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AN EGOCENTRIC LOGIC OF KNOWING HOW TO TELL THEM APART

PAVEL NAUMOV AND JIA TAO

Abstract. Traditionally, the formulae in modal logic express properties of possible worlds. Prior
introduced “egocentric” logics that capture properties of agents rather than of possible worlds. In such a
setting, the article proposes the modality “know how to tell apart” and gives a complete logical system
describing the interplay between this modality and the knowledge modality. An important contribution of
this work is a new matrix-based technique for proving completeness theorems in an egocentric setting.

§1. Introduction. In this article, we propose a logical system for reasoning about
an agent’s abilities to tell apart groups of agents. Under the traditional Kripke
approach to semantics of modal logics [12], modal formulae are interpreted as
properties of possible worlds. For example, we writew � “Earth is round” to express
the fact that world w has the property of Earth being round. Prior [16] introduced
the term “egocentric logic” for logical systems that capture properties of agents
rather than possible worlds. Using his idea, we can write a � “is sick” to express the
fact that agent a is sick. We can use usual Boolean connectives to construct more
complicated formulae. For example, the statement

a � “is a doctor” ∧ ¬ “is sick”

means that agent a is a doctor and is not sick. Seligman et al. [18, 19] proposed a
“for all friends” modality F for egocentric setting. In their notations, the statement
a � F“is sick” means that all friends of agent a are sick and the statement

a � “is sick” ∧ ¬F¬“is a doctor”

means that agent a is sick and one of their friends is a doctor. Modality F is also
used in [2, 3]. Jiang and Naumov [11] introduced “likes those who” modality L.
For example, by a � L“is a doctor” they denoted the sentence “agent a likes those
who are doctors.” As usual, modalities can be nested. For example, statement
a � LL“is a doctor” means that agent a likes those who like doctors.

Grove and Halpern [8–10] suggested to consider the ternary satisfaction relation
(a,w) � ϕ that means that, in world w, agent a has property ϕ. In philosophy of
language, this approach is called 2D semantics [17]. In such a setting, one can define
knowledge modality K. For example, the statement (a,w) � K“is sick” means that
in world w the agent a knows that agent a is sick. This modality can be combined
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2 PAVEL NAUMOV AND JIA TAO

with modality F to say that in world w agent a knows that one of their friends
is sick: (a,w) � K¬F¬“is sick.” Epstein and Naumov [5] introduced modality W
for “know who.” For example, the statement (a,w) � W“is a doctor” means that
in world w agent a knows at least one person who is a doctor. The statement
(a,w) � WW“is a doctor” means that agent a knows who knows who is a doctor.

Knowing (at least one person) who is a doctor is different from the ability to tell
apart doctors from non-doctors. This ability of an agent to tell apart (distinguish)
agents who have property ϕ from those who do not have such a property is the
subject of the current work. We write

(a,w) � A “is sick”

to express that in world w agent a can tell apart (distinguish, classify) agents who
are sick from those who are not sick. To connect with intuition, let us use the term
“doctor” for the agents who can tell apart sick people from those who are not sick.
Then, the statement

(a,w) � KA “is sick”

means that agent a knows that agent a themself is a doctor. The statement

(a,w) � AA “is sick”

means that agent a can tell apart doctors from non-doctors. Finally, the statement

(a,w) � AK “is sick”

means that agent a can tall apart agents who know about themselves that they are
sick from those who don’t know that they are sick (whether they are actually sick or
not). Such an agent a is probably a psychologist.

The contribution of this work is twofold. First, we propose a formal egocentric
semantics for modality A and a sound, complete, and decidable logical system that
describes the interplay between modality A and the knowledge modality K. Second,
we introduce and use a new, matrix-based, technique for proving completeness
results for 2D semantics. Section 6 discusses this technique in detail.

The rest of this article is structured as follows. In the next section, we introduce the
syntax and semantics of our formal system. Section 3 discusses related literature.
In Section 4 we list the axioms of our system. The soundness of these axioms is
shown in Section 5. Section 6 proves the completeness of our system using the newly
proposed technique. Section 7 shows its decidability. We discuss possible extensions
of our system in Section 8. Section 9 concludes.

§2. Syntax and semantics. In this section, we present the syntax and the formal
semantics of our logical system. The semantics is using epistemic models that we
define below. Note that the only difference from the traditional S5 models is that
propositional variables are interpreted as properties of pairs (a,w), where a is an
agent and w is a world. As a result, valuation function � maps each propositional
variable to a set of such pairs. Informally, �(p) is the set of pairs for which property
p is true. Throughout the article, we assume a fixed countable set of propositional
variables.
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KNOWING HOW TO TELL THEM APART 3

w1 w2 w3 w4 partition
a1 p p p {w1, w2}, {w3, w4}
a2 {w1, w4}, {w2, w3}
a3 p p p p {w1, w2}, {w3, w4}

Figure 1. An epistemic model. Informally, propositional variable p means “is sick.”

Definition 2.1. A tuple (Ag,W, {∼a}a∈Ag, �) is an epistemic model if:

1. Ag is a set of “agents,”
2. W is a set of all “worlds,”
3. ∼a is an “indistinguishability” equivalence relation on W,
4. �(p) ⊆ Ag ×W for each propositional variable p.

Figure 1 depicts an epistemic model capturing our introductory example. This
model has three agents, a1, a2, and a3, as well as four worlds, w1, w2, w3, and w4.
Each indistinguishability relation is specified by listing its equivalence classes in the
partition column. For example, agent a1 cannot distinguish world w1 from world
w2 and they also cannot distinguish world w3 from world w4. In this example, we
assume that our language has a single propositional variable p, which means “is
sick.” The set �(p) consists of all pairs (a,w) such that agent a is sick in world
w. We visualize set �(p) on the left side of Figure 1. For example, propositional
variable p in the first row, the first column of the table means that (a1, w1) ∈ �(p).

The language Φ of our logical system is defined by the grammar:

ϕ := p | ¬ϕ | ϕ → ϕ | Kϕ | Aϕ,

where p is a propositional variable. We read Kϕ as “knows about themself” and Aϕ
as “knows how to tell apart those who.” We assume that conjunction ∧, disjunction
∨, biconditional ↔, and false ⊥ are defined in the standard way. The semantics of
our logical system is given in the definition below.

Definition 2.2. For any epistemic model (Ag,W, {∼a}a∈Ag, �), any agent a ∈
Ag, any world w ∈W , and any formula ϕ ∈ Φ, the satisfaction relation (a,w) � ϕ
is defined recursively as follows:

1. (a,w) � p if (a,w) ∈ �(p).
2. (a,w) � ¬ϕ if (a,w) � ϕ.
3. (a,w) � ϕ → � if (a,w) � ϕ or (a,w) � �.
4. (a,w) � Kϕ when for each world u ∈W , if w ∼a u, then (a, u) � ϕ.
5. (a,w) � Aϕ when for each agent b ∈ Ag and any worlds u, u′ ∈W , ifw ∼a u,
w ∼a u′, and (b, u) � ϕ, then (b, u′) � ϕ.

Note that the meaning of the statement (a,w) � Kϕ, as defined in item 4 above, is
“in world w, agent a knows ϕ about themself.” It is the agent a who knows because
the item is using the indistinguishability relation ∼a . It is the agent a about whom
the statement ϕ is known because, in that item, the statement (a, u) � ϕ refers to
agent a.
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4 PAVEL NAUMOV AND JIA TAO

w1 w2 w3 w4

a1 p,Kp,Ap,AKp p,Kp,Ap,AKp p,AKp AKp
a2 Ap Ap
a3 p,Kp,Ap,AKp p,Kp,Ap,AKp p,Kp,AKp p,Kp,AKp

Figure 2. Examples of formulae satisfied in the epistemic model shown in Figure 1.

The meaning of the statement (a,w) � Aϕ is “in world w, agent a knows how to
tell apart those for whom ϕ is true.” Indeed, item 5 above says that whether ϕ holds
for an arbitrary agent b is consistent among all words indistinguishable by agent a.
In our example, the statement (a,w) � Ap means that any agent b is either (i) sick
in all worlds indistinguishable by agent a from world w or (ii) not sick in all worlds
indistinguishable to agent a from world w.

Figure 2 shows examples of formulae that are true about different agents in
different worlds of the epistemic model depicted in Figure 1. For instance, observe
in Figure 1 that agent a1 cannot distinguish worlds w1 and w2. At the same time,
agent a1 is sick in both of these worlds. Thus, by item 4 of Definition 2.2, in both of
these worlds, agent a1 knows that agent a1 is sick. We denote this by formula Kp in
cells (a1, w1) and (a1, w2) of Figure 2. Agent a1 also cannot distinguish worlds w3

and w4. They are sick in world w3, but not w4. Thus, in both of these worlds, agent
a1 does not know that agent a1 is sick.

To illustrate modality A, observe again that agent a1 cannot distinguish worldsw1

andw2. Note that each of the agents in the model (a1, a2, and a3) is sick in worldw1

if and only if the same agent is sick in world w2. Thus, in world w1, agent a1 knows
which of the agents is sick and which is not. In other words, agent a1 knows how to
tell apart those who are sick from those who are not. Using the informal language
from our introduction, agent a1 is a “doctor” in world w1. In the formal language
of our logical system, (a1, w1) � Ap.

Consider now agent a2 in the same worldw1. This agent cannot distinguish world
w1 from world w4. Additionally, agent a1 is sick in world w1 and is not sick in world
w4. Thus, in world w1, agent a2 does not know if agent a1 is sick or not. Hence, in
world w1 agent a2 is not a “doctor”: (a2, w1) � Ap.

Let us consider again world w1 where agent a1 cannot distinguish the current
world from world w2. As shown in Figure 2, for each agent in the model, the agent
knows about themself that they are sick (formula Kp) in world w1 iff they know the
same in world w2. Thus, in world w1, agent a1 knows how to tell apart the agents
for whom Kp is true. Using our informal language from the introduction, agent a1

is a “psychologist” in world w1. Formally, we write that (a1, w1) � AKp.
Finally, observe that, in our model, each agent a in each world w can tell

psychologists apart: (a,w) � AAKp. At the same, in our model, each agent in
each world cannot tell doctors apart: (a,w) � AAp.

§3. Related work. In this section, we discuss how else the notion “knowing how
to tell apart” could be formalized and also how our modality fits into the larger
fields of logics of know-wh.
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KNOWING HOW TO TELL THEM APART 5

3.1. Another formalization. We are not aware of any other existing attempts to
formalize the notion of “knowing how to tell apart” as a modality, but, as is often
the case with modalities, this notion can be expressed using quantifiers. More
specifically, our language Φ can be translated into the language of an epistemic
modal logic with quantifiers over agents. An example of such a language is in
our own work [15], but it is not sufficiently rich. Namely, in [15], we assume that
propositional variables are statements about worlds. For the formalization to work,
we need a language Q that includes “agent predicates” P(x1, ... , xn). The validity of
such a predicate depends not only on the world we consider, but also on the values
of agent variables x1, ... , xn.

Next, we describe a translation �x from language Φ into languageQ for each agent
variable x. For any propositional variable p, the value �x(p) is an agent predicate
p(x) with a single agent variable x. In addition, let

�x(ϕ → �) = �x(ϕ) → �x(�),

�x(¬ϕ) = ¬�x(ϕ),

�x(Kϕ) = Kx�x(ϕ),

�x(Aϕ) = ∀y (Kx�y(ϕ) ∨ Kx¬�y(ϕ)).

We believe that under any reasonable semantics �Q of language Q defined using
epistemic models from Definition 2.1, for any world w of such a model and any
formula ϕ ∈ Φ,

(�(x), w) � ϕ iff w �Q �x(ϕ)[�],

where � is any assignment of agents to agent variables.

