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CHARACTERISATIONS OF GALOIS EXTENSIONS
OF PRIME CUBED DEGREE

JAMES E. CARTER

Let p be a prime number and let t be a field of characteristic not equal to p.
Assuming k contains the appropriate roots of unity, we characterise the non-cyclic
Galois extensions of k of degree p3. Concrete examples of such extensions are
given for each possible case which can occur, up to isomorphism.

1. INTRODUCTION

Let p be a prime number. In the course of investigating a problem of algebraic
number theory in [1], the author encountered a need for a characterisation of Galois
extensions of degree p3 . Assuming certain conditions on the ground field k, he found
that these extensions could be described in a straightforward manner utilising methods
of a constructive nature which readily yield concrete examples not currently found, to
the author's knowledge, in the research literature or in textbooks treating the subject.
More specifically, let A; be a field of characteristic not equal to p. Furthermore, assume
k contains the multiplicative group fip of p-th roots of unity. Let G be a finite group
and suppose L/k is a Galois extension with Galois group Gal(£/ife) isomorphic to G.
In the first part of our presentation we shall characterise the extensions L/k in case G
is non-cyclic of order p3 and G is not the quaternion group (Theorems 4 and 6). The
quaternion extensions of k will then be characterised in the second part where we make
the additional assumption that k contains (i^. (Theorems 9 and 10.)

The field extensions described above have been examined elsewhere within the
context of the "embedding problem." We do not explicitly touch upon this aspect of
the study of these extensions here, but refer the interested reader to [3] .

2. GROUPS OF ORDER p3

We begin by gathering together some facts about groups of order p3 which we shall
need. Let G be such a group. Then G is either a cyclic group, or the quaternion group,
or

(1) G = for,* 1 ^ = ^ = 1 , ^ = V
l, [V,r] = 1 = [,,fl, [T,t] = 7,'}
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100 J.E. Carter [2]

where s, I € { 0 , 1 , . . . ,p — 1}. If s = 0 then G is one of two (up to isomorphism)
Abelian groups of order p3 :

(i) G ~ Z / p Z ® Z / p Z © Z / p Z if ^ = 0;

(ii) G ~ Z/pZ © Z/P
2Z if / # 0.

If a 7̂  0 and p is odd then G is one of two (up to isomorphism) nonabelian groups of
order p 3 . The first, which we shall refer to as type 1, is a split extension of a cyclic
group of order p by an elementary Abelian group of type (p, p). The second, referred
to as type 2, is a split extension of a cyclic group of order p by a cyclic group of order
p 2 . We have

(iii) G is of type 1 if I = 0;
(iv) G is of type 2 if £ ± 0.

If s ^ 0 and p — 2 then G is the dihedral group D$ for either value of I (E {0,1, . . . ,

p-iy.
In any case of (1), A = (ViT) *s a normal subgroup of G and we have an exact

sequence of groups

(2) 1 —> A —> G —> B — » 1 .

In the nonabelian cases Z(G) = (TJ) , where Z(G) is the centre of G, and we have the
exact sequence

(3) 1 —» Z{G) - ^ G —> .ff —» 1.

One easily verifies that H is elementary Abelian of type (p,p).

3. STRUCTURE OF EXTENSIONS OF DEGREE p3

In this section and the next we shall consider Galois extensions L/k with Gal(X/fc)
~ G where G is given by (1). For any field F, F* will denote its multiplicative group
of nonzero elements, and Fm the multiplicative group of m-th powers of elements of
F* where m is a positive integer. If 5 is a subgroup of G we write Ls for the subfield
of L fixed by 5 . We now proceed to describe generators for L/k and the action of r\,

