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FINITE INTERSECTIONS OF PID OR FACTORIAL OVERRINGS 

BY 

D. D. ANDERSON AND DAVID F. ANDERSON 

ABSTRACT. In this paper we study when an integral domain is a finite 
intersection of PID or factorial overrings. We show that any Krull domain 
is the intersection of a PID and a field. We give several sufficient conditions 
for a Krull domain to be an intersection of two PID or factorial overrings. 

Introduction. An integral domain R is locally factorial if Rx is factorial for each 
nonzero, nonunit x E R. In [1], we showed that a locally factorial Krull domain is an 
intersection of two factorial overrings. In particular, a locally factorial Dedekind 
domain is an intersection of two PID overrings. It is thus natural to ask when an integral 
domain is a finite intersection of factorial or PID overrings. Such an integral domain 
is necessarily a Krull domain. If R is a Krull domain, then R is a locally finite 
intersection of DVR's. Hence a Krull domain is always an intersection of PID over-
rings. Such a representation gives R as a finite intersection of DVR's if and only if R 
is a semilocal PID. 

In Section 1, we show that if we do not restrict ourselves to overrings, then any Krull 
domain is an intersection of two PID's. In a like manner, we characterize integrally 
closed (resp., completely integrally closed) domains as being an intersection of two 
Bézout (resp., completely integrally closed Bézout) domains. We also show that if/? 
is a Krull domain, then R[X] is an intersection of two PID overrings. In the second 
section, we use divisor class group techniques to investigate when a Krull domain is 
a finite intersection of factorial or PID overrings. Our main result, Theorem 2.7, is that 
a Krull domain with countable divisor class group is an intersection of two factorial 
overrings. We know of no Krull domain which is not a finite intersection of factorial 
or PID overrings. We end the paper with several other related open questions. 

Any undefined notions and basic facts about Krull domains may be found in [4] or 
[6]. Throughout, R will always denote an integral domain with quotient field K. Given 
a Krull domain R, we will denote its divisor class group by C €(/?), its set of height-one 
prime ideals by X(l)(R), and the class of a height-one prime ideal P in C((R) by [P]. 
As usual, an overring of R is subring of K which contains R. Finally, given f(X) = 
a0 + axX + . . . + anX" G R\X], its content is the ideal Af = (a0, . . . , an) of R. 

1. Finite intersections of PID's. If a DVR V and a field L are both subrings of a 
larger field F, then it is well-known that V D L is again a DVR ([6], Theorem 19.16). 
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More generally, suppose that R is a semilocal PID, say R = V\ PI . . . D Vn, where each 
Vj is a DVR. Then R D L = ( V, fl L) Pi . . . H (V„ H L) is again a finite intersection 
of DVR's, and hence is also a semilocal PID. However, if R is a PID and L is a field, 
then R D L need not be a PID, although it is a Krull domain. In fact, we next show 
that any Krull domain is an intersection of a PID and a field. For the basic facts about 
Kronecker function rings which we will use in our next several proofs, one may consult 
([6], Sections 32, 34, and 44). 

THEOREM 1.1. Let R be an integral domain. Then the following statements are 
equivalent. 

(1) R is a Krull domain. 
(2) R is an intersection of two PID's. 
(3) R is an intersection of a PID and a field. 

PROOF. Clearly (3) => (2) and (2) =̂> (1). For (1) ^> (3), we note that the 
Kronecker function ring of R with respect to the v-operation, Rv = {f/g\f, g E R[x], 
g * 0, (A,X C (Ag)v}9 is a PID ([6], Corollary 44.12) and R = Rv H K ([6], 
Theorem 32.7). • 

REMARK 1.2. If R is a Krull domain, then Rv is actually a Euclidean domain ([3], 
Corollary 5.2 and Theorem 5.3). Also, Rv is a localization of R[X], namely Rv — 
R[X]S, where S = {f E R[X]\(Af)v = R} ([5], Theorem 2.5). 

In a similar manner, the properties of being integrally closed or completely integrally 
closed may be characterized in terms of finite intersections of Bézout domains. 