3.2. Knowing-wh logics. Modality A expresses a particular type of knowledge
that an agent might have—knowledge of how to classify people into those who have
a given property and those who do not. As such, it belongs to the growing class of
know-wh [20] modalities: know how [7, 14], know who [5], know why [21], and know
value [1, 4]. Among such modalities, the closest one to ours is probably the “know
whether” modality Kw proposed by Fan, Wang, and van Ditmarsch [6]. Note that in
the traditional, non-egocentric setting, modality Kw is definable through individual
knowledge modality: Kwaϕ ≡ Kaϕ ∨ Ka¬ϕ. In the egocentric setting, the formula
Aϕ denotes the ability of an agent to tell apart those agents for whom ϕ is true from
those for whomϕ is false among all agents. At the same time, knowledge modality K
expresses knowledge of an agent about themself. It is clear that A cannot be defined
through K. However, if a property ϕ is true for an agent, then the agent’s ability to
decide ϕ about all agents implies their knowledge of the property about themself:
ϕ → (Aϕ → Kϕ). This formula is one of the axioms of our logical system that we
introduce in the next section.

§4. Axioms. In addition to tautologies in language Φ, our logical system contains
the following axioms:

1. Truth: Kϕ → ϕ.
2. Distributivity: K(ϕ → �) → (Kϕ → K�).
3. Negative Introspection: ¬Kϕ → K¬Kϕ.
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6 PAVEL NAUMOV AND JIA TAO

4. Introspection of Knowing All: Aϕ → KAϕ.
5. Self-Knowledge: ϕ → (Aϕ → Kϕ).
6. Negation: Aϕ → A¬ϕ.
7. Conjunction: Aϕ ∧ A� → A(ϕ ∧ �).

We say that formula ϕ ∈ Φ is a theorem of our logical system and write � ϕ if
ϕ is derivable from the above axioms using the Modus Ponens, two forms of the
Necessitation, and the Substitution inference rules:

ϕ,ϕ → �
�

ϕ

Kϕ

ϕ

Aϕ

ϕ ↔ �
Aϕ → A�

.

We write X � ϕ if a formula ϕ ∈ Φ is derivable from the theorems of our logical
system and an additional set of assumptions X ⊆ Φ using only the Modus Ponens
inference rule. It is easy to see that ∅ � ϕ iff � ϕ. We say that set X is consistent if
X � ⊥.

The Truth, the Distributivity, and the Negative Introspection axioms are the
standard axioms of epistemic logic S5. The Introspection of Knowing All axiom
states that if an agent knows how to tell apart agents with a given property, then the
agent knows that the agent has such an ability. The Self-Knowledge axiom states
that if a statement ϕ is true about an agent and the agent knows how to tell apart
the agents for whom ϕ is true, then the agent must know ϕ about themself. The
Negation axiom states that if an agent knows how to tell apart those for whom ϕ is
true, then it also knows how to tell apart those for whom ϕ is false. The Conjunction
axiom states that if an agent knows separately how to tell apart agents who have
each of the two properties, then the agent knows how to tell apart those who have
both properties.

The next three lemmas capture well-known results in modal logic. To make the
article self-contained, we reproduce their proofs in the Appendix.

Lemma 4.1 (deduction). If X,ϕ � �, then X � ϕ → �.

Lemma 4.2. If ϕ1, ... , ϕn � �, then Kϕ1, ... ,Kϕn � K�.

Lemma 4.3. � Kϕ → KKϕ.

Lemma 4.4. � ¬Aϕ → K¬Aϕ.

Proof. By the Introspection of Knowing All axiom, � Aϕ → KAϕ. Thus,
� ¬KAϕ → ¬Aϕ by the contrapositive. Hence, � K(¬KAϕ → ¬Aϕ) by the Necessi-
tation inference rule. Then, by the Distributivity axiom and the Modus Ponens
inference rule � K¬KAϕ → K¬Aϕ. Thus, by the Negative Introspection axiom
and the laws of propositional reasoning, we have � ¬KAϕ → K¬Aϕ. Note that
¬Aϕ → ¬KAϕ is the contrapositive of the Truth axiom. Therefore, by the laws of
propositional reasoning, � ¬Aϕ → K¬Aϕ. 


Lemma 4.5 (Lindenbaum). Any consistent set of formulae can be extended to a
maximal consistent set of formulae.

Proof. The standard proof of Lindenbaum’s lemma [13, Proposition 2.14]
applies. 
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KNOWING HOW TO TELL THEM APART 7

§5. Soundness. In this section, we prove the soundness of our logical system. The
soundness of the Truth, the Distributivity, and the Negative Introspection axioms
as well as of the Modus Ponens and the two forms of the Necessitation inference
rules is straightforward. We prove the soundness of each of the remaining axioms
and of the Substitution rule below.

Lemma 5.1. If (a,w) � Aϕ, then (a,w) � KAϕ.

Proof. Consider any world u ∈W such that

w ∼a u. (1)

By item 4 of Definition 2.2, it suffices to show that (a, u) � Aϕ.
Next, consider any agent b ∈ Ag and any worlds u′, u′′ ∈W , such that u ∼a

u′, u ∼a u′′, and (b, u′) � ϕ. By item 5 of Definition 2.2, it suffices to prove that
(b, u′′) � ϕ. Indeed, statement (1) implies that w ∼a u′, w ∼a u′′ because ∼a is
an equivalence relation. Thus, (b, u′′) � ϕ by item 5 of Definition 2.2 and the
assumption (a,w) � Aϕ of the lemma. 


Lemma 5.2. If (a,w) � ϕ and (a,w) � Aϕ, then (a,w) � Kϕ.

Proof. Consider any world u ∈W such that

w ∼a u. (2)

By item 4 of Definition 2.2, it suffices to show that (a, u) � ϕ.
Note w ∼a w because ∼a is an equivalence relation. Thus, the assumptions

(a,w) � Aϕ and (a,w) � ϕ of the lemma and statement (2) imply (a, u) � ϕ by
item 5 of Definition 2.2. 


Lemma 5.3. If (a,w) � Aϕ, then (a,w) � A¬ϕ.

Proof. Consider any agent b ∈ Ag and any worlds u, u′ ∈W such that

w ∼a u and w ∼a u′. (3)

By item 5 of Definition 2.2, it suffices to prove that if (b, u) � ¬ϕ, then (b, u′) � ¬ϕ.
Then, by item 2 of Definition 2.2 and the law of contraposition, it suffices to show
that if (b, u′) � ϕ, then (b, u) � ϕ. The last statement is true by the assumption
(a,w) � Aϕ of the lemma, statements (3), and item 5 of Definition 2.2. 


Lemma 5.4. If (a,w) � Aϕ and (a,w) � A�, then (a,w) � A(ϕ ∧ �).

Proof. Consider any agent b ∈ Ag and any worlds u, u′ ∈W such that

w ∼a u and w ∼a u′ (4)

and

(b, u) � ϕ ∧ �. (5)

By item 5 of Definition 2.2, it suffices to prove that if (b, u′) � ϕ ∧ �.
The assumption (5) implies (b, u) � ϕ and (b, u) � �. Thus, (b, u′) � ϕ and

(b, u′) � � by the assumptions (a,w) � Aϕ and (a,w) � A� of the lemma,
statement (5), and item 5 of Definition 2.2. Then, (b, u′) � ϕ ∧ �. 
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Lemma 5.5. If (a,w) � ϕ ↔ � for each agent a and each world w of each epistemic
model, then (a,w) � Aϕ → A� for each agent a and each world w of each epistemic
model.

Proof. Consider any agent a and any world w of an epistemic model such that
(a,w) � Aϕ. By item 3 of Definition 2.2, it suffices to prove that (a,w) � A�.

By item 5 of Definition 2.2, the statement (a,w) � Aϕ implies that for each
agent b ∈ Ag and any worlds u, u′ ∈W , if w ∼a u, w ∼a u′, and (b, u) � ϕ, then
(b, u′) � ϕ. Then, by the assumption of the lemma, for each agent b ∈ Ag and any
worlds u, u′ ∈W , if w ∼a u, w ∼a u′, and (b, u) � �, then (b, u′) � �. Therefore,
(a,w) � A� again by item 5 of Definition 2.2. 


§6. Completeness. In this section, we prove the completeness of our logical system
using a canonical model construction. Usually, in modal logic, the canonical model
construction defines possible worlds as maximal consistent sets. In such proofs, the
truth lemma states that a formula belongs to a maximal consistent set if and only if
it is satisfied at the world defined by this set. In our egocentric semantics, a formula
is satisfied not at a world, but at an agent–world pair. Thus, to use the traditional
approach, we must learn how to “split” a maximal consistent set into an agent and
a world. How easy such a split is depends on if we require each agent to be present
in each world.

In [5], the split is done by an introduction of a tree-like structure on maximal
consistent sets. Then, two equivalence relations are defined on the nodes of the tree:
“agent”-equivalent and “world”-equivalent. The equivalence classes of these two
relations are defined to be the agents and the worlds of the model, respectively. It
is then shown that each world and each agent might share at most one node of the
tree. If a world and an agent are disjoint, then the agent is assumed not to be present
in the world. Otherwise, the formulae in the shared node (maximal consistent set)
are the formulae true about the given agent in the given world. This construction
relies on the fact that not all agents are required to be present in all worlds. To the
best of our knowledge, the only other work that does such a split is [10], in which
the authors go even further by stipulating that “each agent exists in just one world”
[10, Appendix D].

We think that the semantics of modality A is the most natural in the setting where
all agents are present in all worlds. After all, what does it mean to decide if ϕ is true
about an agent which might not even exist? To guarantee that all agents are present
in all worlds, in this article, we devise a matrix-based technique for constructing a
canonical model.

The matrix technique is inspired by Figure 2. Note that the rows of this table
represent agents and the columns represent possible worlds. The cells of the table
contain sets of formulae. In our construction, we build matrices (tables) whose cells
are maximal consistent sets of formulae. We interpret the rows of the matrix as agents
and columns as worlds.

Instead of defining a matrix at once, we use a recursive procedure that starts with
a single 1 × 1 matrix and adds to it either a single column or a row and a column
at a time. In most cases, the final matrix is an infinite-sized matrix obtained in the
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limit of this recursive construction. We are not aware of a similar technique used in
any other proof of completeness.

The rest of this section is structured as follows. In Section 6.1, we establish
various properties of maximal consistent sets. These results are used in Section 6.2
to recursively construct a sequence of matrices. To finish the proof of completeness,
in Section 6.3, we show how a matrix can be converted to a model of our logical
system as specified in Definition 2.1.

6.1. Maximal consistent sets. In the standard proof of completeness for epistemic
modal logic, worlds are maximal consistent sets of formulae. In such a construction,
for each maximal consistent set (possible world) w and each formula ϕ such that
Kϕ /∈ w, the proof of the completeness builds another maximal consistent set
(possible word) u such that ¬ϕ ∈ u and worlds w and u are indistinguishable. In our
work, we also have such a lemma, it’s Lemma 6.10. In conjunction with item 4 of
Definition 2.2, this lemma is used in the proof of the “truth lemma,” Lemma 6.19.
In addition to this, we also need another lemma that would work in a similar way for
modality A. Because item 5 of Definition 2.2 refers to two additional worlds, u and
u′ (not mentioning the agent b), the equivalent of Lemma 6.10 needs to construct
two maximal consistent sets instead of one. We state this new lemma as Lemma 6.13
at the end of this section. Because the proof of Lemma 6.13 is long and non-trivial,
we split it into a sequence of smaller lemmas that we present in this subsection.

Lemma 6.1. The set {¬ϕ} ∪ {� | K� ∈ X} ∪ {� | �,A� ∈ X} is consistent for
any consistent set X ⊆ Φ and any formula ϕ ∈ Φ such that X � Kϕ.

Proof. Suppose the opposite. Then, there are formulae

K�1, ... ,K�k ∈ X, �1,A�1, ... , �� ,A�� ∈ X (6)

such that

�1, ... , �k, �1, ... , �� � ϕ.

Thus, by Lemma 4.2,

K�1, ... ,K�k,K�1, ... ,K�� � Kϕ.

Hence, by the Self-Knowledge axiom applied � times,

K�1, ... ,K�k, �1,A�1, ... , �� ,A�� � Kϕ.