T, £ on these generators. Let K = £<'>, M = £<r>, E = £<"-T>, and F = L^'®. By
Galois theory and (1), (2), and (3), L/E and K/k are elementary Abelian extensions
of type (j>,j>) • Let p = £ \ E and a = r | F be the restrictions of £ and r to E and F,
respectively. By Galois theory, it follows that Gal (E/k) = {p) and G(F/k) = (a). By
Kummer theory, E = k(a) and F = &(/3) where ap = a and /3P = b for some elements
a and 6 in k* such that (akp) and (6fcp) are distinct cyclic subgroups of kx/kp of
order p . Moreover, writing ( for a primitive p-th root of unity, we may assume a
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[3] Characterisation of Galois extensions 101

and /3 chosen so that p(a) = (a and a(/?) = (,(5. Consider r\ 6 Gal(L/fc). Since (rj)
fixes E, r\ \ M is an E-automorphism of M. Therefore r) \ M G Gal(M/.E). Since
M <£ K = £<'>, jy | M ^ idM • Hence Gal (M/.E) = ( i / |M). By Kummer theory,
M = E{~f) where 7P = c for some element c in .Ex , and (cEp) and (bEF) are distinct
cyclic subgroups of Ex/Ep of order p. Furthermore, we may assume 7 chosen so that

F = k{(3)

Figure 1

Since L = k(a,^,j), any element of Gal(i/fc) is completely determined by its action
on the elements a, 0, and 7. Thus far we have 7/ fixes a and /3 and 77(7) = C71 T

fixes a and 7 and r(/3) = £/3, and £ fixes /? and £(a) = (a. It remains to determine
£(7). If e 6 E let NE/k{e) denote the norm of e from i? to k.

PROPOSITION 1. £(7) = fi'ye for some e £ Ex. Consequently, b' =
(l/NE/k(e).

PROOF: We show that £(-/)/P'j £ Ex . From (1) we have [T,£] = rj'. Therefore
T£ = T)'£T . Hence,

C'P'l

Also,
1(7)

Therefore ((j)/0af e I (" ' r> = £ . It follows that ^(7) = /3'7e for some e 6 -EX . By
successively applying £ to both sides of the equation £(7) = (3'ye we obtain £p(7) =
NE/k(e)b'-f. On the other hand, (p = vl which implies ^ (7 ) = n^j) = ^ 7 . Therefore
C*7 = HB/k(e)b'~r which gives <« = NE/k{e)b'. Hence 6' = <7JVB/Jb(e). D
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We display the action of T , r\, and £ on a, /? and 7 in- the following table:

T

V

t

a
a
a

c«

p
(P
0
0

7
7
Cl

0'je

Table 1

COROLLARY 2 . With the notation as in the proposition, if L/k is Abelian and
1^0 then (j,p C NE/k(Ex). If L/k is nonabelian then b 6 fipNE/k(E

x).

PROOF: L/k is Abelian if and only if a = 0. Since b' — C,1/NE/k{e) f°r some
e G E* it follows that (l = NE/k(e) when L/k is Abelian. If £ ̂  0 then /ip = (£*) C
^E/k{Ex). Now suppose i/A is nonabelian. Then s ^ 0 and 6* G fipNE/k{Ex).
Since (s,p) = 1 and 6* £ ife* C NE/k{E*) we have 6 £ /ipiVE/fc(£;x). D

Now let Z [(/})] be the group ring. Define the elements N and 9 in Z[(p)] by
p-i p-i

W = £ P% and fl = X) *P% •
i=0 i=0

LEMMA 3 . p9 = 0 - N

P R O O F :

t=0 «=0

1 = 1 1 = 1

p - 1 p p

t = l

Therefore p0 = 6 - N +p.
p - 1

E

D

and 7 G E we write 7'=° for the product \\ P*(7)™' •
i=0 i=0

Recall that b' = CV-^.E/Jt(e)- In terms of the notation just introduced we have
b' = C,le~N, and p(ale9} = (,lalepe. By Lemma 3 this last expression is equal
to C,lateBe-Ne^ = C,le~N(alee)er = b'(alee)e^. Since £(7) = P'-fe we also have
p(c) = b'ceP. Therefore p{c/alee) = c/ale6. It foUows that c/ale0 G kx , that is,
c = izalee where K G kx .
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[5] Characterisation of Galois extensions 103

The results of this section are summarised in the following

THEOREM 4 . Let p be any prime and let

G = = T> = 1, V = t,1, [V,r] = 1 = [V,t], [r,t] = V')

where s, I £ { 0 , 1 , . . . ,p — 1}, and assume k is a field of characteristic not equal to p,
containing fiv. Suppose L/k is a Galois extension of degree p3 with Gal(L/k) = G. If
K = £<»»>, M = Z<T>, E = L<i<T>, and F = X<7>-«>, then we have the following diagram
of sub fields of L

M = L<T>

where L = MK, K = EF, and there exist elements a, 0, 7 G L such that E = k(a),
F = fc(/3), and M = E(j), and such that £(a) = (a, T(/3) = (0, and 77(7) = £7. Then
a? - a, {3P = b, and j p = c where a, b £ k* and c £ Ex .

