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Fundamental Solutions of
Kohn Sub-Laplacians on Anisotropic
Heisenberg Groups and H-type Groups

Yongyang Jin and Genkai Zhang

Abstract. We prove that the fundamental solutions of Kohn sub-Laplacians ∆+iα∂t on the anisotropic

Heisenberg groups are tempered distributions and have meromorphic continuation in α with simple

poles. We compute the residues and find the partial fundamental solutions at the poles. We also find

formulas for the fundamental solutions for some matrix-valued Kohn type sub-Laplacians on H-type

groups.

1 Introduction

The purpose of this paper is to study explicit formulas for the fundamental solu-

tions of certain sub-Laplacians on anisotropic (or non-isotropic) Heisenberg groups

and on nilpotent groups of H-type. Let n = V ⊕ t be a step-two nilpotent algebra

equipped with an Euclidean inner product ( · , · ). We identify n with its Lie group

N. Take an orthonormal basis X1, . . . , Xp of V , viewed as left-invariant differential

operators on N. The Kohn sub-Laplacian is then

△0 = −
p∑

i=1

X2
i .

The fundamental solution of the sub-Laplacian △0 on general nilpotent groups has

been studied extensively, see e.g., [1,6,9] and references therein. In a recent article [3],

Chang and Tie considered the anisotropic Heisenberg group N = C
n ⊕ R and found

an explicit formal formula for the fundamental solution of the sub-Laplacian Lα =

△0 + iαT, where T =
∂
∂t

acting on the last variable; see also [2], where some similar

sub-elliptic operators on the Heisenberg group and some Hermite operators on R
n

are studied. This operator actually appears when we study the boundary CR complex;

more precisely the sub-Laplacian associated with the boundary CR operator ∂̄b,

¤ = ∂̄b∂̄
∗
b + ∂̄∗

b ∂̄b,

acting on the (0, q) forms on the Heisenberg group, can be expressed in terms of the

operator Lα. See [10].
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Fundamental Solutions 127

The operator Lα has fundamental solution for generic values of α. However, when

α is in certain discrete set Λ, then Lα has kernel and thus there arises the question

of finding the corresponding partial fundamental solution and the integral kernel for

the projection onto the kernel of Lα. See [10] for the case of the Heisenberg group

with α = 4n, where the integral kernel becomes the Cauchy–Szegö kernel for the

Hardy space of the Siegel domain. In this paper we find the partial fundamental

solution in the setting of anisotropic Heisenberg groups. Since many formal com-

putations in finding the fundamental solution (see e.g., [3]) are done using Fourier

transform, it is desirable to prove that the fundamental solution Kα is a tempered

distribution. Indeed we prove that this is the case and that Kα has a meromorphic

continuation as tempered distribution to all α ∈ C with simple poles at the singular

set Λ (when properly normalized). The partial fundamental solution for α0 ∈ Λ

becomes the constant term K(0)
α0

in the Laurent expansion of Kα near α0, while as the

integral kernel onto the null space of Lα is −iTK(−1)
α0

with K(−1)
α0

being the residue

(see Theorem 2.2). The formulas for the partial fundamental solution and the inte-

gral kernel are in terms of integrals or sum of certain simple functions. In particular,

in the case of Heisenberg groups, those formulas become rather simple, and the in-

tegral kernel for the null space has also been obtained earlier by Strichartz [12] using

slightly different methods.

We consider a similar problem for a nilpotent group of H-type with Lie algebra

n = V ⊕t. We define a certain operator dH acting on the horizontal differential forms

on n and consider the similar operator ¤H = dHd∗
H + d∗

HdH . We express ¤H in terms

of the action of t (more precisely, the dual t
∗) on the horizontal forms. For one-

forms this question can be formulated in terms of Clifford module action of t on V ∗,

and ¤H = dHd∗
H + d∗

HdH can be written as −
∑

E2
i + 2ρ(∂2), where ρ(∂2) is a Dirac

operator. We consider thus the general case of a Clifford bundle, and we find the

fundamental solution of Lα = −∑
E2

i +αρ(∂2). The space of horizontal differential

forms and the horizontal vector fields play an important role in the theory of quasi-

regular mappings [6] and are of considerable interest. It would be interesting to find

the fundamental solutions for forms of higher degrees. To our knowledge, even in

the case of the Heisenberg groups, the fundamental solutions for the sub-Laplacians

¤H + αρ(∂2) on general (p, q)-forms are still not known except for special values of

p and q. We hope that our result will also shed some light on that question.