Therefore, X � Kϕ by statement (6), which contradicts the assumption X � Kϕ of
the lemma. 


Definition 6.2. For any set of formulaeX ⊆ Φ and any formula ϕ ∈ Φ, a (finite
or infinite) sequence �1, �2, ... is (X,ϕ)-regular if for each k,

X � A(ϕ ∧ �1 ∧ ··· ∧ �k).

Lemma 6.3. For any set of formulaeX ⊆ Φ, any formulaϕ ∈ Φ such thatX � Aϕ,
and any ( finite or infinite) sequence A�1,A�2, ... of formulae from set X, there is
an (X,ϕ)-regular sequence �′

1, �
′
2, ... such that, for each i ≥ 1, either �′

i ≡ �i or
�′
i ≡ ¬�i .
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Proof. We prove the existence of such sequence �′
1, �

′
2, ... by constructing it

recursively and simultaneously proving that statement

X � A(ϕ ∧ �′
1 ∧ ··· ∧ �′

k) (7)

holds after k-th step of the construction.
Base:k = 0. Then, it suffices to prove thatX � Aϕ, which is true by an assumption

of the lemma.
Step: k > 0. Suppose that statement (7) holds and, at the same time,

X � A(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ �k+1) and

X � A(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ ¬�k+1).

Thus, by the Negation axiom and the Modus Ponens inference rule,

X � A¬(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ �k+1) and

X � A¬(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ ¬�k+1).

Hence, by the Conjunction axiom and propositional reasoning,

X � A(¬(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ �k+1) ∧ ¬(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ ¬�k+1)).

Then, by the Negation axiom and the Modus Ponens inference rule,

X �A¬(¬(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ �k+1) ∧ ¬(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ ¬�k+1)). (8)

At the same time, note that formula

¬(¬(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ �k+1)∧¬(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ ¬�k+1))

↔ ϕ ∧ �′
1 ∧ ··· ∧ �′

k

is a propositional tautology. Thus, by the Substitution inference rule,

X � A¬(¬(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ �k+1)∧¬(ϕ ∧ �′
1 ∧ ··· ∧ �′

k ∧ ¬�k+1))

→ A(ϕ ∧ �′
1 ∧ ··· ∧ �′

k).

Hence, by statement (8) and the Modus Ponens inference rule,

X � A(ϕ ∧ �′
1 ∧ ··· ∧ �′

k),

which contradicts our assumption that statement (7) holds. 

Lemma 6.4. For any set of formulae X ⊆ Φ, any formula ϕ ∈ Φ, and any (X,ϕ)-

regular sequence �1, �2, ... , the set {ϕ,�1, �2, ... } is consistent.

Proof. Suppose that the set {ϕ,�1, �2, ... } is inconsistent. Thus, there is
n ≥ 0 such that � ¬(ϕ ∧ �1 ∧ ··· ∧ �n). Then, � A¬(ϕ ∧ �1 ∧ ··· ∧ �n) by the
Necessitation inference rule. Hence, by the Negation axiom and the Modus Ponens
inference rule,

� A¬¬(ϕ ∧ �1 ∧ ··· ∧ �n). (9)

Note that ¬¬(ϕ ∧ �1 ∧ ··· ∧ �n) ↔ (ϕ ∧ �1 ∧ ··· ∧ �n) is a propositional tautology.
Thus, � A(ϕ ∧ �1 ∧ ··· ∧ �n) by the Substitution inference rule, statement (9),
and the Modus Ponens inference rule. Therefore, by Definition 6.2, the sequence
�1, �2, ... is not (X,ϕ)-regular, which contradicts an assumption of the lemma. 


https://doi.org/10.1017/jsl.2023.45 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.45


KNOWING HOW TO TELL THEM APART 11

Lemma 6.5. For any set of formulae X ⊆ Φ, any formula ϕ ∈ Φ, and any (X,ϕ)-
regular sequence �1, �2, ... , if A�1, ... ,A�2, ··· ∈ X , then the set {¬ϕ,�1, �2, ... } is
consistent.

Proof. Assume that the set {¬ϕ,�1, �2, ... } is inconsistent. Thus, there is n ≥ 0
such that � ¬(¬ϕ ∧ �1 ∧ ··· ∧ �n). Hence, by the Necessitation inference rule, �
A¬(¬ϕ ∧ �1 ∧ ··· ∧ �n). Then,

X � A(�1 ∧ ··· ∧ �n ∧ ¬(¬ϕ ∧ �1 ∧ ··· ∧ �n)) (10)

by the assumption A�1, ... ,A�2, ··· ∈ X of the lemma, the Conjunction axiom, and
propositional reasoning. Next, note that the formula

(�1 ∧ ··· ∧ �n ∧ ¬(¬ϕ ∧ �1 ∧ ··· ∧ �n)) ↔ ϕ ∧ �1 ∧ ··· ∧ �n
is a tautology. Thus, by the Substitution inference rule, statement (10), and the
Modus Ponens inference rule, X � A(ϕ ∧ �1 ∧ ··· ∧ �n). Therefore, by Definition
6.2, the sequence �1, �2, ... is not (X,ϕ)-regular, which contradicts an assumption
of the lemma. 


Lemma 6.6. For any maximal consistent set X and any formula Aϕ /∈ X , there are
maximal consistent sets Y and Z such that:

1. ϕ ∈ Y , ¬ϕ ∈ Z.
2. � ∈ Y iff � ∈ Z for any formula A� ∈ X .

Proof. The assumption of the article that the set of propositional variables is
countable implies that set X is also countable. Let A�1,A�2, ... be an enumeration
of all formulae of the form A� in set X. Then, X � A¬�i for each i ≥ 1 by the
Negation axiom and the Modus Ponens inference rule. Hence, because X is a
maximal consistent set, A¬�i ∈ X for each i ≥ 1. Also, recall that A�1,A�2, ...
is an enumeration of formulae from set X. Hence,

A�i ,A¬�i ∈ X for each i ≥ 1. (11)

The assumption Aϕ /∈ X of the lemma implies that X � Aϕ because X is a
maximal consistent set. Thus, by Lemma 6.3, there is an (X,ϕ)-regular sequence
�′

1, �
′
2, ... such that, for each i ≥ 1,

�′
i = �i or �′

i = ¬�i . (12)

Then, by statement (11),

A�′
i ∈ X for each i ≥ 1. (13)

Consider the sets of formulae

Y0 = {ϕ,�′
1, �

′
2, ... }, (14)

Z0 = {¬ϕ,�′
1, �

′
2, ... }. (15)

Note that set Y0 is consistent by Lemma 6.4 because �′
1, �

′
2, ... is an (X,ϕ)-regular

sequence. Set Z0 is consistent by Lemma 6.5, statement (13), and also because
�′

1, �
′
2, ... is an (X,ϕ)-regular sequence. By Lemma 4.5, sets Y0 and Z0 can be
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extended to maximal consistent sets Y and Z. Note that ϕ ∈ Y0 ⊆ Y and ¬ϕ ∈
Z0 ⊆ Z by statements (14) and (15), respectively.

To finish the proof of the lemma, it suffices to show that � ∈ Y iff � ∈ Z for any
formula A� ∈ X . Consider an arbitrary formula A� ∈ X . Because A�1,A�2, ...
is an enumeration of all formulae of the form A� in set X, there must exist
i0 ≥ 1 such that � = �i0 . By statement (12), either �′

i0
= �i0 or �′

i0
= ¬�i0 .

In the first case, � = �i0 = �′
i0
∈ Y0 ⊆ Y and � = �i0 = �′

i0
∈ Z by statements

(14) and (15), respectively. In the second case, ¬� = ¬�i0 = �′
i0
∈ Y0 ⊆ Y and

¬� = ¬�i0 = �′
i0
∈ Z0 ⊆ Z by statements (14) and (15), respectively. Hence,� /∈ Y

and � /∈ Z because sets Y and Z are consistent. 


6.2. Pseudo models. As discussed in the preamble to Section 6, we construct the
canonical model by building a sequence of matrices of maximal consistent sets.
Informally, the rows of the matrix represent the agents and the columns represent
the worlds.

We assume that a matrix can have either finite or 	-many rows and columns. We
also assume that matrix rows and columns are numbered starting with 0. Thus, for
example, if a matrix has three rows and 	 columns, then its rows are numbered 0,
1, and 2 and its columns are numbered by 0, 1, 2, ... (not including 	). In this case,
we will also say that the matrix size is 3 × 	. Formally, a matrix of size m × n is an
arbitrary function defined on the Cartesian product of ordinals m and n. We say that a
matrix of size m × n is finite if ordinals m and n are finite.

Technically, the canonical model is constructed using not just matrices, but
structures consisting of a matrix and row-specific equivalence relations on the
columns of the matrix. We call such structures pseudo-models.

Definition 6.7. A pseudo model is a pair 〈(Xij), {∼i}i〉, where:
1. (Xij) is a matrix of maximal consistent sets of formulae,
2. ∼i is an equivalence relation on the columns that satisfies the following

conditions for each i1, i2, j1, j2:
(a) Kϕ ∈ Xi1j1 iff Kϕ ∈ Xi1j2 , where j1 ∼i1 j2,
(b) ϕ ∈ Xi2j1 iff ϕ ∈ Xi2j2 , where Aϕ ∈ Xi1j1 and j1 ∼i1 j2.

By the size of a pseudo model 〈(Xij), {∼i}i〉 we mean the size of the matrix (Xij).
We say that a pseudo model is finite if the matrix (Xij) is finite.

Definition 6.8. For any ordinals m,m′, n, n′ ≤ 	 and any two pseudo models
〈(Xij), {∼i}i〉 and 〈(X ′

ij), {∼′
i}i〉 of sizes m × n and m′ × n′, respectively, let

〈(Xij), {∼i}i〉 � 〈(X ′
ij), {∼′

i}i〉 if:
1. m ≤ m′ and n ≤ n′,
2. Xij = X ′

ij for each i < min(m,m′) and each j < min(n, n′),
3. j1 ∼i j2 iff j1 ∼′

i j2 for each i < min(m,m′) and j1, j2 < min(n, n′),

The next three lemmas represent the base and the recursive cases of building the
sequence of pseudo models discussed earlier. We start with the simplest of these
lemmas that constructs the first element of the sequence.

Lemma 6.9. If Y � ϕ, then there is a finite pseudo model 〈(Xij), {∼i}i〉 such that
Y ∪ {¬ϕ} ⊆ X00.
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Proof. The set Y ∪ {¬ϕ} is consistent because Y � ϕ. By Lemma 4.5, it has a
maximal consistent extension X00. Let (X00) be the matrix of the size 1 × 1 whose
only cell contains the maximal consistent set X00 and ∼0 be the equivalence relation
{(0, 0)} on the singleton set {0}. Then, the pair ((X00), {∼0}) is a pseudo model by
Definition 6.7. 


The next lemma specifies one of two recursive steps in constructing the sequence
of pseudo models. Recall from our earlier discussion that this lemma is an analogue
of constructing a new maximal consistent set (world) in the traditional completeness
proof.

Lemma 6.10. For any finite pseudo model 〈(Xij), {∼i}i〉 and any formula ϕ ∈ Φ,
if Kϕ /∈ Xi0j0 for some i0, j0, then there is a finite pseudo model 〈(X ′

ij), {∼′
i}i〉 such

that:
1. 〈(Xij), {∼i}i〉 � 〈(X ′

ij), {∼′
i}i〉,

2. ¬ϕ ∈ X ′
i0j

′ for some j′ such that j0 ∼′
i0
j′.

Proof. Consider the set of formulae

Y = {¬ϕ} ∪ {� | K� ∈ Xi0j0} ∪ {� | �,A� ∈ Xi0j0}. (16)

The assumption Kϕ /∈ Xi0,j0 of the lemma implies that Xi0,j0 � Kϕ because Xi0,j0
is a maximal consistent set of formula. Then, set Y is consistent by Lemma 6.1.
Let Y ′ be the maximal consistent extension of set Y. Such an extension exists by
Lemma 4.5.

