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A FLAT SHIP THEORY ON BOW AND STERN FLOWS
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Abstract

An analytical solution of a two-dimensional bow and stern flow model based on a flat ship
theory is presented for the first time. The flat ship theory is a counterpart to Michell’s thin
ship theory and leads to a mixed initial-boundary value problem, which is usually difficult
to solve analytically. Starting from the transient problem, we shall first show that a steady
state is attainable at the large time limit. Then the steady problem is solved in detail by
means of the Wiener-Hopf technique and closed-form far-field results are obtained for an
arbitrary hull shape. Apart from providing a better understanding of the underlying physics,
the newly found analytical solution has shed some light on solving a longtime outstanding
problem in the engineering practice of ship building, the optimisation of hull shape.

1. Introduction

Free-surface flow past a surface-piercing object such as a ship is a very important
yet challenging problem. Two widely used models are Michell’s thin ship theory
([17, 23, 24]) and the flat ship theory proposed later as a parallel model to the thin
ship theory ([2, 16, 25]). It should be noted that thin ship theory has no applications in
two-dimensional ship problems, which result from the approximation of the beamwise
variations being neglected. Mathematically, the flat ship model is however more
difficult to deal with than the thin ship model in that a mixed boundary value problem
must be solved therein.

Most of the authors of the references mentioned above considered the steady (thatis,
large time) problem, and as a consequence, the boundary conditions in the far field, the
so-called radiation conditions, are yet to be justified. Recently, even the attainability
of a steady state was questioned by Vanden-Broeck er al. ([26]). Based on a small
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Froude number expansion, their numerical solutions suggest that there exists no wave-
free solution for a two-dimensional semi-infinite ship in water of infinite depth. They
therefore argued that the bow flow should be modelled as a jet rising along the bow
and falling down onto the oncoming stream ([6]). Although they treated the spray as
steady (for the sake of simplicity) under the assumption that the impact of the jet on
the oncoming stream is small, their results actually imply that a steady bow flow is
not possible; splash will generally occur. On the other hand, with careful numerical
experiments, Grosenbaugh and Yeung ([10]) conjectured that a steady bow flow with
a stagnation point over the bow (see, for example, [5]) was possible at small Froude
numbers. However, due to a numerical difficulty associated with the increasingly
higher wavenumber near the bow (which is commonly present in small-time solutions
for a moving object that intersects a free surface; see Roberts [20]), they were unable
to offer conclusive evidence on this issue.

Besides the steady models, small-time perturbation models have also been explored
({13, 14, 20]). These models are widely used to study the small-time evolution of
the free surface when a surface-piercing plate extending to the bottom of the water is
moving at a constant or varying speed. Mathematically simple as it is, this example
is however inappropriate for large-time analysis since the water is continuously accu-
mulated in front of the plate which eventually leads to the formation of a jet there and
thus nonlinearity becomes dominant at large time, as commented in Joo et al. ([13]).

So far the two-dimensional ship problem has been solved predominantly using
numerical methods such as the integral equation methods (for éxample [4, 21, 22]
erc.). Owing to the wild behaviour of the kernels, the numerical approaches employed
to solve these integral equations suffer severely from convergence problems ([2]),
and therefore the relationship between the hull shape and the flow quantities is by
no means clear. On the other hand, analytical results would certainly help numerical
model developers, for example, to estimate the scales of certain parameters which are
undoubtedly needed in a sophisticated numerical model ([2]).

In this paper, a linear analytical model for a two-dimensional flat ship is considered.
The ship is modelled as a semi-infinite object in order to study the bow and stern flows
separately. In literature, whether or not the boundary conditions can be linearised
used to be controversial. But according to Haussling [11] and Fernandez ([8]), the
linearisation seems to be valid in the far field for relatively large Froude numbers. In
particular, Haussling ([11]) compared the results from the fully nonlinear potential
theory and a linear flat ship theory and found a broad agreement between the two for
draught-based Froude numbers greater than 3. In this paper, we are mainly concerned
with the far-field solution. However, if the evolution of bow waves is to be studied,
which inevitably involves the near-field solution, a matched asymptotic analysis can
be employed and this is left for future study.