Furthermore,

(i) (akp) and (bkp) are distinct cyclic subgroups of kx /kp of order p;
(ii) (bEp) and (cEp) are distinct cyclic subgroups of Ex/Ep of order p.

p-i
Moreover, if p = Z\E then Gal {E/k) = {p) and we define N, 9 £ Z [{p}} by N = £ p%

i=o
P-I

and 0 = ^2 ipx. Finally, there are elements K £ kx and e £ Ex such that b* = C,le~N

t=0

and c = Kale6', and such that rj, T, and £ act as k-automorphisms of L according to
the following table.

T

V

t

a
a
a

c<*

0

P
P

7
7
C7

P'ye
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104 J.E. Carter [6]

4. CONSTRUCTION OP EXTENSIONS OF DEGREE p3

In view of the previous two sections we now consider the problem of constructing
Galois extensions L/k with Gal(L/k) = G where G is given by (1) and A; is a field of
characteristic not equal to p, containing fj.p. If F is any field with B C F* , and n is
a positive rational integer, write I?1/™ for the set of n-th roots of elements of B. We
shall need the following:

LEMMA 5 . Suppose k C E C L are arbitrary fields and assume fin C E. If E/k

is a Galois extension with Galois group Gal(E/k) and L/E is a Kummer extension,

say L = E{B1ln) where E* D B D En, then L/k is normal if and only if p(B) = B

for every p £ Gal (E/k).

PROOF: Suppose L/k is normal. Let p £ Gal (E/k) and choose <T 6 Gal(i/fc)

such that or \ E = p. Since L = E(B1ln) we have L = a(L) = a(E(B1'n)) =

Eyp(B) )• By Kummer theory it follows that p(B) — B. Conversely, suppose

p(B) = B for every p € Qal(E/k). Let a be a fc-embedding of L into an algebraic

closure of k. Then a | E = p for some p G G&\(E/k). Since p(B) = B and L =

E(B1'n) we have a(L) = <r(E(B1'n)) = E^p(B)1/n^ = E(B1ln) = L. Therefore a

is a fc-automorphism of L. Hence, L/k is normal. U

For the remainder of this section we assume k is a field of characteristic not equal

to p , containing /ip. Let a 6 kx such that (akp) is a cyclic subgroup of kx/kF of

order p. Let E = k(a) where <xv = a. Then E/k is a Galois extension of degree p

and Gal(i?/ife) = (p) where p(a) = (a. Define the elements N and 0 of the group
p-i p-i

ring Z[(p)] by TV = £ /»* and 0 = £ ip' . Let a, € £ {0 ,1 , . . . ,p - 1}. Suppose
i=0 i=0

there exists /c £ fcx and e 6 Ex such that £*e~N = 6" for some b £ kx of order p
(mod fcp), and c = nale9 has order p (mod JEP). Furthermore, assume (bkp) ^ (afcp)
and (&-Ep) ^ (c£p). Let F = k(/3) where 0P = b. Then F/Jfc is a Galois extension
of degree p and Gal(F/Jfc) = (a) where er(/?) = £/?• Moreover, K = EF is a Galois
extension of A: with Gal(A"/fc) ~ (p) x (a).

K=EF

E= k(a) F =

Figure 2
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[7] Characterisation of Galois extensions 105

Now let M — E(-f) where j p = c. Then M is a cyclic extension of E of degree
•p. Finally, let L = MK - E{Bxlp) where B = (b,c)Ep. Then L is an elementary
Abelian extension of E of degree p2 and we have the following diagram of subfields of
L.

L= MK

M= E(y)

F = *(/?)