Claim 6.11. K� ∈ Xi0j0 iff K� ∈ Y ′.

Proof of Claim. (⇒) If K� ∈ Xi0j0 , then Xi0j0 � KK� by Lemma 4.3. Thus,
KK� ∈ Xi0j0 because Xi0j0 is a maximal consistent set. Hence, K� ∈ Y ⊆ Y ′ by
equation (16) and the choice of Y ′ as an extension of Y.

(⇐) Suppose that K� /∈ Xi0j0 . Then, ¬K� ∈ Xi0j0 because X is a maximal
consistent set of formulae. Thus,Xi0j0 � K¬K� by the Negative Introspection axiom
and the Modus Ponens inference rule. Hence, K¬K� ∈ Xi0j0 because Xi0j0 is a
maximal consistent set. Hence, ¬K� ∈ Y ⊆ Y ′ by equation (16) and the choice of
Y ′ as an extension of set Y. Therefore, K� /∈ Y ′ because set Y ′ is consistent. 


Assume that the finite matrix (Xij) has the sizem × n. Definem × (n + 1) matrix

(X ′
ij) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

X0,0 ... X0,j0 ... X0,n–1 X0,j0
... ... ... ... ... ...
Xi0–1,0 ... Xi0–1,j0 ... Xi0–1,n–1 Xi0–1,j0

Xi0,0 ... Xi0,j0 ... Xi0,n–1 Y ′

Xi0+1,0 ... Xi0+1,j0 ... Xi0+1,n–1 Xi0+1,j0
... ... ... ... ... ...
Xm–1,0 ... Xm–1,j0 ... Xm–1,n–1 Xm–1,j0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (17)

In addition, let the relation ∼′
i0

be the transitive, reflexive, and symmetric closure of
the relation ∼i0 ∪{(j0, n)} on the set {0, 1, ... , n} and, for i �= i0, relation ∼′

i be the
reflexive closure of the relation ∼i on the set {0, 1, ... , n}.

Claim 6.12. 〈(X ′
ij), {∼′

i}i〉 is a finite pseudo model.
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Proof of Claim. It suffices to verify conditions 2(a) and 2(b) of Definition 6.7.
Condition 2(a). Consider any i, j1, j2 such that j1 ∼′

i j2. It suffices to show that
K� ∈ X ′

ij1
iff K� ∈ X ′

ij2
for any formula � ∈ Φ. Without loss of generality, assume

that j1 ≤ j2. We consider the following three cases separately:
Case 1: j1 ≤ j2 < n. Then, j1 ∼i j2 by the assumption j1 ∼′

i j2 and the choice
of the relation ∼′

i . Hence, K� ∈ Xij1 iff K� ∈ Xij2 by item 2(a) of Definition 6.7
and the assumption of the lemma that 〈(Xij), {∼i}i〉 is a pseudo model. Note also
that X ′

ij1
= Xij1 and X ′

ij2
= Xij2 by equation (17) and the assumption j1 ≤ j2 < n

of the case. Thus, K� ∈ X ′
ij1

iff K� ∈ X ′
ij2

.
Case 2: j1 = j2 = n. Then, K� ∈ X ′

ij1
iff K� ∈ X ′

ij2
.

Case 3: j1 < j2 = n. Then, by the choice of the relation ∼′
i , the assumption

j1 ∼′
i j2 implies that j1 ∼i j0 and

i = i0. (18)

Observe that K� ∈ Xi0j1 iff K� ∈ Xi0j0 by item 2(a) of Definition 6.7, the
statement j1 ∼i j0 and the assumption j1 < n of the case. Thus, it follows that K� ∈
X ′
i0j1

iff K� ∈ X ′
i0j0

by equation (17) and the assumption j1 < n. Hence, K� ∈ X ′
i0j1

iffK� ∈ Y ′ by Claim 6.11. Then,K� ∈ X ′
i0j1

iffK� ∈ X ′
i0j2

by equation (17) and the
assumption j2 = n of the case. Therefore, K� ∈ X ′

ij1
iff K� ∈ X ′

ij2
by equation (18).

Condition 2(b). Consider any i1, i2, j1, j2 and any formula A� ∈ X ′
i1j1

such that
j1 ∼′

i1
j2. It suffices to show that � ∈ X ′

i2j1
iff � ∈ X ′

i2j2
for any formula � ∈ Φ. We

consider the following four cases separately:
Case 1: j1, j2 < n. Then, by equation (17), the assumptionA� ∈ X ′

i1j1
implies that

A� ∈ Xi1j1 . In addition, the assumption j1 ∼′
i1
j2 and the assumption j1, j2 < n

of the case imply that j1 ∼i1 j2. Thus, � ∈ Xi2j1 iff � ∈ Xi2j2 by item 2(b) of
Definition 6.7. Hence, � ∈ X ′

i2j1
iff � ∈ X ′

i2j2
by equation (17) and the same

assumption j1, j2 < n of the case.
Case 2: j1 = j2 = n. Then, X ′

i2j1
= X ′

i2j2
. Hence, � ∈ X ′

i2j1
iff � ∈ X ′

i2j2
.

Case 3: j1 < j2 = n. Then, the assumption j1 ∼′
i1
j2 and the definition of the

relation ∼′ imply that

i0 = i1 and j0 ∼i1 j1. (19)

Also, the assumptionA� ∈ X ′
i1j1

, by the assumption j1 < n of the case and equation
(17), implies that

A� ∈ Xi1j1 . (20)

We further divide this case into the following two subcases:
Subcase 3A: i0 = i1 = i2. The statement A� ∈ Xi1j1 implies Xi1j1 � KA� by the

Introspection of Knowing All axiom. Thus, KA� ∈ Xi1j1 becauseXi1j1 is a maximal
consistent set. Hence, KA� ∈ Xi1j0 by item 2(a) of Definition 6.7 and part j0 ∼i1 j1

of statement (19). Then, Xi1j0 � A� by the Truth axiom and the Modus Ponens
inference rule. Thus, because Xi1j0 is a maximal consistent set,

A� ∈ Xi1j0 . (21)
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Hence, � ∈ Xi1j0 iff � ∈ Xi1j1 by item 2(b) of Definition 6.7 and the part j0 ∼i1 j1

of statement (19). Then, � ∈ Xi1j0 iff � ∈ X ′
i1j1

by the assumption j1 < n of the
case and equation (17). Thus, � ∈ Xi1j0 iff � ∈ X ′

i2j1
by the assumption i1 = i2 of

the subcase.
Recall that we are proving that � ∈ X ′

i2j1
iff � ∈ X ′

i2j2
. Then, it suffices to show

that � ∈ Xi1j0 iff � ∈ X ′
i2j2

. Furthermore, due to the assumption i1 = i2 of the
subcase, it is enough to prove that � ∈ Xi1j0 iff � ∈ X ′

i1j2
. Finally, due to equation

(17), the assumption j2 = n of the case, and part i0 = i1 of statement (19), it suffices
to show that � ∈ Xi1j0 iff � ∈ Y ′.

We show the two parts of this biconditional statement separately:
Assume � ∈ Xi1j0 . Thus, �,A� ∈ Xi1j0 due to statement (21). Hence, �,A� ∈

Xi0j0 by part i0 = i1 of statement (19). Then, � ∈ Y ⊆ Y ′ by equation (16).
Next, suppose � /∈ Xi1j0 . Then, ¬� ∈ Xi1j0 because Xi1j0 is a maximal consistent

set. At the same time, Xi1j0 � A¬� by statement (21), the Negation axiom, and
the Modus Ponens inference rule. Hence, A¬� ∈ Xi1j0 because Xi1j0 is a maximal
consistent set. Thus, ¬�,A¬� ∈ Xi1j0 . Then, ¬�,A¬� ∈ Xi0j0 by part i0 = i1 of
statement (19). Hence, ¬� ∈ Y ⊆ Y ′ by equation (16).

Subcase 3B: i0 = i1 �= i2. By part 2(b) of Definition 6.7 and part j0 ∼i1 j1 of
statement (19), statement (20) implies that � ∈ Xi2j1 iff � ∈ Xi2j0 . Then, � ∈ X ′

i2j1

iff � ∈ Xi2j0 by equation (17) and the assumption j1 < n of the case. Hence,
� ∈ X ′

i2j1
iff � ∈ X ′

i2n
by equation (17). Therefore, � ∈ X ′

i2j1
iff � ∈ X ′

i2j2
by the

assumption j2 = n of the case.
Case 4: j2 < j1 = n. Then, the assumption j1 ∼′

i1
j2 and the definition of the

relation ∼′ imply that

i0 = i1 and j0 ∼i0 j2. (22)

Then, A� ∈ X ′
i0j1

by the assumption A� ∈ X ′
i1j1

. Hence, X ′
i0j1

� KA� by the
Introspection of Knowing All axiom and the Modus Ponens inference rule. Thus,
KA� ∈ X ′

i0j1
because X ′

i0j1
is a maximal consistent sets. Then, KA� ∈ X ′

i0n
by

the assumption j1 = n of the case. Hence, KA� ∈ Y ′ by equation (17). Then,
KA� ∈ Xi0j0 by Claim 6.11. Thus, KA� ∈ Xi0j2 by item 2(a) of Definition 6.7
and the part j0 ∼i0 j2 of statement (22). Hence, KA� ∈ Xi1j2 by the part i0 = i1
of statement (22). Then, Xi1j2 � A� by the Truth axiom and the Modus Ponens
inference rule. Thus, because Xi1j2 is a maximal consistent set,

A� ∈ Xi1j2 . (23)

From this point, the proof continues the same way as in Case 3, except that j1 plays
the role of j2 and j2 plays the role of j1. In addition, we use statements (22) and
(23) instead of statements (19) and (20), respectively. This concludes the proof of
the claim. 


To finish the proof of the lemma, note that, by equation (17) and the definition
of relation ∼′, we have 〈(Xij), {∼i}i〉 � 〈(X ′

ij), {∼′
i}i〉. Also, ¬� ∈ Y ⊆ Y ′ = X ′

i0n

by equations (16) and (17). 
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Next is the last of the three lemmas capturing the recursive construction of a
sequence of pseudo models. This lemma extends the sequence when formula Aϕ
does not belong to some maximal consistent set.

As usual in set theory, by X �Y we denote the symmetric difference of sets X
and Y. For example, {1, 2}�{2, 3} = {1, 3}.

Lemma 6.13. For any finite pseudo model 〈(Xij), {∼i}i〉 and any formula ϕ ∈ Φ,
if Aϕ /∈ Xi0j0 for some i0, j0, then there is a finite pseudo model 〈(X ′

ij), {∼′
i}i〉 such

that:

1. 〈(Xij), {∼i}i〉 � 〈(X ′
ij), {∼′

i}i〉,
2. for some i1, j1 such that j0 ∼i0 j1 and ϕ ∈ X ′

i1j0
�X ′

i1j1
.

Proof. By Lemma 6.6, the assumptionAϕ /∈ Xi0j0 implies that there are maximal
consistent sets Y and Z such that

ϕ ∈ Y and ¬ϕ ∈ Z, (24)

� ∈ Y iff � ∈ Z for any formula A� ∈ Xi0j0 . (25)

Assume that matrix (Xij) has the size m × n. Define (m + 1) × (n + 1) matrix

(X ′
ij) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X0,0 ... X0,j0 ... X0,n–1 X0,j0
... ... ... ... ... ...
Xi0–1,0 ... Xi0–1,j0 ... Xi0–1,n–1 Xi0–1,j0

Xi0,0 ... Xi0,j0 ... Xi0,n–1 Xi0,j0
Xi0+1,0 ... Xi0+1,j0 ... Xi0+1,n–1 Xi0+1,j0
... ... ... ... ... ...
Xm–1,0 ... Xm–1,j0 ... Xm–1,n–1 Xm–1,j0

Y ... Y ... Y Z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26)

In addition, let the relation ∼′
i0

be the transitive, reflexive, and symmetric closure of
the relation ∼i0 ∪{(j0, n)} on the set {0, 1, ... , n}. Let ∼′

m be the reflexive closure of
the empty relation. Finally for i /∈ {i0, m}, let the relation ∼′

i be the reflexive closure
of the relation ∼i on the set {0, 1, ... , n}.