THEOREM 1.3. Let R be an integral domain. Then: 
(J) The following three statements are equivalent. 

(a) R is integrally closed. 
(b) R is an intersection of two Bézout domains. 
(c) R is an intersection of a Bézout domain and a field. 

(2) The following three statements are equivalent. 
(a) R is completely integrally closed. 
(b) R is an intersection of two completely integrally closed Bézout domains. 
(c) R is an intersection of a completely integrally closed Bézout domain and afield. 

PROOF. (1) This follows as in Theorem 1.1 from the fact that if/? is integrally closed, 
then the Kronecker function ring Rh is a Bézout domain and R = Rb Pi K ([6], 
Theorem 32.7). 

(2) We need only show that if R is completely integrally closed, then Rv is also 
completely integrally closed. For then, as in (1) above, Rv will be a completely 
integrally closed Bézout domain and R — Rv Pi K. So let/, g E R[X] with f/g almost 
integral over Rv. Then there is a nonzero h E R[X] such that h(f/g)n E Rv for each 
n > 1. Hence {Ahr\ C (Agn)v. Now Ah(Af)"v C (Ah(Af)

H
v)v = (Ahr)v C (Ag»)v = (A,)l 

Let 0 ï r E Ah. Then r((Afy((Agy
l)n)v C R, so r(Af)

n (Agy
n C R. Let x E Af and 

y E (AH)~\ Then r(xy)n E R for each n > 1. Hence xy E R since R is completely 
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integrally closed. Thus Af(Ag) ' C R. Since R is completely integrally closed, the set 
of v-ideals of R forms a group ([6], Theorem 34.3). Hence (A,)v C (Ag)V9 i .e . , / /g E 
Rv. • 

For polynomial rings, the Kronecker function ring techniques yield better results. 

THEOREM 1.4. Let R be an integral domain. Then: 
(1 ) If R is integrally closed (resp., completely integrally closed), then R[X] is an 

intersection of two Bézout (resp., completely integrally closed Bézout) domain over-
rings. 

(2) If R is a Krull domain, then R[X] is an intersection of two PID overrings. 
Moreover, each PID overring may be chosen to be a Euclidean domain which is a 
localization of R [X]. 

PROOF. It is sufficient to show that R[X] — R* D K[X] for any e.a.b. ^-operation 
on R (see [6], Section 32, for relevant definitions). For if R is integrally closed, then 
R[X] = Rh H K[X]; while if R is completely integrally closed, then R[X] = Rv D 
K[X]. As in the proof of Theorem 1.3, Rh is a Bézout domain and Rx is a completely 
integrally closed Bézout domain. If R is a Krull domain, the Rv is a PID. The 
"moreover" statement follows form Remark 1.2. 

Clearly R[X] C R* D K[X]. Conversely, let h = c0 + c,X + . . . + c„Xn E /?* D 
K[X]. Then h = (a0 + axX + . . . + a„X")/b for some a0, a{, . . . , an, b E R. Since 
/?* is well-defined, (a0, . . . , tf„) C (a0, . . . , a,,)* C (b)* = (&). Thus each a, is 
divisible by ft, so h E /?[*]. D 

It then follows immediately that for a Krull domain /?, any localization or subin-
tersection of R[X] is also an intersection of two PID overrings. In particular, this holds 
for the two rings R(X) and R(X). Recall that R(X) = R[X]S and R(X) = R[X]V, where 
S = [f E R[X]\Af = R} and U = {f E /?[X]|/is monic}. 

REMARK 1.5. UR is a Krull domain, then we have seen thatR[X] = R[X]S Pi R[X]T, 
where S = {f E /?[X]|(A7)V - /?} and T = R\{0} (so /?[X]7 = K[X])9 and each 
localization is a PID. A natural question is whether this result extends to power series 
rings. Let R be a Krull domain, S = {f E R[[X]]\(Af)v = /?}, and T = R\{0}. Then 
it may be shown that R[[X]] = R[[X]]S H R[[X]]T and that R[[X]]S is a PID. 
However, /?[[X]]r need not be factorial, let alone a PID. For example, if R is factorial 
but /?[[X]] is not factorial (for such a Krull domain, see [4], page 118), then /?[[X]]r 

can not be factorial by Nagata's Theorem (Theorem 2.1). 

