chronic ill effects. It is therefore natural to

express exposure as the specific activity. Since the activities take different

lengths of time it would be possible to express them as micromorts per

hour, but this does not seem to reflect the choices that people make.

All these examples concern sudden deaths, but many ‘risky’ behaviours

have a delayed impact, such as smoking or an unhealthy diet. Comparing
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‘acute’ and ‘chronic’ risks is tricky, but there have been a number of

suggestions for ‘riskometers’ which attempt to put both immediate and

delayed risks on a common scale. Options include:

1. Listing causes of death, which allows a comparison of how many people,

for example, die from accidents compared to heart disease, but does not

directly allow the comparison of alternative daily activities.

2. Transform lifetime risks, say of dying from cancer due to smoking, into

risk per day by assuming that there are, say, around 30,000 days in a

lifetime. But no allowance is made for delayed effects.

3. Discount future risks by a specified factor, and assess the proportional

loss on discounted life-expectancy due to different activities. This can

then be converted to a logarithmic scale.

None of these options seems entirely satisfactory, as they inevitably mean

placing, for example, cigarette smoking and motorcycle riding on a com-

mon risk scale, and yet these two behaviours have very different conse-

quences.

Epistemic uncertainty

We have seen how the theory of probability is used as a tool in analysing

the essential unpredictability of existence, also known as aleatory uncer-

tainty. For example, before I flip a fair unbiased coin, people are generally

willing to say there is a 50 per cent chance of a head. However, if I flip

the coin and then cover up the result, and ask what is the probability of a

head, after some grumbling an audience may be willing to admit the odds

are still 50:50. Their misgiving is understandable – they need to cross an

important line in being willing to use numerical probabilities to express

their epistemic uncertainty, that is, their ignorance about what the coin

actually shows. What then if I look at the coin and ask them the for prob-

ability of a head? After an even longer pause they may grudgingly admit

it is still 50:50. Now they have been dragged into the full recognition that

epistemic uncertainty is not a property of the object, in this case the coin;

it is a property of their relationship with the object, and we all may have

different epistemic uncertainties depending on the knowledge to which

we are privy. This is the essence of the Bayesian approach to statistics. It

allows us to use probability theory to express epistemic uncertainty.
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Table 2.1 Scoring procedure when expressing your confidence as a

probability of being correct

Your ‘probability’ that

your answer is correct

(out of 10) 5 6 7 8 9 10

Score if you are right 0 9 16 21 24 25

Score if you are wrong 0 −11 −24 −39 −56 −75

Of course a problem arises when we are deluded about the knowledge

we have and claim certainty, or at least high confidence, in facts that are

not actually the case. Fortunately there is an under-appreciated branch

of statistics concerned with assessing the quality of people’s probability

judgements using what are known as scoring rules. These are designed

to penalise people for providing poor probabilities for events whose truth

or falsity is later determined.

We can illustrate the issues with some simple questions given below.

In each case either (A) or (B) is the correct answer, and the challenge is to

decide which answer you feel is most likely to be correct, and quantify your

probability that your answer is correct. So if you are certain (A) is correct

then you should give it 10/10, but if you are only around 70 per cent sure

then it gets 7/10. If you have no idea, then give 5/10 to either choice.

1. Which is higher: (A) the Eiffel tower, or (B) Canary Wharf?

2. Who is older: (A) George Osborne, or (B) Nick Clegg?

3. In the International Movie DataBase rankings (29/12/2009), which film

comes higher: (A) The Matrix, or (B) Forrest Gump?

4. Which is bigger: (A) Croatia, or (B) Czech Republic?

5. Which is bigger: (A) Venus, or (B) Earth?

6. Who died first: (A) Beethoven, or (B) Napoleon?

Table 2.1 shows how you are scored when the true answer is revealed. If

you are absolutely correct then you score twenty-five, but if completely

wrong then you lose seventy-five. If your probability was five for either

answer, then you stay where you were. It is clear that there is a steep

penalty for being confident and wrong. This is not arbitrary punishment,

but a consequence of designing a scoring rule that encourages honesty,

so that if you are 70 per cent sure of, say (A), then your expected score
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is maximised if you give a probability of 7/10 for (A), rather than exag-

gerating and giving a probability of 10/10 for (A). Such a scoring rule is

called ‘proper’.

By subtracting twenty-five from each of the scores it becomes clear

that the penalty is dependent on the square of the probability given to the

wrong answer. This quadratic, or Brier, scoring rule was developed to

train weather forecasters to give reasonable probability of future weather

events such as rain. A simple linear scoring rule, such as scoring somebody

by the probability given to the correct answer, is inappropriate as it would

encourage people to exaggerate their confidence in being right.