Observe that, for any formula � ∈ Φ,

� ∈ Xi0j0 iff � ∈ X ′
i0n

(27)

because sets Xi0j0 and X ′
i0n

are equal by equation (26).

Claim 6.14. 〈(X ′
ij), {∼′

i}i〉 is a finite pseudo model.

Proof of Claim. It suffices to verify conditions 2(a) and 2(b) of Definition 6.7.
Condition 2(a). Consider any i, j1, j2 such that j1 ∼′

i j2. It suffices to show that
K� ∈ X ′

ij1
iff K� ∈ X ′

ij2
for any formula � ∈ Φ.

If i = m, then the assumption j1 ∼′
i j2 implies that j1 = j2 by the definition of

the relation ∼′
m. Hence, K� ∈ X ′

ij1
iff K� ∈ X ′

ij2
. If i < m, then the proof is the same

as the proof of Condition 2(a) in Claim 6.12 except that instead of Claim 6.11 it
uses statement (27).
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Condition 2(b). Consider any i1, i2, j1, j2 and any formula A� ∈ X ′
i1j1

such that
j1 ∼′

i1
j2. It suffices to show that � ∈ X ′

i2j1
iff � ∈ X ′

i2j2
. We consider the following

four cases separately:
Case 1: j1, j2 < n. If i2 = m, then X ′

i2j1
= Y = X ′

i2j2
by equation (26). Hence,

� ∈ X ′
i2j1

iff � ∈ X ′
i2j2

. If i2 < m, then the proof is the same as the proof in Case 1
of Condition 2(b) in Claim 6.12.

Case 2: j1 = j2 = n. Then, X ′
i2j1

= X ′
i2j2

. Hence, � ∈ X ′
i2j1

iff � ∈ X ′
i2j2

.
Case 3: j1 < j2 = n. Then, the assumption j1 ∼′

i1
j2 and the definition of the

relation ∼′ imply that

i0 = i1 and j0 ∼i1 j1. (28)

Also, the assumptionA� ∈ X ′
i1j1

, by the assumption j1 < n of the case and equation
(26), implies that

A� ∈ Xi1j1 . (29)

We further divide this case into the following two subcases:
Subcase 3A: i2 �= m. Then, � ∈ Xi2j1 iff � ∈ Xi2j0 by item 2(b) of Definition 6.7

and statements (28) and (29). Hence, by equation (26), the assumption i2 �= m of
the subcase, and the assumption j1 < n of the case, � ∈ X ′

i2j1
iff � ∈ X ′

i2jn
. Thus,

� ∈ X ′
i2j1

iff � ∈ X ′
i2j2

by the assumption j2 = n of the case.
Subcase 3B: i2 = m. Note that A� ∈ Xi0j1 by statement (29) and the part i0 = i1

of statement (28). Thus, Xi0j1 � KA� by the Introspection of Knowing All axiom
and the Modus Ponens inference rule. Hence, because Xi0j1 is a maximal consistent
set, KA� ∈ Xi0j1 . Then, KA� ∈ Xi0j0 by part 2(a) of Definition 6.7 and both parts
of statement (28). Hence, Xi0j0 � A� by the Truth axiom and the Modus Ponens
inference rule. Thus, A� ∈ Xi0j0 because Xi0j0 is a maximal consistent set. Then,
� ∈ Y iff � ∈ Z by statement (25). Therefore, � ∈ X ′

i2j1
iff � ∈ X ′

i2j2
by equation

(26), the assumption i2 = m of the subcase, and the assumption j1 < j2 = n of the
case.

Case 4: j2 < j1 = n. Similar to how we proved statements (22) and (23) in Case 4
of the proof of Claim 6.12, we can show that

i0 = i1 and j0 ∼i0 j2, (30)

A� ∈ Xi1j1 . (31)

From this point, the proof continues the same way as in Case 3 of the current
proof, except that j1 plays the role of j2 and j2 plays the role of j1. In addition, we
use statements (30) and (31) instead of statements (28) and (29), respectively. This
concludes the proof of the claim. 


To finish the proof of the lemma, note that item 1 of this lemma is true by the
choice of the pseudo model 〈(X ′

ij), {∼′
i}i〉. To prove item 2, observe that ϕ ∈ Y �Z

by statement (24). Thus,ϕ ∈ X ′
mj0

�X ′
mn by equation (26). Also, recall that j0 ∼′

i0
n

by the definition of relation ∼′. 

The previous lemma concludes the description of the three steps of the recursive

construction of a sequence of pseudo models. The next definition captures the
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18 PAVEL NAUMOV AND JIA TAO

property of the pseudo model at which the construction terminates after a finite
number of steps or, as we will see later, the property of the pseudo model obtained
at the limit of the construction.

Definition 6.15. A pseudo model 〈(Xij), {∼i}i〉 is closed when for any formula
ϕ ∈ Φ and any indices i0, j0,

1. if ¬Kϕ ∈ Xi0j0 , then there is an index j1 such that j0 ∼i0 j1 and ¬ϕ ∈ Xi0j1 ,
2. if ¬Aϕ ∈ Xi0j0 , then there are indices i1, j1 such that j0 ∼i0 j1 and ϕ ∈
Xi1j0 �Xi1j1 .

For any sequence of pairs of sets (S0, T0), (S1, T1), (S2, T2), ... , by union⋃
i(Si , Ti) we mean the pair (

⋃
i Si ,

⋃
i Ti). Recall that, formally, by a matrix of

size m × n we mean a function defined on the Cartesian product of ordinals m and
n. Note that a family of equivalence relations {∼i}i can also be viewed as a function
that assigns a relation ∼i to each index i. Hence, any pseudo model is a pair of
functions. Thus, keeping in mind that functions (as all relations) are sets, for any
sequenceM0,M1,M2, ... of pseudo models, one can consider the union

⋃
i Mi .

Lemma 6.16. For any infinite chainM0 �M1 �M2 � ... of pseudo models,
⋃
i Mi

is a pseudo model andMi �
⋃
i Mi .

Proof. The statement of the lemma follows from Definitions 6.7 and 6.8. 


Lemma 6.17. For any finite pseudo model M there is a closed (possibly infinite)
pseudo modelM ′ such thatM �M ′.

Proof. Let (i1, j1, �1), ... , (ik, jk, �k), ... be any enumeration of all such triples
that ik and jk are non-negative integers and �k is a formula of the form either K� or
A�. Construct an infinite chain of pseudo modelsM0 �M1 �M2 � ... using the
following infinite recursive procedure:

Base Case: Let M0 =M . Label all elements of the sequence (i1, j1, �1), ...,
(ik, jk, �k), ... as “unfulfilled.”

Recursive Step: Suppose that chain M0 �M1 �M2 �Mk–1 is constructed and
some of the elements of the sequence (i1, j1, �1), ..., (ik, jk, �k), ... are already labeled
as “fulfilled.”

Do the following steps to construct pseudo modelMk :

1. Consider the smallest � such that modelMk–1 contain cells (i� , j�), the element
(i� , j� , ��) is labeled as “unfulfilled,” and �� /∈ Xi� ,j� . If such � does not exist,
defineMk =Mk–1 and skip the next two steps.

2. Use either Lemma 6.10 (when �� has the form K�) or Lemma 6.13 (when
formula �� has the form A�) to extend the pseudo model Mk–1 to a new
pseudo modelMk .

3. Label the element (i� , j� , ��) as “fulfilled.”

LetM ′ =
⋃
i Mi . Note thatM ′ is a pseudo model by Lemma 6.16. Pseudo model

M ′ is closed by Definition 6.15. 


6.3. Completeness: final steps. So far, we have discussed pseudo models of our
logical system. We are now ready to describe how any closed pseudo model can be
converted into a model as described in Definition 2.1.
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Definition 6.18. For any pseudo model M = 〈(Xij), {∼i}i〉, where (Xij) is a
(possibly infinite) matrix of size m × n, letM ∗ be the epistemic model

({i ∈ 	 | i < m}, {j ∈ 	 | j < n}, {∼i}i , �),

where �(p) is equal to the set {(i, j) | i < m, j < n, p ∈ Xij} for each propositional
variable p.

The next lemma connects a closed pseudo model M with the corresponding
epistemic modelM ∗.

Lemma 6.19. For any closed pseudo model M = 〈(Xij), {∼i}i〉 and any formula
ϕ ∈ Φ, if � is the satisfaction relation for the epistemic modelM ∗, then (i, j) � ϕ iff
ϕ ∈ Xij for all i, j.

Proof. We prove the statement of the lemma by structural induction on the
formula ϕ.

Suppose that formula ϕ is a propositional variable p. Then, (i, j) � p iff (i, j) ∈
�(p) by item 1 of Definition 2.2. At the same time, (i, j) ∈ �(p) iff p ∈ Xij by
Definition 6.18.

If formula ϕ is a negation or an implication, then the statement of the lemma
follows from the induction hypothesis, Definition 2.2, and the assumption that Xij
is a maximal consistent set in the standard way.

Suppose that formula ϕ has the form K�.
(⇒) : Assume that K� /∈ Xij . Thus, ¬K� ∈ Xij because Xij is a maximal

consistent set. Then, by the assumption of the lemma that model M is closed and
item 1 of Definition 6.15, there exists an index j′ such that j ∼i j′ and ¬ϕ ∈ Xij′ .
Thus,� /∈ Xij′ because the setXij′ is consistent. Hence, (i, j′) � � by the induction
hypothesis. Therefore, (i, j) � K� by item 4 of Definition 2.2 and the statement
j ∼i j′.

(⇐) : Suppose that K� ∈ Xij . Consider any j′ such that j ∼i j′. By item 4 of
Definition 2.2, it suffices to show that (i, j′) � �. Indeed, the assumptions K� ∈ Xij
and j ∼i j′, by item 2(a) of Definition 6.7, imply that K� ∈ Xij′ . Hence, Xij′ � �
by the Truth axiom and the Modus Ponens inference rule. Thus, � ∈ Xij′ because
Xij′ is a maximal consistent set. Therefore, by the induction hypothesis, (i, j′) � �.

Suppose that formula ϕ has the form A�.
(⇒) : The assumption A� /∈ Xij implies ¬A� ∈ Xij because Xij is a maximal

consistent set. Hence, by the assumption of the lemma that pseudo model M is
closed and item 2 of Definition 6.15, there is an agent i ′ and a world j′ such that
j ∼i j′ and � ∈ Xi′j�Xi′j′ . Thus, by the induction hypothesis, exactly one of the
following statements is true: (i ′, j) � � or (i ′, j′) � �. Then, (i, j) � A� by the
assumption j ∼i j′ and item 5 of Definition 2.2.

(⇐) : LetA� ∈ Xij . Towards the proof of (i, j) � A�, consider an arbitrary agent
i ′ and arbitrary worlds j′, j′′ such that j ∼i j′, j ∼i j′′, and (i ′, j′) � �. By item 5
of Definition 2.2, it suffices to show that (i ′, j′′) � �.

First, by the induction hypothesis, the assumption (i ′, j′) � � implies � ∈ Xi′j′ .
Thus, by item 2(b) of Definition 6.7, the assumption A� ∈ Xij and the assumption
j ∼i j′ imply that � ∈ Xi′j .
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Second, again by item 2(b) of Definition 6.7, the assumption A� ∈ Xij and the
assumption j ∼i j′′ imply that � ∈ Xi′j′′ . Therefore, (i ′, j′′) � � by the induction
hypothesis. 


We are now ready to state and prove the strong completeness theorem for our
logical system.

Theorem 6.20. For any set of formulae Y ⊆ Φ and any formula ϕ ∈ Φ, if Y � ϕ,
then there is an agent a and a world w of an epistemic model such that (a,w) � 
 for
each 
 ∈ Y and (a,w) � ϕ.