The plan of this paper is as follows. We first show, using a transient model,
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that a steady state is attainable at the large-time limit. We shall also show that a
serious deficiency of the widely used small Froude number expansion ({5, 26]) is
that it does not discriminate between the bow and stern flows even in transient states.
Although our transient solution is given in a closed form, it is so involved that useful
information can hardly be inferred from it. However, in addition to serving as a proof
of the existence of the steady-state solution, the formal analytical solution for transient
states also supplies the radiation condition needed in the steady problem. Then we
solve the steady problem with the Wiener-Hopf technique and obtain closed-form far-
field results for an arbitrary hull shape. The Wiener-Hopf technique has been widely
used to solve various mixed boundary value problems occurring in electromagnetics,
acoustics, elasticity ezc. ([3, 12, 18]). Finally, the relationship between the hull shape
and the lee wave response is discussed with the results of several specific examples.
In particular, we show that the problem of finding the optimal ship hull shape, which
has been a very challenging numerical task (see, for example, [7, 15]), is reduced to
that of no more than minimising a functional. The optimal shape obtained in this way
can serve as a useful first guide in engineering designs.

2. Transient problems

We assume that the fluid is inviscid, incompressible and infinitely deep. But the
following analysis can be easily extended to the case of finite depth. A Cartesian
coordinate system xoy with the x-axis pointing to the right and the y-axis pointing
upwards is attached to the moving ship, which is modelled as a semi-infinite object
extending from x = —oo to x = 0. The ship and the fluid are motionless for t < 0
and at + = 0% the ship starts to move at a constant speed U, where U > 0(< 0)
corresponds respectively to a bow (stern) flow problem.

By choosing the length and velocity scales respectively as U?/g and | U|, where
g is the gravitational acceleration, the non-dimensionalised governing equation and
boundary and initial conditions are given by

V2® =0, inthe fluid region,

d)y = efl(A' - (Dx)v y= _ef(x)v X < 0;

(Dy = ﬁl + ((Dx - A);’xv -
o 2 2 y=n,1), x >0,
0=n+®, — A0, + (P, + P})/2,
Vo -0, r=x2+y?— o0,
d)ly:o:(D,l,._.o:ﬁ:O, t=0, x>0,
where V is the two-dimensional gradient operator, subscripts denote partial differ-
entiation, ¢ is the velocity potential, the ship hull is given by y = —¢f (x) with €
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being the dimensionless draught which is assumed to be small in the current flat ship
theory, A = +£1 corresponds respectively to bow and stern flows, and y = 7(x, t) is
the instantaneous location of the free surface. The origin of the coordinate system is
located at the intersection between the hull and the undisturbed free surface so that
f (0) = 0. Other geometrical restrictions on f (x) are that f (x) = O(1), forx < 0,
and f(x) = L, f'(x), f"(x)... &> 0 asx — —o00, that is, the hull is virtually flat in
the far field.

We then linearise the problem by assuming € <« 1 and expanding the unknowns as

d =€ep+ O(eY),
N =en+ O(e).

Then the linearised differential system becomes

V%¢ =0, inthe fluid region, .1)

o, =XM"', y=0,x <0, 2.2)

0=0¢y+ ¢u — 2Axs + Puxs ) =0 x>0, 23)
n=2Aip; — ¢,

V¢ -0, r=yx24+y?— o0, 2.4)

Ply=o = dly=o=n=0, t=0, x>0, (2.5)

which is a mixed initial-boundary value problem.

Before we proceed to solving the differential system (2.1)-(2.5) using integral
transformations and the Wiener-Hopf technique, it is advantageous to examine the
relationship between the bow and stern flows. It can be readily verified from the
above differential system that the relationship

¢s = _¢bv Xs = —Xp,

holds, where the subscripts “s” and “b” denote the variables used respectively in
“stern” and “bow” flow cases. That is, the two problems are equivalent provided
that the solutions for x > 0 and x < 0 are interchanged. Therefore we shall only
discuss the bow flow case and set A = 1 from here on. It must be noted that such a
reversibility between the “stern” and “bow” flows is consistent with one’s expectation
because reversing the direction of the ship’s motion is equivalent to interchanging
downstream and upstream fluid motions. On the other hand, it can be shown that
the small Froude number expansion leads to a series of linear problems in which
bow and stern flows are completely equivalent at any order. Interestingly, with this
analysis on transients, the reason why only one kind of steady flow was obtained in
Vanden-Broeck et al. ([26]) manifests itself; the radiation conditions for both bow
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and stern flows are identical to each other and therefore the steady-state solution, if
it exists, is either wave-like or wave-free. Apart from the undesirable divergence of
the small Froude number expansion ([26]), this non-discrimination between the two
flows is the main reason why we prefer not to use the small Froude number expansion
here. Although the current flat ship model does not suffer from these deficiencies, it
is at the cost of solving a much more difficult mixed boundary value problem.