THEOREM 6. Let L/k be the extension shown in Figure 3. Then L/k is Galois
with Gal(L/k) ~ G where G is given by (1). Moreover, by replacing e with £™e for
some integer u, we may assume the action of G on L is given by

T

V
£

a
a
a

(a

P
CP
P

"C
o

7
7
Cl

P'-ye

PROOF: By Lemma 3, p6 = 6-N + p. Therefore p(c) - pfaa'e6) = K^a'ef0 =

K(talee-N+P = (te-Ntialeeep = b'cep. It follows that for every positive integer i
p\c) = c (mod (b)Ep). Hence, B = (b,c)Ep = (b,pi{c))Ep = p\B) for every positive
integer i. This implies that L/k is normal, by Lemma 5. Thus, L/k is Galois since
L/k is separable.

We now determine the Galois group Gal(L/k). Let Gal(i/M) = (T) and
Gal(L/K) — (T/) where r and i\ are defined by T(/3) = (0 and 77(7) = C~f • Since
the sequence

1 -» GB1{L/K) -

is exact, there exists £ £ Gal(L/F) such that £ \ E = p. Hence ((0) = /? and
£(7)p = £(c) = p{c) = b'cep. From £(7)* = b'cep we have $(7) = CP'-ye for some
u e { 0 , l , . . . , p - l } . Suppose u ^ 0. Since (Ce)~N = e ' ^ , (Ce)fl = ee, and
(C e ) P = e ? w e may replace e with £™e without affecting any of the arguments of this
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section, and the above relation becomes £(7) = P'je. We display the actions of T, 77,
and £ in the following table.

T

V

t

a
a
a
(a

P
OS
P
13

7
7
C7

(3'ie

Table 2

It remains to show that 77, r, and £ satisfy the relations of (1). Clearly r)p = r p = 1
and [77, T] = 1. To show that £p = 77* it suffices to show £p("f) = 17̂ (7) since £p and 77'
both fix a and /?. By successively applying £ to both sides of the equation £(7) = fi'-fe
one obtains ^ (7) = eNb'-y. Since 6" = Cte~N it follows that ^ (7) = ^ 7 = 77%).
Therefore £p = 77*. We now show [77, f] = 1. Clearly, 77̂  and £77 agree on a and
/?. Since also (77^(7) = v(P'le) = Wl^ and (£77X7) = t((-y) = (,0'fe it follows
that [77, £] = 1. Finally, we show [T,(\ = 77s. This last equation is equivalent to
r£ = 77'̂ T. We have (r^(a) = (a = (V'(r)(a) and (T£)(/?) = tf = (v'^){fi).
Also, (TO(7) = T{0'IC) - CP'l* and (T,^T)(7) - (T,'0(7) = Vtf'ye) = C'P'ye.
Therefore [T,(\ = rj'. D

REMARK. Let p be any prime. Theorem 4 together with Theorem 6 provide a complete
characterisation of noncyclic extensions L/k of degree p3 of fields k of characteristic
not equal to p, containing fip, provided such extensions of k exist and L/k is not a
quaternion extension.

In the examples which follow immediately, the notation will be as in the statement
of Theorem 6. Furthermore, let Q be the field of rational numbers, and let i — y/—l.
Let £m denote a primitive m-th root of unity. For each example it is not difficult
to check that the condition £le~N = b' holds. The remaining conditions required
by Theorem 6 are easily shown to be satisfied by arguing as follows: (1) Assume the
condition does not hold. (2) Write an equation based on the assumption in 1. (3)
Derive a contradiction from the equation obtained in 2. In about half the cases, step 3
will begin by taking the obvious norm of both sides of the equation (but see the remark
preceding Example 5). Standard facts about cyclotomic fields (see [2, Chapter IV] for
instance) may also prove helpful in verifying some of the conditions of Examples 4 and
5. In particular, one may find the following facts useful: [Q(£p>-) : Q] = (p — l)pT~1,

and p = ' n (1 - C) •
»=i

EXAMPLE 1. Let Jfc = Q, p = 2, J = 0, £ = 0, a = 3, b = 5, K = 1, and e =
1/(2 + \/3) . Then c — 1/(2 - y/3) and L/k is a Galois extension with Gal(£/A:) ~

https://doi.org/10.1017/S0004972700030574 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030574


[9] Characterisation of Galois extensions 107

EXAMPLE 2. Let A; = Q(i), p = 2, s = 0, I = 1, a = 2, b = 3, K = 1, and
e = i / (3 + 2\ /2) . Then c = i-^/2/(3 - 2-\/2) and L/fc is a Galois extension with
Gal (L/k) ~ Z/2Z © Z/4Z .