Proof. By Lemma 6.9, there is a finite pseudo model M = 〈(Xij), {∼i}i〉
such that Y ∪ {¬ϕ} ⊆ X00. By Lemma 6.17, there is a closed pseudo model
M ′ = 〈(X ′

ij), {∼′
i}i〉 such thatM �M ′. Note thatX00 = X ′

00 by item 2 of Definition
6.8. Hence, Y ∪ {¬ϕ} ⊆ X ′

00. Thus, 
 ∈ X ′
00 for each formula 
 ∈ Y and, because

set X ′
00 is consistent, ϕ /∈ X ′

00. Therefore, (0, 0) � 
 for each 
 ∈ Y and (0, 0) � ϕ in
epistemic modelM ∗ by Lemma 6.19. 


§7. Decidability. In this section, we prove the decidability of our logical system.
The standard way to show decidability in modal logic is to prove completeness with
respect to the class of finite models. This usually can be done using the filtration
technique in one of two ways: on-the-fly filtration or post-filtration. The on-the-fly
filtration restricts formulae in all maximal consistent sets to subformulae of a given
formula. This technique is often more efficient, but it only proves completeness
instead of strong completeness. Post-filtration is applied after strong completeness
is shown. It consists of collapsing the infinite model into a finite one by merging
“similar” possible worlds.

It appears that our matrix construction is too complex for either an on-the-
fly filtration or a post-filtration to be feasible. Instead, we use a different approach
suggested by an anonymous reviewer. We introduce neighborhood semantics for our
logic which is very different and is much simpler than the one given in Definitions 2.1
and 2.2. Then, we use on-the-fly filtration to show the completeness of our logical
system with respect to the class of finite neighborhood models. Note that, unlike
our original semantics, the neighborhood semantics does not capture the intended
meaning of modality A as “know how to tell apart.” This semantics is only used
to prove the decidability of our logical system. Because strong completeness is not
required to prove decidability, the fact that we do not show strong completeness for
the neighborhood semantics is not significant.

7.1. Neighborhood semantics. In this subsection, we define a new and simple
semantics for our logical system. As described above, this semantics will be used
later to prove the decidability of the system. By P(X ) we denote the power set of
set X.

Definition 7.1. A neighborhood model is a tuple (W,∼, {Nw}w∈W , �), where:
1. W is a (possibly empty) set of worlds,
2. ∼ is an equivalence relation on set W,
3. Nw ⊆ P(W ) is a family of “neighborhoods” of world w ∈W such that:

(a) W ∈ Nw for each world w ∈W ,
(b) X ∩ Y ∈ Nw for any world w ∈W and any X,Y ∈ Nw ,

https://doi.org/10.1017/jsl.2023.45 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.45


KNOWING HOW TO TELL THEM APART 21

(c) W \ X ∈ Nw for any world w ∈W and any X ∈ Nw ,
(d) Nw = Nu for any worlds w, u ∈W such that w ∼ u,
(e) if w ∈ X , X ∈ Nw , and w ∼ u, then u ∈ X ,

4. �(p) ⊆W for each propositional variable p.

Definition 7.2. For any formulaϕ ∈ Φ and any worldw ∈W of a neighborhood
model (W,∼, {Nw}w∈W , �), the satisfaction relation w � ϕ is defined as follows:

1. w � p if w ∈ �(p).
2. w � ¬ϕ if w � ϕ.
3. w � ϕ → � if either w � ϕ or w � �.
4. w � Kϕ if u � ϕ for each world u ∈W such that u ∼ w.
5. w � Aϕ if {u ∈W | u � ϕ} ∈ Nw .

The proof of the next theorem is straightforward.

Theorem 7.3 (Soundness). If � ϕ, then w � ϕ for each world w ∈W of each
neighborhood model (W,∼, {Nw}w∈W , �).

7.2. Capturing sets. In the next several subsections, we prove the completeness of
our logical system with respect to neighborhood semantics. Towards this proof, in
this subsection, we introduce the notion of capturing sets. This notion will be used
in the next subsection to define the worlds of the canonical neighborhood model.
Informally, a set of formulae Y captures a set of formulae X if set Y is at least as
expressive as set X.

Definition 7.4. A setY ⊆ Φ captures a setX ⊆ Φ, written asX � Y , if for each
formula � ∈ X , there is a formula 
 ∈ Y such that � � ↔ 
.

It is easy to see that � is a reflexive and transitive relation on P(Φ). More
importantly, it has the following right upward monotonicity property:

Lemma 7.5. If X � Y and Y ⊆ Z, then X � Z.

Definition 7.6. For any set of formula X, let X̂ be the set of all Boolean
combinations of formulae from X.

Let us now consider arbitrary Boolean expressions built from a fixed finite
set of propositional variables x1, ... , xn. Although there are infinitely many such
expressions, there are only 22n Boolean functions that these expressions represent.
Any two Boolean expressions that represent the same Boolean function must be
provably equivalent in propositional logic due to the completeness theorem for
propositional calculus. Thus, one can identify a “basis” of 22n Boolean expressions
such that all Boolean expressions are propositionally equivalent to one of the
expressions in the basis.

We will now apply the observation from the previous paragraph to an arbitrary
finite set X of formulae in language Φ. We can think of formulae in X as atomic
propositions. Formulae in set X̂ are arbitrary Boolean combinations of these atomic
propositions. Thus, set X̂ must contain a finite subset (basis) Y such that each
formula in set X̂ is provably equivalent to one of the formulae in Y. Note that
“provably” here refers to provability from tautologies using the Modus Ponens
inference rule only. However, such provability implies provability in our logical
system. Thus, the following lemma holds.
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Lemma 7.7. For any finite set X, there is a finite set Y such that X̂ � Y .

In other words, if set X is finite, then the (infinite!) set X̂ can be captured by some
finite set.

7.3. Canonical model. In this subsection, for any nonempty finite set Γ of
formulae, we construct a finite canonical neighborhood model. The model is finite in
the sense that the set of possible worlds is finite. This implies that all neighborhoods
and all sets of neighborhoods are also finite.

By Lemma 7.7, there is a finite set Γ1 such that Γ̂ � Γ1. By Lemma 7.5, we can
assume that Γ ⊆ Γ1. By Definition 7.4, for any formula 
 ∈ Γ̂ there is a formula

∗ ∈ Γ1 such that

� 
 ↔ 
∗. (32)

Throughout the rest of this section, we fix a specific function ∗ : Γ̂ → Γ1 that satisfies
statement (32). The next lemma follows from statement (32) and the Substitution
inference rule.

Lemma 7.8. � A
 ↔ A(
∗) for any formula 
 ∈ Γ̂.

Definition 7.9. Γ2 = Γ1 ∪ {A
,¬A
,K
,¬K
,¬
 | 
 ∈ Γ1}.

Definition 7.10. W is the set of maximal consistent subsets of set Γ2.

Note that sets Γ2 and W are finite due to set Γ1 being finite.
Usually, in canonical models for epistemic logics, two worlds are called

indistinguishable if they contain the sameK-formulae. If the indistinguishable worlds
are maximal consistent sets of formulae, then the Introspection of Knowing All
axiom and the Truth axiom would imply that these sets will also have the same
A-formulae. Indeed, if one world contains a formula Aϕ, then, by the Introspection
of Knowing All axiom, it also contains formula KAϕ. Then, the other world
contains a formula KAϕ and, by the Truth axiom, it also contains the formula
Aϕ. However, because we are constructing a finite model, we define the worlds
as maximal consistent subsets of Γ2. As a result, formula KAϕ, from the above
argument, might not belong to a world even if formula Aϕ does. To account for this,
we add item 2 to the definition below.

Definition 7.11. For any worlds w, u ∈W , let w ∼ u when for each formula

 ∈ Γ1,

1. K
 ∈ w iff K
 ∈ u,
2. A
 ∈ w iff A
 ∈ u.

We now proceed to define the families of neighborhoods Nw . We start by defining
a neighborhoodN (
) ⊆W for each formula 
 ∈ Γ1. After that, we specify to which
of the families each neighborhood belongs to.

Definition 7.12. N (
) = {w ∈W | 
 ∈ w} for any formula 
 ∈ Γ1.

Definition 7.13. Nw = {N (
) | 
 ∈ Γ1,A
 ∈ w}.

Intuitively, the above definition is chosen to match Definition 7.12 and item 5 of
Definition 7.2.
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Definition 7.14.

�(p) =

{
N (p), if p ∈ Γ,
∅, otherwise.

7.4. Properties of neighborhoods. In the previous subsection, we have defined the
canonical neighborhood model. In the next subsection, we show that it satisfies
properties 3(a)–(e) of Definition 7.1. Towards this goal, in this subsection, we
establish three auxiliary properties of the neighborhoods.

Lemma 7.15. (
 → 
)∗ ∈ Γ1 and N ((
 → 
)∗) =W for any 
 ∈ Γ.

Proof. Note that 
 → 
 ∈ Γ̂ by Definition 7.6. Hence, (
 → 
)∗ ∈ Γ1 because
function ∗ maps set Γ̂ into set Γ1.

To prove the other part of the lemma, consider any world w ∈W . It suffices to
show that w ∈ N ((
 → 
)∗). Indeed, 
 → 
 is a tautology. Thus, � (
 → 
)∗ due to
statement (32). Thus, (
 → 
)∗ ∈ w because (
 → 
)∗ ∈ Γ1 ⊆ Γ2 and w is a maximal
consistent subset of Γ2. Therefore, w ∈ N ((
 → 
)∗) by Definition 7.12. 


Lemma 7.16. N (
1) ∩N (
2) = N ((
1 ∧ 
2)∗) for any formulae 
1, 
2 ∈ Γ1.

Proof. Consider any world w ∈W . It suffices to prove that the statements w ∈
N (
1) ∩N (
2) and w ∈ N ((
1 ∧ 
2)∗) are equivalent.

By the definition of the intersection, the statement w ∈ N (
1) ∩N (
2) is
equivalent to the conjunction of the statements

w ∈ N (
1) and w ∈ N (
2).

By Definition 7.12, the conjunction of the above two statements is equivalent to the
conjunction of the statements


1 ∈ w and 
2 ∈ w.
Because 
1, 
2 ∈ Γ1 ⊆ Γ2 and w is a maximal consistent subset of Γ2, the conjunction
of the above two formulae is equivalent to the conjunction of the statements

w � 
1 and w � 
2.
By the laws of propositional logic, the conjunction of the two above statements is
equivalent to

w � 
1 ∧ 
2.

Note that 
1 ∧ 
2 ∈ Γ̂ because 
1, 
2 ∈ Γ1 ⊆ Γ̂ and set Γ̂ is closed with respect to
Boolean operations. Hence, by statement (32), the above formula is equivalent to

w � (
1 ∧ 
2)∗.

Observe that (
1 ∧ 
2)∗ ∈ Γ1 ⊆ Γ2 because function ∗ maps set Γ̂ to Γ1. Since w is a
maximal consistent subset of Γ2, the above formula is equivalent to

(
1 ∧ 
2)∗ ∈ w.
The last statement is equivalent to the statement w ∈ N ((
1 ∧ 
2)∗) by Definition
7.12. 
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Lemma 7.17. W \N (
) = N ((¬
)∗) for any formula 
 ∈ Γ1.

Proof. Consider any world w ∈W . It suffices to show that w /∈ N (
) iff w ∈
N ((¬
)∗). By Definition 7.12, the statementw /∈ N (
) is equivalent to the statement


 /∈ w.
Note that 
 ∈ Γ1 by the assumption of the lemma. Thus, ¬
 ∈ Γ2 by Definition 7.9.
Then, because set w is a maximal consistent subset of Γ2, the above statement is
equivalent to

w � ¬
.

Observe that 
 ∈ Γ1 also implies 
 ∈ Γ1 ⊆ Γ̂. Then,¬
 ∈ Γ̂ due to set Γ̂ being closed
with respect to Boolean operations. Thus, by statement (32), the above statement is
equivalent to

w � (¬
)∗.