To solve the differential system (2.1)—(2.5), we take the Laplace transform of the
unknowns

q;(x, y,s) = [ ¢(x,y, e dt,
0

and the transformed system becomes

V2§ =0, in the fluid region,

A 1
¢, =-f", y=0,x<0, (2.6)
K
0= 5 +32A_2skx+’~xxa
. qu A¢ o t9 ] y=0, x >0, 2.7
’7=¢x_5¢,
V¢ >0, r=x2+y*> oo. (2.8)

Then we take the Fourier transform of ¢ with respect to x:

1 +oo )
—_— (x,y,s)e " dx.
/ 2 -/:oo ¢ Y
By virtue of the Laplace equation and the boundary condition (2.8), ¥ must be of the
form ‘

'ﬁ(K,)’:S) =

¥ = Ak)e",

where A (k) is to be determined. Therefore we have the formal solution:

+00
b= J% / A) e e d, 29)

with A (k) to be found by satisfying the remaining boundary conditions (2.6) and (2.7).

As one expects, the perturbation near the origin is non-uniform. Strictly speaking,
a matched asymptotic analysis must be used to find the near-field (inner) solution
([27]). An inner solution is necessary if the evolution of the bow waves is of concem.
Since in this paper we are mainly interested in the outer (far-field) solution, we shall
not pursue an inner solution here. Research on the inner solution is continuing and
the results will be reported elsewhere.

https://doi.org/10.1017/51446181100013110 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100013110

6 Songping Zhu and Yinglong Zhang [6]

Even without the need to find the near-field solution, the singularity at the origin
hinders the Fourier transform from being applied to the free-surface boundary condi-
tion. To circumvent this difficulty, we adopt a dual integral equation method (see, for
example, [18]). Substituting the formal solution (2.9) into the boundary conditions
at y = 0 yields a pair of integral equations to be satisfied on the two parts of the
boundary:

1 +oo . 1
— B)e* dxe = =f'(x), x <0, 2.10

o /_ . sf (x) (2.10)

1 +oo .
—_— Bk)Gk)e**dk =0, x>0, 2.11
v27T \/:oo ( )
where B(k) = |«|A(x) and G(x) = 1+ (s — ix)?/|x]. Since |G(x)| ~ |k| as
k| — o0, this is a special case discussed in Noble ({18, page 222]). To solve the
above dual integral equations, we split G(x) in a standard Wiener-Hopf fashion:

G(k) = =k Vi _LL(K)L_(k) = G4 (k)G _(x),

where Gi(k) = F/k . Li(k). Hereafter we use “+” and “—” to denote that the
function subscriptised is analytical on the upper and lower half of the complex «-planes
respectively. Here L, (k) is the Wiener-Hopf decomposition of L(x) = —1/|x| —
(s — ix)?/x? and can be found in a standard way:
nLik)=+— [ PLE
2mi Jr, §—«
where the contours I' ;. are defined in Noble ([18, page 13]). The multi-valued functions
(such as /k_) are analytical once proper branch cuts are inserted into the complex
plane. In this paper, we take the negative real axis as the branch cut. It should also be
noted that G4 (k) and L 4 (x) are non-zero on the respective half-planes ([18, page 15])
but may have zeros on the real axis.
"Changing x tox —§ in (2.10) and tox +£ in (2.11) with ¢ > 0, and then multiplying
(2.10) and (2.11) by (1 /JE)M; (&) respectively, and finally integrating both sides
with respect to & from 0 to 400 gives

g,

+00 +00

1 .
. N_ B iKx dK — _ , _ ’ .
V2n ./_oo (B e ), M E)f'(x—§)dE, x <0, (212

+o0
%/ N.(K)B)G()e**dk =0, x >0, (2.13)
T J-oc0
where
1 +oo &
Ni(k) = —= My (§)e™™** dE (2.14)

V2T Joxo
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are respectively analytical and vanish as |x] — 00 on the upper and lower half planes.
Following Noble, we take
G_(x)

Noo=Z00 N =g
+

(2.15)

where k; is an arbitrary number on the upper half plane (Im{«x,} > 0). From (2.14)
M4 (£) can be determined by the inverse Fourier transform

+00

Mi(§) = Ni(K)e:Fi"E dk.