EXAMPLE 3. Let Jfe = Q, p = 2 , a = 1, 1=1, a = 2, 6 = - 7 , AC = 1, and e =
1/(3 + y/2) . Then c = \ /2 / (3 - \/2) and L/fc is a Galois extension with Gal (L/k) ~
D4.

EXAMPLE 4. Let p be an odd prime. Let k = Q(C), and let s and I be nonzero. Let
a = p, and 6 = C,lr where r is an integer such that rs = 1 (mod p). Let K = 1, and
e = 1. Then c = a1, where ap = p, and i/fc is a Galois extension with Gal (L/k) ~ G,
where G is nonabelian of order p3 of type 2.

REMARK. In the following example, the conditions required by Theorem 6 are verified
as outlined in the paragraph preceding Example 1, with the exception of those conditions
involving the element c. For these two conditions, carry out steps 1 and 2 as in the
previous examples. In step 3, however, apply p to both sides of the equation instead of
taking norms, and then apply Lemma 3. Now derive a contradiction as before.

EXAMPLE 5. Let p be an odd prime. Let k = Q(C), and let s = 1, £ = 0. Let a = (,
and 6 = 1 — £. Let n = 1, and e = l / ( l — Cp1) • Then c = efl, and L/k is a Galois
extension with Gal(i/A;) ~ G, where G is nonabelian of order p3 of type 1 .

In the remaining sections we shall obtain a characterisation of quaternion extensions
of fields L/k where we assume the characteristic of k is not 2, and fi4 C k. The
development parallels closely that of the previous sections in broad outline, but with
essential differences in some of the details.

5. THE QUATERNION GROUP

In terms of generators and relations the quaternion group is given by

Every subgroup of H% is normal. In particular, Z(H%) = (£2) is the centre of H& where
£2 = T2 is the unique element of order 2 and we have an exact sequence

(5) 1 -> Z(H8) -> Ha -> Q -> 1.

One easily verifies that Q must be elementary Abelian of type (2,2).

https://doi.org/10.1017/S0004972700030574 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030574


108 J.E. Carter [10]

6. STRUCTURE OF QUATERNION EXTENSIONS

Suppose k is a field of characteristic not equal to 2, containing fi^. Let L/k be a
normal extension with Gal(Z/fc) ~ HB where Ha is given by (4). If S is a subgroup
of H% we write Ls for the subfield of L fixed by 5 . We now proceed to describe
generators for L/k and the action of £ and T on these generators. Let E = L^,
F = L^ , and K = L^ ) . By Galois theory and (5), we have the following diagram of
subfields of L where L/K. is a quadratic extension and K/k is an elementary Abelian
extension of type (2,2).

Figure 4

Let p = (, | E and a = T \ F be the restrictions of £ and r to E and F respectively.
By Galois theory it follows that Gal (E/k) — (p) and Gal {F/k) = (a). By Kummer
theory E = k(a) and F = K([3) where a2 = a and /32 = b are elements of kx

and (ak2) and (bk2) are distinct cyclic subgroups of kx/k2 of order 2. Moreover,
p(a) = —a and <r((3) = —/3. Since [ii C E and Z/22 is cyclic of degree 4 we have
L = E{f) where 7 satisfies f(x) = x4 — u for some u 6 22*. The roots of / are the
elements of the set {±7, ±17} where i2 = —1. Since r is an JE-automorphism of L
we have T(J) G {±7, ±17}. If T(J) = ±7 then r2 fixes L = fc(a,7) which contradicts
the fact that r has order 4. Therefore, we must have T(~I) = ±17. If T(~Y) = —if then
T3(J) = 17. Also, T3(a) — a and r3(/3) = - / 3 . Thus, since (T) = (T3) we may assume
r ( 7 ) = »7. Let c = 7

2 . Since T2(c) - T
2(7

2) = T2(7)2 = ( - 7 ) 2 = 7
2 = c it follows

that c G £< T 2 > = K. Thus far we have r fixes a, T(^) = - / 3 , and T(7) = 17. Also, £
fixes /? and ((a) = —a. It remains to determine £(7).

LEMMA 7 . £(7) = ifiey for some e £ E* .