The paper is organized as follows. The main results are stated in Theorems 2.1

through 3.3. Section 2 is devoted to computations of the partial fundamental solu-

tions on anisotropic Heisenberg groups. The fundamental solution for Lα on Clif-

ford module-valued functions is computed in Section 3.

2 Anisotropic Heisenberg Groups

2.1 Meromorphic Continuation of the Fundamental Solution of Lα

Let a = (a1, a2, . . . , an), a1, a2, . . . , an > 0. We equip C
n with the anisotropic (or

non-isotropic) Hermitian inner product

〈z, w〉a =

n∑
j=1

a jz jw̄ j .
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Let N = N(a) = C
n + R be the corresponding anisotropic Heisenberg group with

the product

(z, t) ◦ (w, s) = (z + w, t + s + 2Im〈z, w〉a).

We consider the following left-invariant sub-Laplacian on N,

Lα = −2
n∑

j=1

(Z̄ jZ j + Z j Z̄ j) − iαT

where

Z j =
∂

∂z j

− ia j z̄ j
∂

∂t
, Z̄ j =

∂

∂z̄ j

+ ia jz j
∂

∂t
, T =

∂

∂t

are the left-invariant differential operators on N generated by the right translation

with respect to the coordinates (z, z̄, t). Vectors z = (z1, . . . , zn) ∈ C
n, z j = x j + i y j ,

will also be identified with (x1, . . . , xn, y1, . . . , yn) ∈ R
2n.

The fundamental solutions Kα of Lα at 0 ∈ N, i.e., LαKα = δ0 were studied by

Chang and Tie [3]; see also [10] for the isotropic case a j = 1 for all j. They found

the integral formula

(2.1) Kα(z, t) =
(n − 1)!

8πn+1

∫ +∞

−∞

e−
α
4

s v(s)ds

[γ(z, s) − it]n
,

and the following formal formula for its Fourier transform

(2.2) K̂α(ξ, τ ) = 2n
∑

k∈Z
2n
+

1

ατ +
2n∑
j=1

2a j |τ |(4k j + 1)

2n∏
j=1

φ2k j
(ξ j/

√
2a j |τ |)

22k j k j !
,

where φk(x) is the Hermite function, γ(z, s) =
∑n

j=1 a j |z j |2 coth(a js) and v(s) =∏n
j=1

a j

sinh(a j s)
. See also [1] for the study of fundamental solutions of general Kohn

type sub-Laplacian. We recall that the Fourier transform on R
m is normalized by

f̂ (ξ) =

∫

Rm

e−i(ξ,x) f (x)dx.

The integral formula (2.1) for α = 0 can also be obtained from a more general

formula in [1, Theorem 3]. It is elementary to see that the integral (2.1) is convergent

if and only if |Re(α)| < 4
∑n

j=1 a j . There arises therefore the question of analytic

continuation of this integral and the proper justification of convergence of the se-

ries (2.2).

Let L
(β)
k be the Laguerre polynomial and write Lk = L(0)

k . Then the Laguerre poly-

nomials and the Hermite functions are related by

L
(− 1

2
)

k (|ξ|2)e−
|ξ|2

2 = (−1)k 1

22kk!
φ2k(ξ),
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and for ξ = (ξ1, ξ2) ∈ C = R
2

Lk(|ξ|2)e−
|ξ|2

2 = (−1)k
∑

k1+k2=k

1

22k1+2k2 k1!k2!
φ2k1

(ξ1)φ2k2
(ξ2),

which can be easily deduced from the following generating function formula of La-

guerre polynomials

(2.3)
∞∑

k=0

rkL(α)
k (x) = (1 − r)−α−1e−rx/1−r, |r| < 1.

The sum (2.2) over Z
2n
+ can then be rewritten as one over Z

n
+ in terms of the Laguerre

polynomials,

(2.4) K̂α(ξ, τ ) = 2n
∑

k∈Z
n
+

1

ατ +
∑n

j=1 4a j |τ |(2k j + 1)
(−1)|k|

n∏
j=1

Lk j

( |ξ|2
2|τ |

)
e
−

|ξ|2

4|τ| ,

where |k| =
∑n

j=1 k j and ξ = (ξ1, . . . , ξn) ∈ C
n

= R
2n.