J‘

It can be shown via a contour integration that My (§) = 0for§ < 0.
Substituting (2.15) into the dual integral equations (2.12) and (2.13) gives

/+oo G_(K)
m —0 K— K>
+

+00
B(k)e™* dx = ﬁ/; M_©)f'(x—§d, x <0,

—J—;—_n—'/:w G_(k)B()e**dk =0, x > 0. (2.16)

Multiplying the first equation by e~*** and then differentiating it with respect to x

yields

—}Ji_;/:m G_(x)B(k)e™ dk
i

ikzxi ~iKkyx [+ ’ '
= —-ﬁe dxe ‘/(; M_(s)f (x _E) dEv x <0. (2'17)

The Fourier inversion of (2.16) and (2.17) leads to

I(x,s)
.

. 0
G_(k)B(x) = —L/ X (x)e™™* dx =
27s J_o
where

o d . +oo
X () = o et f M_(E)f(x — £) de.
0

We then have the formal solution as

/‘+°° 1k, s)
27“«/_ v s x| G-(x, 5)

nix, ) =(p:—d)ly=0= ™ (ik — s) dk,
(2.18)

where T is the contour for the inverse Laplace transform and is located to the right of
all singularities (including poles, branch points and essential singularities). It should
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be noted that we have been using G_(x) etc. as shorthand notation for G_(«, s) etc.
for brevity, but from now on we shall use the full notation.

The large time asymptotic form of the solution crucially depends on the poles and
possible branch points on the complex s-plane. By definition, G(x, s5) has two zeros at
s = ix % i/[«], which are pure imaginary numbers. Thus we can choose the contour
Y as the imaginary axis with a proper indentation around the poles or branch points.
From (2.15), G, (x, s) cannot have zeros and therefore G_(k, s) must have simple
zeros at s = ik = i/J«]. So the solution is in the form

+00 . e.\'l
Q= f e dk / - — F(k, s)ds,
—o0 r §(s = ib))(s — iby)

where F(k, s) is analytical on the left half s-plane, and b, ; = « + /|«|. From the
residue theorem, we have

+00 : ibyt . ibyt
o= _27”_/ [F(K, ib))e + F(k,iby)e + F(k,0)

e dx, 2.19)
b —b) T hi=b) T bib ] ¢

(o0}

with the understanding that the path of integration is curved (from either above or
below) around the poles on the real axis. The last term in (2.19) represents a steady
state. As — 00, the first and second term vanish like £~1/2 by the method of stationary
phase (see, for example, [23]), provided that the indentations around these poles are
all from above (otherwise they would give rise to some oscillatory components as
t — 00). The justification of this particular choice of the indentation is as follows. If
we had chosen to curve the path around the poles from below, we would have ended
up with a situation where a train of stationary waves and some propagating waves
appear far upstream (in a bow flow problem) at large time. That is, we would have
obtained a quasi-steady solution. But this is impossible since the group velocity of
the surface waves is less than the phase velocity and therefore the wave energy cannot
be radiated to the far upstream.

Upon the establishment of the attainability of a steady state, the radiation condition
follows immediately. Since the path of integration in (2.19) is curved around the poles
from above, it can be shown that  — 0 as x — 400 (far upstream) in a steady
problem.

So far we have obtained a closed-form solution for the transient states. Such a
transient solution constructed with the Wiener-Hopf technique is undoubtedly of great
theoretical significance, though extracting further information for transient solutions
remains a very difficult task, which is of little interest to us at this stage anyway; a
further analysis on the transient part (for example, for transient bow wave problems)
is left for future studies. So we now turn to the steady problem for a detailed analysis.
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3. Steady-state problems

The dual integral equations and the formal solution corresponding to the steady

state are
1 too )
_ A@)lkle™* dic = f'(x), x <O, (3.1)
V2 -/:oo f
1 +oo .
— A@)|k|G(k)e™* dx =0, x>0,
V2 /:w )I
i +°°A( ) ixde
= — K)Kke s
‘V27T —-00

where G(k) = Jc| — 1. As explained before, we are mainly interested in the far-
field solution, which is crucially-dependent on the zeros of G_(«) (see, for example,
{(2.18)). Instead of directly decomposing G(«x) and trying to find the zeros of G («),
we adopt here a much less laborious approach. Differentiating (3.1) with respect to x
twice and adding the resuitant equation to (3.1) leads to

1 /+00 )
—_— AW k|(k?— e de = —f'(x) = f"(x), x <O.
V2 J-x » f
We then proceed as in the previous section and obtain