2. Finite intersections of factorial overrings. In this section, we investigate when 
a Krull domain R is an intersection of a finite number of factorial subintersections. Let 
R be a Krull domain with X — X{1) (R) its set of height-one prime ideals. For Y EX, 
RY = f^peY Rp is also a Krull domain, and is called a subintersection of R. Note that 
R = RYl H . . . H RYn if and only if X = Yx U . . . U Y„. This fact follows from the 
approximation theorem for Krull domains ([4], Theorem 5.8), and it will be used 
implicitly in the proofs of Theorem 2.5 and Theorem 2.10. Our main tool will be 
Nagata's Theorem ([4], Theorem 7.1), which relates C£(R) to C((RY). For future 
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reference, we include Nagata's Theorem. 

THEOREM 2.1. (Nagata's Theorem). Let R be a Krull domain and RY a subinter
section of R. Then the natural homomorphism 4>:C€(/?) —» Ct{RY) is surjective and 
ker $ is generated by {[P]\P G X - Y}. 

Recall that each localization Rs is a subintersection; in fact Rs = RY, where Y = 
{P\P H S = <(>}. Thus ker (C((R) -> C((RS)) is generated by {[P]|P G X and P H 
S =É ((>}. Also recall that if P is a Dedekind domain, then each overring of R is a 
subintersection and factorial overrings are just PID's. Our next lemma, an easy con
sequence of Nagata's Theorem, will prove very useful. 

LEMMA 2.2. Let R be a Krull domain and P,, . . . , Pn G X = X{])(R). ThenCt(R) 
is generated by the classes ofX\{P\, . . . , P,,}. 

PROOF. Let Y = {/>,, . . . , Pn}. Then RY = RP] H . . . n /?P/i is a semilocal PID, and 
hence C€(PK) = 0. By Nagata's Theorem the kernel of C€(P) -» C€(P r), which is 
C€(P), is generated by the classes of X\Y. D 

As mentioned earlier, in ([1], Theorem 2.3 and Proposition 6.1) we showed that if 
R is a locally factorial Krull domain, then R is an intersection of two factorial overrings. 
Those proofs actually show that if R is a locally factorial Krull domain, then R = 
Rx H Ry for some nonzero, nonunits x, y E R with Rx and Pv each factorial. Our next 
theorem shows to what extent this property characterizes locally factorial Krull 
domains. 

THEOREM 2.3. Let R be an integral domain. Then the following statements are 
equivalent. 

(J) R is a Krull domain and C£(R) is finitely generated. 
(2) There are nonzero x, y E R such that R — Rx Pi Rx and Rx and Ry are each 

factorial. 
(3) There are nonzero x\, . . . , x„ G R such that R = RX] fl . . . H RXn and each Rx. 

is factorial. 

PROOF. Clearly (2) => (3). URX is factorial for some nonzero x G R, then by Nagata's 
Theorem C€(P) is finitely generated since JC is contained in only a finite number of 
height-one prime ideals. Thus (3) =̂> (1). So we show that (1) =̂> (2). We may assume 
that R is not factorial, and hence R has infinitely many height-one prime ideals. 
Suppose that [P,], . . . , [P„] generate C€(P). Choose 0 ± x G P, H . . . H P„. We may 
assume that these are the only height-one prime ideals that contain x. Since C€(P) — 
([P]|P G X(,)(P)\{P,, . . . , P„}) by Lemma 2.2, there are height-one prime ideals Q,, 
. . . , Qm of P, distinct from Pi, . . . , P„, whose classes generate C€(P). Choose y G 
(ôi H . . . H QJ\(Pi U . . . U Pn). By Nagata's Theorem, Rx andPv are each factorial. 
Since x and y belong to no common height-one prime ideals, we have (x, y)v = R. Thus 
R = Rx H Ry ([1], Lemma 2.1). • 

REMARK 2.4. If R is a Dedekind domain, then C€(P) is finitely generated if and only 
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if either (2) or (3) holds with each RXj a PID. However, one may have R — Rx Pi Ry with 
Rx and Ry each a PID, but R not a Dedekind domain. For example, let R be a 
two-dimensional local factorial integral domain. 