Denote

Λ =

{
±4

n∑
j=1

a j(2k j + 1) : k = (k1, . . . , kn) ∈ Zn
+

}
.

We have the following result on the meromorphic dependence of Kα on α, which will

also be used in the proof of Theorem 3.3.

Theorem 2.1 The function Kα defines a tempered distribution for |Re(α)| <
4
∑n

j=1 a j and has a meromorphic continuation to the whole complex plane with simple

poles at Λ.

Proof We will only prove the result for n = 1. The general case can be proved by the

same method except that the notations are more complicated. In this case we can put

a = 1.

For g ∈ S(R
3), the Schwartz class, we let f = ĝ, then f ∈ S(R

3). We have

(Kα, g) = (K̂α, f )

= 2

∫ ∞

0

∫

R2

∞∑
k=0

(−1)k

α + 4(2k + 1)
Lk

( |ξ|2
2|τ |

)
e
−

|ξ|2

4|τ| f (ξ, τ )
1

τ
dξdτ

+ 2

∫ 0

−∞

∫

R2

∞∑
k=0

(−1)k

α − 4(2k + 1)
Lk

( |ξ|2
2|τ |

)
e
−

|ξ|2

4|τ| f (ξ, τ )
1

τ
dξdτ

= I1 + I2.

Now we estimate I1 = I1( f ) in terms of the family of seminorms defining tempered

distributions on f ∈ S(N) = S(R
3). Recall [11, Chapter I] that these seminorms are

ρβ,γ( f ) = sup
y∈R3

|yβ∂γ f (y)|

https://doi.org/10.4153/CMB-2010-086-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-086-1


130 Y. Jin and G. Zhang

and

ρs,t ( f ) =

∑

|β|=s, |γ|=t

ρβ,γ( f ),

where β = (β1, β2, β3) are multi-indices and we use the usual convention for yβ

and ∂β . We divide I1 into two parts,

I1 =

∫ 1

0

∫

R2

+

∫ ∞

1

∫

R2

= I11 + I12.

Recall also ([13, Chapter 1, Lemma 1.5.4]), that

(2.5)

∫

R2

Lk(|ξ|2)e−
|ξ|2

2 dξ ≤ C(k + 1)
1
2 .

The term |I11| is thus an absolutely convergent series, and it can be estimated by

|I11| ≤ C ρ0,0( f )
∑

k

1

|α + 4(2k + 1)|k 1
2

≤ C ρ0,0( f ).

To treat I12 we write each integral as

(2.6)

∫ ∞

1

∫

R2

Lk(|ξ|2)e−
|ξ|2

2 f (
√

2|τ |ξ, τ )dξdτ

by a change of variables. However, the Laguerre functions Lk(|ξ|2)e−
|ξ|2

2 satisfy the

harmonic oscillator equation

(
|ξ|2 − ∂2

∂ξ2
1

− ∂2

∂ξ2
2

)
(Lk(|ξ|2)e−

|ξ|2

2 ) = 2(2k + 1)Lk(|ξ|2)e−
|ξ|2

2 ,

and we can perform partial integration in (2.6) to get

1

2(2k + 1)

∫ ∞

−∞

∫

R2

Lk(|ξ|2)e−
|ξ|2

2

(
|ξ|2 − ∂2

ξ1
− ∂2

ξ2

)(
f (

√
2|τ |ξ, τ )

)
dξdτ .

We estimate the term (|ξ|2 − ∂2
ξ1
− ∂2

ξ2
)
(

f (
√

2|τ |ξ, τ )
)

in the integrand. By the

definition of ρs,t ( f ),

|ξ|2 f (
√

2|τ |ξ, τ ) ≤ ρ3,0( f )
1

τ 2
.

Also,

|(∂2
ξ1

+ ∂2
ξ2

) f (
√

2|τ |ξ, τ )| ≤ ρ3,2( f )
2

τ 2
,

since

(∂2
ξ1

+ ∂2
ξ2

)
(

f (
√

2|τ |ξ, τ )
)

= 2|τ |(∂2
1 f + ∂2

2 f )(
√

2|τ |ξ, τ ).
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Using the previous estimate (2.5) again, we get

|I12| ≤ C ρ3,2( f )
∑

k

(k + 1)
1
2

|α + 4(2k + 1)|(2k + 1)

≤ C ρ3,2( f )
∑

k

1

|α + 4(2k + 1)|(k + 1)
1
2

≤ C ρ3,2( f ).