+o00
J% [_w N_(k)C(k) K (k)e™* dx

+00
= —_\/lzn A M_(Uf'(x =)+ f"(x —£)]dE, x <0,
1 +00 i )
7=/ MOCKede=0, x>0,

where C(x) = A(k)lc|(k| — 1), K(x) = 1 + ||, and N4 (x) are defined in (2.14).
Unlike in the previous section, this time we take
K, (x)

1
Nie) =~ N_(k) = ——

K3 K_(k)’

with Im{x3;} < 0. The Wiener-Hopf decomposition of K (k) for real x can be found
as (see, for example [3, Equation (A.6)])

K, (k) =exp [ﬂiA I —lu2 [% + ln(—iu)] du]

=\/1+lx|exp[ ./‘xmdul. 3.2)

l
T Jo 1 —u2
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Note that an arbitrary constant can be put into Ky(x) with no effect on the final
solution.
So the final solution reads

i /+°°snx ACOR
= — _— ¢
"= Jom S B - DKL)
—_ _2; e I(K) iKx
- nlm{/o - DK d"}’ e

1 [0 .
I{k) = —E/ X{x)e ™" dx,

X () = fo M_©If"(x — &) + f"(x — )} e,

1 equdu — oo K+(u)

N 1
ﬁz?/_w K_(u) \/2_7[»/:00 1+ ul

& du.

M_¢) =

In (3.3), we have utilised a property of K, (), that is, K,.(—«) = K, (x) (see, for
example, (3.2)). Note that although 7 is only defined for x > 0 in a bow flow problem,
we can extend it to x < O to cover the stern flow due to the equivalence between the
two flows. We already know from the radiation condition that n - 0 as x — +o00
for bow flows. This amounts to curving the path around the pole at « = 1 from above
in (3.3). Using Cauchy’s residue theorem, one can show that for stern flows

LI
n wﬂRe{e K+(l)} (3.4)

in the far field. This represents nothing but the stationary lee waves for stern flows.
The right-hand side of (3.4) can be simplified as

K. (1) = v2e 78, | (3.5)
1 +00 0 )
1= [ M@ [ e -p 46 -l
1 +o0
=—— [ M- OU 5 +ir 9. (3.6)
T Jo

Equations (3.4)-(3.6) give an analytical form of the lee waves for an arbitrary hull
shape. The details of numerical evolution of the integral in (3.6) can be found in the
Appendix. It is interesting to note that another restriction on the function f (x) is that
a >3/20ra=1if f(x) ~ (—x)* asx — 0~ (see, for example, the Appendix);
solutions for 0 < o < 1 and 1 < ¢ < 3/2 are unbounded. '
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Argli(1)}

FIGURE 1. Magnitude and phase of /(1) as a function of the slope.

As an example, we computed a simple hull profile of a flat-bottom ship terminated
by a slope y. The corresponding f (x) is

f(x): —yx, -—1/)/ _<_X§0,

1, x < —1/y,
and the magnitude and phase of 7 (1) are shown in Figure 1. As the slope y approaches
zero, the wave amplitude diminishes as expected. On the other hand, as the slope
becomes large, the amplitude increases unboundedly. This simply indicates that the
flat ship theory cannot handle an abrupt change in the hull profile. However, it implies
that ships with such hulls would generally induce much larger drag. It is also seen
from Figure 1 that the phase of the lee waves approaches a constant (zero in this case)
as the slope increases.

In a numerical study of ship stern waves, Haussling ([11]) compared results from
the fully nonlinear potential theory and a linear flat ship theory and found that the
nonlinear effects are negligible for most practical purposes when draught-based Froude
numbers F = U/./gd are greater than 3. For F = 3 and the curved hull discussed in
his paper,

~sin(F2x/9), —-4.57/F*<x <0,

f= x < —4.57)F?,

’

his numerical result for the stern wave amplitude is 1.3d, which is in good agreement
with our result 1.1d. After plotting out the free-surface displacement for this hull
shape (Figure 3), we also compared the total pressure (which is the sum of hydrostatic
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0.8 -

current analytical solution
° Haussling’s numerical solution

04}

02

o

L : " "
-12 -10 -8 -6 - 2
x

FIGURE 2. Comparison of the pressure distribution on a curved hull between Haussling’s ([1 1]) numerical
solution and current analytical solution for F = 3.