We next determine conditions on X{])(R) so that a Krull domain R will be an 
intersection of a finite number of factorial subintersections. 

THEOREM 2.5. Let R be a Krull domain with X = X{])(R) and G = Ct(R). Then the 
following statements are equivalent. 

(1) X = Xx U . . . U X„, Xi fl Xj = §for i ± j , and G = ([P]\P E X\X>) for each 
i = 1, . . . , n. 

(2) X = Xx U . . . U X„ and G - ([P]\P E X\X{) for each i = 1, . . . , n. 
(3) R = R\ fl . . . fl Rn, where each /?,-,/= \, . . . , n, is a factorial subintersection 

ofR. 

Moreover, if R is a Dedekind domain, then in (3) each Rt is a PID overring of R. 

PROOF. Clearly (1) => (2). For (2) => (3), let Rt= RXj for each i = 1, . . . , n. Then 
R = Rx fl . . . fl R„ sinceX = Xx U . . . U X„. By Nagata's Theorem, each/?, is factorial. 
Finally, suppose that (3) holds. Since each /?, is a subintersection, Rj = RYj for some 
Yi C X. Then X = r, U . . . U Yn since /?==/?, n . . . n /?„. Define X, = yAW U .. . 
U Xj-}) for each / = 1, . . . , n. Then X = X, U . . . U X„, and the X,'s are pairwise 
disjoint. Since each R( = RYj is factorial and X{ C Yh thus /?K. C Rx. and hence each 
/?x. is factorial. Again, by Nagata's Theorem G = ([P]\P E X\X{) for each / = 1, 

Theorem 2.5 motivates our next observation. 

PROPOSITION 2.6. Suppose that R is an intersection of n factorial or PID subinter
sections ofR. Then any subintersection ofR is also an intersection ofn such overrings. 
In particular, if a Dedekind domain R is an intersection ofn PID overrings, then any 
overring of R is also an intersection of n PID overrings. 

PROOF. Suppose that R = R\ D . . . fl Rtn where each Rj = RYj is a factorial 
subintersection of R. Let RY be a subintersection of R. Next, let Y\ = Yl 0 Y and R\ -
RYi. Then RY = R\ D . . . D R'n, and each R\ is factorial since Y\ C Yh D 

If R is a Krull domain with finitely generated divisor class group, then by Theorem 
2.3 R is an intersection of two factorial subintersections. Our next theorem extends this 
to Krull domains with countably generated divisor class groups. 

THEOREM 2.7. Let R be a Krull domain with G = C£(R) countable. Then R is an 
intersection of two factorial subintersections. In addition, ifR is a Dedekind domain, 
then R is an intersection of two PID overrings. 

PROOF. By Theorem 2.3, we may assume that G is infinite. Let G = {xn}^]. Now 
JC, E ([P]\P E Yt) for some finite Y{ C X = Xil)(R). By Lemma 2.2, also JC, E 
([PJlP E Z\) for some finite Zx C X with Yx fl Zx = ((>. Continuing this process, for 

https://doi.org/10.4153/CMB-1985-009-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-009-0


96 D. D. ANDERSON AND D. F. ANDERSON [March 

each positive integer n there are disjoint finite subsets Y„ and Z„ of X, each pairwise 
disjoint from the previously defined F;'s and Z,-'s, such that x„ E ([/>] | / ) E Yn) and 
xn E <[/>]|P E Z„>. Let F - Ur=1 Yn and Z = U*=1 Z„. Then K H Z = <|> and G = 
([P]\P EY) = ([P]\P E Z). Next, let Xx = Y and X2 = X\X, D Z. Then X = X, U 
X2, X, H X2 = <|), and G = ([P]\P G X,) for / = 1,2. Hence by Theorem 2.5, R is 
an intersection of two factorial subintersections. • 

REMARK 2.8. In particular, Theorem 2.7 is applicable if either R or X{[)(R) is 
countable. We know of no Krull domain which is not an intersection of two factorial 
(in fact, PID) subintersections. Thus the countable version of Claborn's construction of 
Dedekind domains ([2], Theorem 2.1, or [4], Theorem 15.18) can not be used to obtain 
a Dedekind domain which is not an intersection of two PID overrings. 