Note that (¬
)∗ ∈ Γ1 ⊆ Γ2 because function ∗ maps set Γ̂ into set 
2. Then, because
set w is a maximal consistent subset of Γ2, the above statement is equivalent to

(¬
)∗ ∈ w.
The last statement is equivalent to w ∈ N ((¬
)∗) by Definition 7.12. 


Note that the proof above is somewhat convoluted because, for an arbitrary

 ∈ Γ1, formula ¬
 belongs to sets Γ̂ and Γ2, but not necessarily to Γ1.

7.5. Well-definedness of canonical model. In this subsection, we prove that the
canonical model (W,∼, {Nw}w∈W , �) is a neighborhood model as specified in
Definition 7.1. For this, we verify items 3(a)–(e) of the definition.

Lemma 7.18. W ∈ Nw for each world w ∈W .

Proof. Recall the assumption in the beginning of Section 7.3 that set Γ is
nonempty. Let 
 be any formula from Γ. Note that 
 → 
 is a propositional tautology.
Thus, � A(
 → 
) by the Necessitation inference rule. Note that 
 → 
 ∈ Γ̂. Hence,
by Lemma 7.8 and propositional reasoning

� A((
 → 
)∗). (33)

Note that (
 → 
)∗ ∈ Γ1 by Lemma 7.15. Thus,A((
 → 
)∗) ∈ Γ2 by Definition 7.9.
Then, A((
 → 
)∗) ∈ w by statement (33) and because w is a maximal consistent
subset of Γ2. Hence,N ((
 → 
)∗) ∈ Nw by Definition 7.13 and the part (
 → 
)∗ ∈
Γ1 of Lemma 7.15. Therefore, w ∈ Nw by the part N ((
 → 
)∗) =W of Lemma
7.15. 


Lemma 7.19. For any formulae 
1, 
2 ∈ Γ1 and any world w ∈W , if
N (
1), N (
2) ∈ Nw , then N (
1) ∩N (
2) ∈ Nw .

Proof. The assumption N (
1), N (
2) ∈ Nw implies A
1,A
2 ∈ w by Definition
7.13. Thus, w � A(
1 ∧ 
2) by the Conjunction axiom and propositional reasoning.
Note that 
1 ∧ 
2 ∈ Γ̂. Hence,w � A((
1 ∧ 
2)∗) by Lemma 7.8. Observe thatA((
1 ∧

2)∗) ∈ Γ2 by Definition 7.9 and because the range of function ∗ is Γ1. Then, A((
1 ∧
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2)∗) ∈ w because w is a maximal consistent subset of Γ2. Thus,N ((
1 ∧ 
2)∗) ∈ Nw
by Definition 7.13. Therefore, N (
1) ∩N (
2) ∈ Nw by Lemma 7.16. 


Lemma 7.20. For any 
 ∈ Γ1, if N (
) ∈ Nw , thenW \N (
) ∈ Nw .

Proof. The assumption N (
) ∈ Nw implies A
 ∈ w by Definition 7.13. Thus,
w � A¬
 by the Negation axiom and the Modus Ponens inference rule. Hence,
w � A((¬
)∗) by Lemma 7.8 and propositional reasoning. Note that A((¬
)∗) ∈ Γ2

by Definition 7.9 and because the range of function ∗ is Γ1. Then, A((¬
)∗) ∈ w
because w is a maximal consistent subset of Γ2. Thus,N ((¬
)∗) ∈ Nw by Definition
7.13. Therefore,W \N (
) ∈ Nw by Lemma 7.17. 


Lemma 7.21. For any formula 
 ∈ Γ1, ifN (
) ∈ Nw and w ∼ u, thenN (
) ∈ Nu .

Proof. The assumption N (
) ∈ Nw implies that A
 ∈ w by Definition 7.13.
Thus,A
 ∈ u by Definition 7.11 and the assumptionw ∼ u of the lemma. Therefore,
N (
) ∈ Nu by Definition 7.13. 


Lemma 7.22. For any formula 
 ∈ Γ1, if N (
) ∈ Nw , w ∈ N (
), and w ∼ u, then
u ∈ N (
).

Proof. The assumptionsN (
) ∈ Nw andw ∈ N (
) imply A
 ∈ w and 
 ∈ w by
Definitions 7.13 and 7.12, respectively. Then, w � K
 by the Self-Knowledge axiom
and the Modus Ponens inference rule applied twice. Note thatK
 ∈ Γ2 by Definition
7.9. Hence, K
 ∈ w because w is a maximal consistent subset of Γ2. Thus, K
 ∈ u by
Definition 7.11 and the assumption w ∼ u of the lemma. Then, u � 
 by the Truth
axiom and the Modus Ponens inference rule. Hence 
 ∈ u because 
 ∈ Γ1 ⊆ Γ2 and
w is a maximal consistent subset of Γ2. Therefore, u ∈ N (
) by Definition 7.12. 


7.6. Truth lemma. In this subsection, we prove the truth lemma for the
neighborhood semantics. It is stated and proven as Lemma 7.27 at the end of
this subsection. We start with several lemmas used in the induction step of the proof
of Lemma 7.27. In this section, we assume that the finite set Γ is closed with respect
to subformulae.

Lemma 7.23. For any world w ∈W and any formula Kϕ ∈ Γ such that Kϕ /∈ w,
there is a world u ∈W such that w ∼ u and ϕ /∈ u.

Proof. Consider the following set of formulae

X = {¬ϕ} ∪ {K� | K� ∈ w} ∪ {¬K� | ¬K� ∈ w} (34)

∪ {A� | A� ∈ w} ∪ {¬A� | ¬A� ∈ w}. (35)

Claim 7.24. Set X is consistent.

Proof of Claim. Suppose the opposite. Then, there are formulae

K�1, ... ,K�k,¬K�1, ... ,¬K�� ,A�1, ... ,A�m,¬A�1, ... ,¬A�n ∈ w (36)

such that

K�1, ... ,K�k,¬K�1, ... ,¬K�� ,A�1, ... ,A�m,¬A�1, ... ,¬A�n � ϕ.
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Then, by Lemma 4.2,

KK�1, ... ,KK�k,K¬K�1, ... ,K¬K�� ,KA�1, ... ,KA�m,

K¬A�1, ... ,K¬A�n � Kϕ.

Thus, by Lemma 4.3 and the Modus Ponens rule applied k times,

K�1, ... ,K�k,K¬K�1, ... ,K¬K�� ,KA�1, ... ,KA�m,

K¬A�1, ... ,K¬A�n � Kϕ.

Hence, by the Negative Introspection axiom and the Modus Ponens inference rule
applied � times,

K�1, ... ,K�k,¬K�1, ... ,¬K�� ,KA�1, ... ,KA�m,

K¬A�1, ... ,K¬A�n � Kϕ.

Then, by the Introspection of Knowing All axiom and the Modus Ponens inference
rule applied m times,

K�1, ... ,K�k,¬K�1, ... ,¬K�� ,A�1, ... ,A�m,K¬A�1, ... ,K¬A�n � Kϕ.

Thus, by Lemma 4.4 and the Modus Ponens inference rule applied n times,

K�1, ... ,K�k,¬K�1, ... ,¬K�� ,A�1, ... ,A�m,¬A�1, ... ,¬A�n � Kϕ.

Hence, w � Kϕ by statement (36). Observe that Kϕ ∈ Γ by the assumption of the
lemma. Hence, Kϕ ∈ Γ ⊆ Γ1 ⊆ Γ2. Therefore, Kϕ ∈ w because w is a maximal
consistent subset of Γ2, which contradicts the assumption of the lemma. 


By Lemma 4.5, set X can be extended to a maximal consistent set X ′. Let u be
the set Γ2 ∩ X ′. Note that the assumption Kϕ ∈ Γ implies ϕ ∈ Γ ⊆ Γ1 because set
Γ is closed with respect to subformulae. Then, ¬ϕ ∈ Γ2 by Definition 7.9. Observe
also that ¬ϕ ∈ X ⊆ X ′. Thus, ¬ϕ ∈ Γ2 ∩ X ′ = u. Hence, ϕ /∈ u because u is a
consistent set of formulae. To finish the proof of the lemma, we need to showw ∼ u.
To establish this, by Definition 7.11, it suffices to prove the following claim.

Claim 7.25. For each formula 
 ∈ Γ1,

1. K
 ∈ w iff K
 ∈ u,
2. A
 ∈ w iff A
 ∈ u.

Proof of Claim. By Definition 7.9, the assumption 
 ∈ Γ1 implies that
K
,A
,¬K
,¬A
 ∈ Γ2.

IfK
 ∈ w, thenK
 ∈ X ⊆ X ′ by statement (34). Thus,K
 ∈ X ′ ∩ Γ2 = u because
K
 ∈ Γ2.

On the other hand, if K
 ∈ u, then ¬K
 /∈ u because set u is consistent. Then,
¬K
 /∈ w by statement (34). Thus, K
 ∈ w because w is a maximal consistent subset
of Γ2 and K
,¬K
 ∈ Γ2.

The proof of the second part of the claim is similar. 


This concludes the proof of the lemma. 


Lemma 7.26. For any world w ∈W and any formula Aϕ ∈ Γ, if Aϕ /∈ w, then
N (ϕ) /∈ Nw .
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Proof. Suppose N (ϕ) ∈ Nw . Thus, by Definition 7.13, there exists a formula

 ∈ Γ1 such that

A
 ∈ w (37)

and

N (ϕ) = N (
). (38)

Note that Aϕ ∈ Γ ⊆ Γ1 by the assumption of the lemma. Thus, ¬Aϕ ∈ Γ2 by
Definition 7.9. Then, ¬Aϕ ∈ w because w is a maximal consistent subset of w.
Hence, � A
 → Aϕ by statement (37) and consistency of set w. Thus, � 
 ↔ ϕ by
the Substitution inference rule applied contrapositively. We consider the following
two cases separately:

Case 1: � 
 → ϕ. Thus, the set {¬ϕ, 
} is consistent. By Lemma 4.5, it can
be extended to a maximal consistent set u. Note that 
 ∈ u and, because set u
is consistent, ϕ /∈ u. Also ϕ ∈ Γ ⊆ Γ1 because set Γ is closed with respect to
subformulae and also 
 ∈ Γ1. Thus, u /∈ N (ϕ) and u ∈ N (
) by Definition 7.12,
which contradicts to statement (38).

Case 2: � ϕ → 
. The proof is similar to the previous case. 


Lemma 7.27. ϕ ∈ w iff w � ϕ for each formula ϕ ∈ Γ.

Proof. We prove the statement of the lemma by induction on the structural
complexity of formula ϕ.

First, suppose that formula ϕ is a propositional variable p. Note that p ∈ Γ ⊆ Γ1

by the assumption of the lemma. Note that the statement p ∈ w is equivalent to
the statement w ∈ N (p) by Definition 7.12. The statement w ∈ N (p) is equivalent
to the statement w ∈ �(p) by Definition 7.14. Finally, the statement w ∈ �(p) is
equivalent to the statement w � p by item 1 of Definition 7.2.

Next, assume that formulaϕ has the form¬�. Note thatϕ ∈ Γ by the assumption
of the lemma. Hence,� ∈ Γ ⊆ Γ1 because set Γ is closed with respect to subformulae.
Then,

�,¬� ∈ Γ2. (39)

(⇒) : Letw � ¬�. Then,w � � by item 2 of Definition 7.2. Hence,� /∈ w by the
induction hypothesis. Therefore, ¬� ∈ w by statement (39) because w is a maximal
consistent subset of Γ2.

(⇐) : Let ¬� ∈ w. Then,� /∈ w because set w is consistent. Hence,w � � by the
induction hypothesis. Therefore, w � ¬� by item 2 of Definition 7.2.

Assume that formula ϕ has the form �1 → �2. Thus, �1, �2 ∈ Γ ⊆ Γ1 because
set Γ is closed with respect to subformulae. Then,

�1, �2,¬�1,¬�2 ∈ Γ2. (40)

(⇒) : Let w � �1 → �2. Then, by item 3 of Definition 7.2, either w � �1 or
w � �2. We consider these two cases separately.