and hydrodynamic pressures) distribution on the hull (Figure 2). As expected, the
agreement is good in the far field (x < —7) but poor in the near field, where the
linearisation is not appropriate and a nonlinear analysis (possibly with the matched
asymptotic method) is necessary. A weak singularity was also found at x = Q. The
hydrodynamic pressure was found to be negative, which results in a “sinkage” force
discussed in Tuck ([24]). '

One of the most fascinating questions associated with the bow and stern flows is
the possible existence of a ship which experiences no drag ([7] and the references
cited therein). With the current analytical solution at hand, the problem is reduced to
solving an integral equation / (1) = 0, which is ill-posed as the solution is not unique.
A more reasonable problem is to optimise the hull shape so that the ship experiences
a minimum drag. This amounts to minimising the functional |/ (1)| subject to the
boundary conditions f(0) = 0, f(x) - 1,f'(x),f"(x)... > 0as x —» —o0.
But this would lead to a hull with vanishingly small slope since we have shown that
the amplitude diminishes as y — O (see, for example, Figure 1; this can also be
proved strictly with the results in the Appendix). Of course, such a hull shape is
unrealistic since the real hull is of finite length. But for a hull of large length, we
can propose a more meaningful problem, that is, to minimise |7 (1)| subject to the
boundary conditions f (0) = 0 and f (x) = 1 for x < —a where a is a pre-assigned
value. This amounts to finding the optimal shape between —a < x < 0 with the
hull being flat in x < —a. The optimal shape and minimum drag computed in this
way will depend on the parameter a, which is in turn determined by some restrictions
in design practice. Unfortunately, finding the optimal shape in this way remains a
non-trivial task; numerical approaches seem to be inevitable. However, it does offer
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24 r

Elevation
o

FIGURE 3. The corresponding free-surface displacement for F = 3.

a very appealing and better approach to this very important practical problem, which
is extremely difficult to solve using purely numerical methods; the optimal shape
obtained in this way may serve as a useful first guide in engineering designs.

4. Conclusions

A flat ship theory was used to study ship stern and bow flows. The linear problem
was solved analytically with the Wiener-Hopf technique. Upon starting from a general
transient problem, a steady state proved to be attainable and the radiation conditions
for the steady problem were also derived. The steady problem was then solved in detail
and closed-form results were obtained for an arbitrary hull shape. Good agreements
between the current analytical and previous numerical solutions were observed in the
far field. Since the newly found analytical solution is for an arbitrary hull shape,
we believe that it has shed some light on solving some previously very challenging
problems such as the optimisation of hull shape.

Research is continuing on the evolution of bow waves and on finding the optimal hull
shape by minimising a functional (where numerical approaches seem to be inevitable)
and results will be reported in a forthcoming paper.
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Appendix A: Numerical evaluation of (3.6)

We first simplify M_(£) and separate the singularity out as

sin[— 7r/8—H(u)/27t] Hu =
o oaT [ ],

_ 72? [cos (5+%) C (@) +sin (§+%) S (E)]+\/20085

where C(x) and S(x) are Fresnel integrals defined in Abramowitz and Stegun [1],
H@w) = f;(nv)/(1—v¥)dv (u > 0)and only the last term possesses a weak
singularity (~ 1/4/€) at £ = 0. On account of this singularity, we obtain another
restriction on the function f (x), that is, if f (x) ~ (=x)* asx — 07, thena > 3/2
or a = 1. That is to say, the current model cannot handle an abrupt change at x = 0
(witha < 1).

The functions C(x) and S(x) were computed using truncated series expansions ([1,
page 301]). For large arguments, the asymptotic forms were used ([1, page 322]).

The function H (1) was computed using the following two truncated series expan-
sions depending on the value of the argument u:

1 1+u u2n'+l

—Inuln - , O<uxl

2 T ;(2n+1)2 =4=
Hw = 1 u+1 72 X u!

—Inuln - — —_— u>1.

2 u—1 4 — (2n + 1)?

In deriving the second expansion, the following integral was used ({9]):

® Ilnv T
H(+0) = dy = ——.
(+00) /0 -2 ' 7%

For simple geometrical functions f (x), it is usually possible to reduce the double
integral in (3.6) to single integrals by exchanging the order of integration; otherwise
the double integral has to be evaluated. The non-singular and Cauchy principle
value integrals (which occurred in the computation of the pressure distribution in
Figure 2) were evaluated with two computer programs DQAG and DQAWC from
QUADPACK (19] which employ adaptive schemes.
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