PROOF: We show that r fixes (,{i)/iM- Since T£ = £3T and £2 = r2 we have

/37
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[11] Characterisation of Galois extensions 109

Therefore £{y)/ipi £ £<r> = E. It follows that £(7) = {fief for some e e E* .

The action of r and £ on a, /3, and 7 is displayed in the following table.

r

t

a

a

—a

P
-P
P

7
if

iPej

ipi; = p.

Table 3

PROPOSITION 8. If L/k is a normal extension such that Gal (L/k) = Ha where
Ha is given by (4), then L has subfields as shown in Figure 4 where b = e~N and
c = nape6 for some K £ kx and e £ Ex where N and 6 are the elements of

1 l

defined by N = Y, Pi = 1 + P and 8 -
«=0 i=0

PROOF: It remains to prove the statements about b and c. We have £(7) = ifc
by Lemma 7. Hence —7 = r 2(7) = £2(7) = —beN~/. Therefore, b = e~N. We now
determine c. Since £(c) - i(~if = (iPe-yf = ~p2e2c and, by Lemma 3, ((aPeB) =
-aPe6" = -aPeee-Ne2 = -aPeep2e2, we have ({c/aPee) = -P2e2c/-P2e2aPee =
c/aPee which implies c/aPe8 £ L^ = F. Also, since r(c) — T(J)2 = —c we have
r(c/aPee) = -c/-ape° - c/aPee which gives c/aPe8 £ £<T> = E. Hence c/aPe8 £

' — k. Therefore c = /ca/3e9 for some K, £ kx . u

The results of this section are summarised in the following theorem.

THEOREM 9. Let

and assume k is a field of characteristic not equal to 2, containing (J.4. Suppose L/k
is a Galois extension of degree 8 with Gal(i/A:) = He. If K - X<*2>, E - Z,<T>, and
F = L^, then we have the following diagram of subfields of L
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110 J.E. Carter [12]

where K = EF, and there exist elements a, /?, 7 G L such that E — k(a), F = Jfc(/3),
and L — K(-y), and such that ((a) = - a , T(/3) = — /? and r(f) = if. Then a2 — a,

02 = b, and j 2 = c where a, b G kx and c G Kx . Furthermore,

(i) (ak2) and (bk2) are distinct cyclic subgroups of kx/k2 of order 2;

(ii) (cif2) is a cyclic subgroup of Kx /K2 of order 2.

Moreover, if p = £ \ E then Gal{E/k) = (p) and we define N, 0 G Z[(/>)] by
1 1

N — XI P* — 1 + P ajic^ 9 = E ^ ' = P- Finally, there are elements K 6 kx and e G Ex

t=0 i=0

sucii that b = e~ and c = /ca/3e , and such that r and £ act as fc—automorphisms of

L according to the following table.

T

£

a
a

—a

(3 7
ij

i/3e-y

7. CONSTRUCTION OF QUATERNION EXTENSIONS

Suppose k is a field of characteristic not equal to 2, containing fi^. Let a G kx

such that (ak2) is a subgroup of fcx/fc2 of order 2. Let E = k(a) where a2 = a. Then
E/k is a quadratic extension with Gal(Efk) = (p), say. Let N, 6 G Z[(/J)] be the
elements defined in the statement of Proposition 8. Choose e G Ex such that b = e ~ "
has order 2 (mod fc2) and (6fc2) ^ (oifc2). Let F = Jfe(/3) where /32 = b. Then F/k is a
quadratic extension with Gal(F/k) = (<r), say, and K = EF is an elementary Abelian
extension of k of type (2,2). Finally, let c = /ca/3ee where it G fc* and assume c ^ 1
(mod K2). Suppose j 2 = c. Then i = # ( 7 ) is a quadratic extension of K and we
have the following diagram of subfields of L

L=K(y)

K=EF

E= F=k{/3)

Figure 5

THEOREM 1 0 . Let L/k be the extension shown in Figure 5. Then L/k is Galois

with Gal(L/k)~H8.
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PROOF: Gal(K/k) ~ Gal(E/k) x G<d(F/k) = (p) x {a). By identifying the ele-
ments of the group (p) x (a-) with their preimages under the above isomorphism, we may
assume Gal (K/k) = {IK, p, cr, p<r} • By Lemma 5, L/k is normal if and only if A(c) = c
(mod K2) for every A G Gsl(K/k). We have p(c) = p(itaftee) = -nafte6". By Lemma
3 this last expression is equal to -/caj3e6"i v + 2 = -Kafteee~Ne2 = i2K.afteeft2e2 =
ci2f32e2 = c (mod K2). Similarly, the condition is verified for the remaining elements
of Gal (K/k). It follows that L/k is a normal extension. Hence, L/k is Galois since
L/k is separable.