This process shows that epistemic uncertainties can be quantified as

probabilities, which are necessarily subjective and expressed by an indi-

vidual on the basis of available knowledge. They should not be thought

of as embodying some ‘true belief’, but are constructed by whatever elicita-

tion process is being used. But for these judgements to be useful, people’s

probabilities need to have some reasonable properties. First, they should

be calibrated, in the sense that if someone gives a probability of 7/10 to

a series of events, then, around 70 per cent of those events should actu-

ally occur. Second, the probabilities should discriminate, in that events

that occur should be given higher probabilities than those that do not.

It can be shown that a proper scoring rule rewards both calibration and

discrimination.

So far we have considered events that are well defined and whose truth

can be established. In real situations things are generally not so simple,

as we shall explore in the next section.

Deeper uncertainties

In 1921 Frank Knight published his book Risk, Uncertainty and Profit,

in which he distinguished between ‘risk’ and ‘uncertainty’. ‘Risks’ were

objective quantities that could either be obtained by reasoning (for

example, symmetric situations involving dice, cards, etc.), or estimated

from historical data. Conversely, ‘uncertainty’ was subjective and judge-

mental, and not susceptible to objective measurement. Since that time

the use of subjective probabilities has become developed and so, as our

discussion in earlier sections shows, it may be considered reasonable to
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use numbers to express our subjective beliefs. However, there will still

be many circumstances in which we feel that our ignorance is so great,

or the future possibilities so ill-defined, that we are unwilling to express

numerical judgements with any confidence.

We may also have the courage and insight to acknowledge that there

may be important things we have not even thought of like the Rumsfeldian

‘unknown unknowns’. A famous plea for such humility came from Oliver

Cromwell. In 1650 he was trying to avoid a battle with the Church of

Scotland, which was then supporting the return of Charles I’s son. He

wrote: ‘Is it therefore infallibly agreeable to the Word of God, all that you

say? I beseech you, in the bowels of Christ, think it possible you may be

mistaken.’

If we are willing to entertain the possibility that we may be mistaken,

then it may mean we have crossed the border of quantifiable uncertainty,

and opened up the possibility of non-numerical expressions of our doubts

and ignorance after we have constructed a model from which we want

to derive risk assessments. These misgivings may take many forms. For

example, we might conduct analyses under alternative sets of assump-

tions, and examine the robustness of our conclusions. We may admit to

aspects of the world that we know have not been adequately included, and

informally express our judgement as to their importance. We may express

judgements as to the strength and quality of the evidence underlying our

model and so express limits to our confidence in some conclusions. We

may add on a ‘fudge factor’ to allow for all the things we may not have

thought of. Finally, we may, of course, choose to deny non-modelled

uncertainty, or unwittingly overlook errors in our model. One can see

examples of these strategies being played out in the deliberations about

climate change.

Conclusions

We have shown how our uncertainties about events can be quantified

using probability theory, whether or not there is a firm logical or his-

torical basis for these assessments. By taking a Bayesian perspective,

we can extend the use of probability to cover our epistemic uncertain-

ties about well-defined quantities. We may even, in some circumstances,
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quantify our uncertainty about the appropriate model to use. But when

we start acknowledging our inability to represent the full complexity

of the real world using mathematical models, we are faced with leaving

the safe land of quantifiable uncertainty and entering the (possibly hos-

tile) environment of disputed science, ill-understood possibilities and deep

uncertainty.

This is a world in which many statisticians and mathematical scientists

feel very uncomfortable, and for which they receive no training. A good

start to their education might involve acknowledging that their models

are inadequate constructs derived from currently accepted knowledge,

and that numerical probabilities are not a property of the world but an

expression of their subjective understanding of the world. These may be

considered fairly radical ideas.

On the other hand, those tasked with taking action on the basis of

risk assessments derived from a formal model also need to accept their

provisional and contingent nature, and the associated deep uncertainties.

This they may be reluctant to do, in their desire for concrete guides on

which they can base decisions.

My own feeling is that, when decision-makers are dealing with ‘expert’

risk assessments based on models, there should be quantification of uncer-

tainty to the maximum possible extent. But the potential limitations of

these numerical assessments should be acknowledged. A language is also

required for communicating, with due humility and without fear of casual

rejection, the deeper uncertainties.

Answers to quiz

A, B, A, B, B, B
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