Our next example shows that C£(R) alone cannot be used to determine if there are 
any Krull domains which are not a finite intersection of PID overrings. 

EXAMPLE 2.9. Let G be any abelian group. Then for any positive integer n (or oo), 
there is a Krull domain R of dimension n with Ci(R) — G which is an intersection of 
two PID overrings, each of which is a localization of R. We do the case when n — 1 
(i.e., R is a Dedekind domain); the case when n > 1 then follows easily from Theorem 
1.4. By Claborn's Theorem ([4], Theorem 14.10) there is a Dedekind domain A with 
C€(A) = G. Then R = A(X) is a Dedekind domain ([8], Proposition 2.3), and it may 
be shown that C£(R) — G. By the remark after Theorem 1.4, R is an intersection of 
two PID overrings, each of which is a localization ofR. Alternately, ([7], Theorem 2.3) 
may be used to construct a Dedekind domain R with C€(R) = G which is an inter
section of two PID overrings. 

Our final two results may be viewed as companion theorems to Theorems 2.3 
and 2.7. 

THEOREM 2.10. Let R be a Krull domain (resp., Dedekind domain) with G — C£(R). 
Then the following statements are equivalent. 

(1) G is finitely generated. 
(2) R = R\ H R2, where R\ and R2 are subintersections with R\ factorial (resp., a 

PID) and R2 a semilocal PID. 

PROOF. (1) 4> (2). Say that [P,], . . . , [Pn] generate G. Let R2 = RPl n . . . PI RPn 

and /?, = RY for Y = X°\R)\{PU . . . , Pn}. Clearly R = fl, D R2 and R2 is a semilocal 
PID. Also, by Nagata's Theorem /?, is factorial. (2) => (1). Let R2 = RPl C\ . . . C\ RPn 

and/?, = Rzfov some/5,, . . . , Pn E X = X{])(R) andZ C X. Also, let Y - X\{P,, . . . , 
Pn}. Then Y C Z, and thus RY is factorial. Hence G - ([/>,], . . . , [P„]) by Nagata's 
Theorem again. • 

THEOREM 2.11. Let R be a two-dimensional Krull domain with only a finite number 
of height-two maximal ideals, and let G = C€(R)rThen: 

(1) If G is finitely generated, then R is an intersection of a PID overring and a 
semilocal PID overring. 
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(2) If G is countable, then R is an intersection of two PID overrings and a semilocal 
PID overring. 

PROOF. Let M,, . . . , M„ be the height-two maximal ideals of R. Choose 0 =£ x E 
M, fl . . . n M„. Let Pu . . . , Pk be the height-one prime ideals of/? which contain x. 
Then R = Rx H RPi H . . . H / ^ . Now Rx is a Dedekind domain and RP] D . . . Pi /?n 

is a semilocal PID. Parts (1) and (2) now follow from Theorems 2.10 and 2.7, 
respectively. • 

We close with several open questions. 

QUESTION 1. Is each integrally closed (resp., completely integrally closed) domain 
an intersection of two Bézout (resp., completely integrally closed Bézout) domain 
overrings? 

QUESTION 2. Is each Krull domain an intersection of a finite number of PID or 
factorial overrings? 

QUESTION 3. If R is a finite intersection of PID or factorial overrings, is R actually 
an intersection of two such overrings? 

There are also several other variants of the above questions. For example, we may 
ask if the overrings may be chosen to be localizations, subintersections, or flat over-
rings of R. 
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