We shall now show that Gal(L/k) ~ Hg. Since /X4 C E and L = E(y) where
74 G E, Gsl(L/E) is cyclic of order 4, say, GA(L/E) = ( r ) . Therefore, -r(a) = a
and we must have r(ft) = — /?, for otherwise F C £<r> = E which is a contradiction.
Also, by the argument preceding Lemma 7, T(I) — ±i-y and we may assume T(I) = if.

Let £ G Gal(L/F) such that £\ E = p. Then £(/?) = f3 and we must have ((a) =

-a. Also, £(7)2 = £(c) = ^(/ca/3ee) = -Ka/3ee') = -K,af3ee-N+2 (by Lemma 3)
= -/ca/3ee/32e2. Therefore £(7) = ±i/3e-y. Hence, ^ ( 7 ) = ^(±i/3e7) = ±i/3£(e)£(-y) =

±i(3£(e)(±i0e>y) = -/32epe-y = -e~NeNj = - 7 = T 2 ( 7 ) . Since L = K(-y) = k(a,fi,f)

and £2 and T 2 agree on a and /3 it follows that £2 = r 2 . Therefore £ has order
four which implies Gal(L/F) — (£). If ^(7) = —if3ej then ^ ( 7 ) = i/3ej. Since also
£3(a) = —a, £3((3) — ft, and (£) = (£3), we may assume £(7) = i/?e7. The action of r
and £ on a, /3, and 7 is displayed in the following table

T

I

a
a

—a

ft
-ft
ft

7
ij

ifte-y

Table 4

We claim that Gal(£/fc) = ( ( , r | ^ = 1, £2 = r 2 , T£ = ^ 3 r ) . It only remains to

show that r£ = ?T. Clearly, {r£){a) = (e^a) and {r£){(3) - ( £ 3 T ) ( /3 ) .

Also, ( rO( 7 ) = r(i/3e7) = - i j 8 « 7 = /?e7 and ( f r ) ( 7 ) = ^ ( i 7 ) = i£2(i/3e7) =

iZ(i(3epiPej) = -1^(7) = -w/3e7 = /9e7. D

REMARK. By Theorem 6 and Theorem 10 we see that if one begins with the elemen-
tary Abelian extension K/k of Figure 5, one obtains a normal extension L/k with
Gal (L/k) ~ D4 by adjoining to E a square root of the element nee, for some « G kx ,
to obtain M. Then L = MK. If, instead, we adjoin to K a. square root of the element
K.ct/3ee, for some (possibly different) K £ fcx , to obtain L, then L/k is a normal exten-
sion with Gal (L/k) ~ Ha. Theorem 9 together with Theorem 10 provide a complete
characterisation of quaternion extensions of fields k of characteristic not equal to 2,
containing fii, provided such extensions of A; exist.

In the following examples, the notation will be as in the statement of Theorem 10.
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As in the previous examples, the verification that the required conditions are satisfied is
left to the reader. Once again, this is easily done as outlined in the paragraph preceding
Example 1. The following facts may also be useful in verifying some of the conditions
of Example 6: Q(Cm) f~l Q(Cn) = Q whenever m and n are relatively prime (see [2,
Chapter IV] for instance), and 2 = —i(l + i) .

EXAMPLE 6. Let k = Q(i), a = 2, K = 1, and e = l / ( i + \ /2 ) . Then b = - 3 ,

c = \/2\/—3/(i — \/2) , and L/k is a Galois extension with Gal(L/k) ~ H& .

EXAMPLE 7. In view of the remark following Theorem 10, let k be as in Example 6. In
Theorem 6 let p = 2, s = 1, and 1 = 0. Define a, b, it, and e as in Example 6, but let
c = \/{i - \/2) . Then, by Theorem 6, L/k is a Galois extension with Gal(i/ife) ~ £>4.
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