Case 1: w � �1. Thus, �1 /∈ w by the induction hypothesis. Then, ¬�1 ∈ w by
statement (40) because w is a maximal consistent subset of Γ2. Note that ¬�1 →
(�1 → �2) is a propositional tautology. Thus, w � �1 → �2 by the Modus Ponens
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inference rule. Therefore, �1 → �2 ∈ w because w is a maximal consistent subset of
Γ2 and �1 → �2 = ϕ ∈ Γ ⊆ Γ1 ⊆ Γ2 by the assumption ϕ ∈ Γ of the lemma.

Case 2: w � �2. Then, �2 ∈ w by the induction hypothesis. Note that �2 →
(�1 → �2) is a propositional tautology. Then, w � �1 → �2 by the Modus Ponens
inference rule. Therefore, just like in the first case, �1 → �2 ∈ w.

(⇐) : Let�1 → �2 ∈ w. Thus, by the Modus Ponens rule, ifw � �1, thenw � �2.
In other words, either w � �1 or w � �2. Then, either �1 /∈ w or w � �2. Hence,
either�1 /∈ w or�2 ∈ w by statement (40) because w is a maximal consistent subset
of Γ2. Thus,w � �1 orw � �2 by the induction hypothesis. Therefore,w � �1 → �2

by item 3 of Definition 7.2.
Suppose that formula ϕ has the form K�.
(⇒) : Assume that K� ∈ w. Consider any world u ∈W such that w ∼ u. By

item 4 of Definition 7.2, it suffices to show that u � �. Indeed, by Definition 7.11,
the assumptions K� ∈ w and w ∼ u imply that K� ∈ u. Hence u � � by the Truth
axiom and the Modus Ponens inference rule. Note that � ∈ Γ ⊆ Γ1 ⊆ Γ2 because
K� ∈ Γ and set Γ is closed with respect to subformulae. Thus, � ∈ u because u is a
maximal consistent subset of Γ2. Therefore, u � � by the induction hypothesis.

(⇐) : Assume that K� /∈ w. Then, by Lemma 7.23, there is a world u ∈W such
thatw ∼ u and� /∈ u. Thus, u � � by the induction hypothesis. Therefore,w � K�
by item 4 of Definition 7.2.

Suppose that formula ϕ has the form A�. Note that � ∈ Γ ⊆ Γ1 because set Γ is
closed with respect to subformulae and ϕ ∈ Γ by the assumption of the lemma.

(⇒) : Assume that A� ∈ w. Then, N (�) ∈ Nw by Definition 7.13. Thus,
{u ∈W | � ∈ u} ∈ Nw by Definition 7.12. Hence, {u ∈W | u � �} ∈ Nw by the
induction hypothesis. Therefore, w � A� by item 5 of Definition 7.2.

(⇐) : Assume that A� /∈ w. Thus, N (�) /∈ Nw by Lemma 7.26. Then, {u ∈
W | � ∈ u} /∈ Nw by Definition 7.12. Hence, {u ∈W | u � �} /∈ Nw by the
induction hypothesis. Therefore, w � A� by item 5 of Definition 7.2. 


7.7. Completeness and decidability. In this subsection, we finish the proof of the
completeness theorem for neighborhood semantics. We say that a neighborhood
model (W,∼, {Nw}w∈W , �) is finite if set W is finite. Note that this implies that the
family Nw is finite and all its elements are finite sets.

Theorem 7.28 (Neighborhood completeness). If � ϕ, thenw � ϕ for some world
w of a finite neighborhood model.

Proof. Let Γ be the finite set of all subformulae of formula ¬ϕ. Consider the
canonical model defined in the previous subsection. Note that this model is finite
because set Γ2 is also finite.

The assumption � ϕ implies that the set {¬ϕ} is consistent. By Lemma 4.5 it
can be extended to a maximal consistent set X. Let w be the set X ∩ Γ2. Note that
¬ϕ ∈ w because ¬ϕ ∈ X and ¬ϕ ∈ Γ ⊆ Γ1 ⊆ Γ2. Thus, ϕ /∈ w because set w is
consistent. Therefore, w � ϕ by Lemma 7.27. 


Theorem 7.29 (Decidability). Set {ϕ ∈ Φ | � ϕ} is decidable.

Proof. Consider an algorithm that takes a formula ϕ as an input and executes
two processes in parallel. The first process enumerates all proofs in our logical system
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and checks if any of them is a proof of formula ϕ. The second process enumerates
all finite neighborhood models and checks if formula ϕ is false in at least one world
of this model. By Theorem 7.3, at most one of these processes will succeed on a
given input ϕ. By Theorem 7.28, at least one process will succeed on a given input
ϕ. If the first process succeeds, formula ϕ belongs to the set {ϕ ∈ Φ | � ϕ}. If the
second process succeeds, it does not. 


§8. Future work. In this section, we discuss several possible extensions of our
logical system.

8.1. Know one. Our “telling apart” modality Aϕ captures the ability of an agent
to identify all possible agents with a given property ϕ. One can also consider the
“knowing one” modality:

(a,w) � Oϕ when there exists an agent b ∈ Ag such that (b, u) � ϕ for each world
u ∈W , where w ∼a u.

Informally, (a,w) � Oϕ means that in world w agent a knows at least one agent
(the agent b) that has property ϕ. Here are some of the properties of the interplay
between this new modality and the modality that we have studied in this article:

1. Oϕ ∧ A� → O(ϕ ∧ �) ∨ O(ϕ ∧ ¬�),
2. Oϕ → KOϕ,
3. Kϕ → Oϕ.

Although the Necessitation rule for modality O is not sound, the Monotonicity rule

ϕ → �
Oϕ → O�

is sound. An interesting possible question for future work could be to study the
definability of modalities O, A, and K through each other. If they are not definable
through each other, then one can look for a complete axiomatization of the interplay
between these modalities. We think that a variation of our matrix technique could
be potentially useful for proving completeness in this new setting.

8.2. Conditional tell apart. Another possible extension of this work is to consider
“conditional telling apart.” For example, although in a world w an agent a, a
pediatrician, might not be able to tell sick people apart, the agent can tell sick
children apart. We write this as

(a,w) � A(“is sick” | “is a child”).

Formally, conditional telling apart modality A( | ) is defined as follows:
(a,w) � A(ϕ |�) when for each agent b ∈ Ag such that (b,w) � � and any worlds

u, u′ ∈W , if w ∼a u, w ∼a u′, and (b, u) � ϕ, then (b, u′) � ϕ.
Formula A(ϕ | �) is equivalent to Aϕ. Here is an example of a property in the

language of conditional telling apart:

A(ϕ |�1) ∧ A(ϕ |�2) → A(ϕ |�1 ∨ �2).

A complete axiomatization of all such properties is a possible direction for future
research.
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8.3. Non-rigid names. One might argue that the logical system proposed in this
article is very restricted because it cannot explicitly refer to agents. Names can be
introduced into our language through an additional modality @n. This allows for a
very general class of non-rigid names that could be agent-specific and world-specific.
By agent-specific names, we mean names, such as ma (mother), whose meaning
depends on the agent. For example, the statement (a,w) � @ma“is sick” means that
the mother of agent a is sick in worlds w. The statement (a,w) � @ma@ma“is sick”
means that agent a’s grandma (on the mother’s side) is sick. One can write

(a,w) � @maA“is sick”

to express that agent a’s mother knows how to tell sick people apart. At the same
time, the statement

(a,w) � A@ma“is sick”

means that agent a knows how to tell apart those whose mother is sick. The names
can be also world-specific. For example, in different worlds, the mother of agent a
could be different. Such a setting could be used to model situations when the agent
does not know who his mother is.

To give a formal semantics of the language with non-rigid names, one can
extend each epistemic model (Ag,W, {∼a}a∈Ag, �) with an additional component
{ewa }w∈Wa∈A . By ewa we denote an “extension function” that maps a name n into an
agent ewa (n) whom agent a calls by name n in world w. Using extension functions,
the semantics of modality @n can be defined as follows:

(a,w) � @nϕ when (ewa (n), w) � ϕ.

A complete axiomatization of the properties of modalities A, O, and A( | ) in
the language with non-rigid names remains another interesting question for future
work.

§9. Conclusion. The contribution of this paper is twofold. First, we proposed
a sound, complete, and decidable modal logic of “knowing how to tell apart”
in the egocentric setting. Second, we propose a new matrix-based technique for
proving completeness results for 2D semantics. We hope that this technique could
be potentially extended to other logical systems, such as those that we listed in the
future work section.

Acknowledgment. We would like to thank an anonymous reviewer for the idea to
prove decidability using neighborhood semantics and for the suggestion on how to
improve the proof of Lemma 6.17.

Appendix A. Proofs of auxiliary lemmas To keep the work self-contained, in this
appendix, we give the proofs of three standard results used in our article.

Lemma 4.1. If X,ϕ � �, then X � ϕ → �.

Proof. Suppose that sequence �1, ... , �n is a proof from set X ∪ {ϕ} and the
theorems of our logical system that uses the Modus Ponens inference rule only. In
other words, for each k ≤ n, either
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1. � �k , or
2. �k ∈ X , or
3. �k is equal to ϕ, or
4. there are i, j < k such that formula �j is equal to �i → �k .

It suffices to show that X � ϕ → �k for each k ≤ n. We prove this by induction on
k by considering the four cases above separately.

Case I : � �k . Note that �k → (ϕ → �k) is a propositional tautology and, thus,
is an axiom of our logical system. Hence, � ϕ → �k by the Modus Ponens inference
rule. Therefore, X � ϕ → �k .

Case II : �k ∈ X . Then, X � �k .
Case III : Formula �k is equal to ϕ. Thus, ϕ → �k is a propositional tautology.

Hence, X � ϕ → �k .
Case IV : Formula�j is equal to�i → �k for some i, j < k. Thus, by the induction

hypothesis, X � ϕ → �i and X � ϕ → (�i → �k). Note that formula

(ϕ → �i) → ((ϕ → (�i → �k)) → (ϕ → �k))

is a propositional tautology. Therefore,X � ϕ → �k by applying the Modus Ponens
inference rule twice. 


Lemma 4.2. If ϕ1, ... , ϕn � �, then Kϕ1, ... ,Kϕn � K�.

Proof. By Lemma 4.1 applied n times, the assumption ϕ1, ... , ϕn � � implies
that

� ϕ1 → (ϕ2 → ... (ϕn → �) ... ).

Thus, by the Necessitation inference rule,

� K(ϕ1 → (ϕ2 → ... (ϕn → �) ... )).

Hence, by the Distributivity axiom and the Modus Ponens inference rule,

� Kϕ1 → K(ϕ2 → ... (ϕn → �) ... ).

Then, again by the Modus Ponens rule,

Kϕ1 � K(ϕ2 → ... (ϕn → �) ... ).

Therefore,Kϕ1, ... ,Kϕn � K� by applying the previous steps (n – 1) more times. 


Lemma 4.3. � Kϕ → KKϕ.

Proof. Note that formula K¬Kϕ → ¬Kϕ is an instance of the Truth axiom.
Thus, by contraposition,

� Kϕ → ¬K¬Kϕ. (41)

Also,

¬K¬Kϕ → K¬K¬Kϕ (42)

is an instance of the Negative Introspection axiom. Additionally, the formula

¬Kϕ → K¬Kϕ
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is also an instance of the Negative Introspection axiom. Thus, by the law of
contraposition,

� ¬K¬Kϕ → Kϕ.

Hence, by the Necessitation inference rule,

� K(¬K¬Kϕ → Kϕ).

Then, by the Distributivity axiom and the Modus Ponens inference rule,

� K¬K¬Kϕ → KKϕ. (43)

Finally, by the laws of propositional reasoning, statements (41)–(43) imply the
statement of the lemma. 


REFERENCES

[1] A. Baltag, To know is to know the value of a variable, Advances in Modal Logic 11, Proceedings
of the 11th Conference on Advances in Modal Logic, Budapest, Hungary, August 30–September 2, 2016
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