Putting those together we obtain

|I1| ≤ C · (ρ3,2( f ) + ρ0,0( f ))
∑

k

1

|α + 4(2k + 1)|k 1
2

≤ C(ρ3,2( f ) + ρ0,0( f )).

The estimate for |I2| is the same.

Finally, we find

|(K̂α, f )| ≤ C(ρ3,2( f ) + ρ0,0( f )),

and the temperedness follows from the definition [11, Chapter I,Theorem 3.11]. The

meromorphic continuation follows from the absolute convergence of the series for

α /∈ Λ.

When a1 = a2 = · · · = an = 1, an explicit formula for Kα is given in ([10, Chapter

XIII, Theorem 1]); see the formula (2.7) below. Even in this case, it seems easier to

prove the tempered property of Kα by using the expansion formula (2.4) as done

above.

One can also prove, by dealing with the integral of the form

∫ ∞

0

eβs
n∏

j=1

e−a j s

sinh(a js)
ds,

that the integral (2.1) as a function of (z, t) 6= 0 has meromorphic continuation with

poles at Λ.

2.2 Partial Fundamental Solution for Singular α

Notice that if α = α0 = ±4
∑n

j=1 a j(2k j + 1) ∈ Λ, then Lα has a kernel; thus it does

not have a fundamental solution. We compute then the partial fundamental solution.

For that purpose we consider the expansion of the distribution Kα near α0. It is of

the form

Kα =
K(−1)

α0

α − α0
+ K(0)

α0
+ (α − α0)K(1)

α0
+ · · ·

by Theorem 2.1. Recall the notation |z|2a =
∑n

j=1 a j |z|2j .

Theorem 2.2 Let α0 = ±4
∑n

j=1 a j(2k0
j + 1), K(0)

α0
, and K(−1)

α0
be as above. The

following formula holds as tempered distribution on N,

Lα0
K(0)

α0
− iTK(−1)

α0
= δ0.
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Moreover, K(−1)
α0

is explicitly given by

K(−1)
α0

= ∓2n−1a1 · ·an

πn+1
(|z|2a ± it)−n

×
∑

m

(−1)
Pn

j=1 m j

∑

l1≤m1,...,ln≤mn

(|z|2a ± it)(−
P

li )
(
∑

li + n − 1)!

li !

×
n∏

j=1

(
m j

l j

)
(−2a j |z j |2)li ,

where the first sum is over all m ∈ Z
n such that

∑n
j=1 a j(m j − k0

j ) = 0. The Fourier

transform of K(0)
α0

is

K̂(0)
α0 (ξ, τ ) = 2n

∑ 1

α0τ +
n∑

j=1

4a j |τ |(2k j + 1)

(−1)|k|
n∏

j=1

Lk j

( |ξ|2
2|τ |

)
e
−

|ξ|2

4|τ| ,

where the sum is over all k ∈ Z
n such that

∑n
j=1 a j(2k j + 1) 6= ∑n

j=1 a j(2k(0)
j + 1).

Proof We start with the formula

LαKα = δ0

in a punctured neighborhood of α0. The Laurent expansion of the left-hand side of

the formula is then

Lα0
K(−1)

α0

α − α0
+ (Lα0

K(0)
α0

− iTK(−1)
α0

) + O(|α − α0|) = δ0.

Thus

Lα0
K(−1)

α0
= 0, Lα0

K(0)
α0

− iTK(−1)
α0

= δ0.

We compute now the residue K(−1)
α0

. Using equation (2.2) and the fact [3, (15)] that

Laguerre functions are eigenfunctions of the Fourier transform

̂
e−

|x|2

2 Lk(|x|2)(ξ) = (−1)k
√

2πe−
|ξ|2

2 Lk(ξ),

we find

K(−1)
α0

= Res[Kα(z, t),±4

n∑

j=1

a j(2k0
j + 1)] = ∓2n−1a1 · ·an

(π)n+1

∑
P

n
j=1 a j (m j−k0

j )=0

(−1)
Pn

j=1 m j

∫ ∞

0

e(−
Pn

j=1 a jτ |z j |
2∓itτ )

n∏
j=1

L(0)
m j

(2a jτ |z j |2)τ n−1dτ .

This integration can be evaluated by the definition of the polynomials L(0)
k and their

Laplace transforms as in [12], and we find the formula as claimed.

The formula for the constant term K(0)
α0

follows directly from (2.4).
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When α0 = 4
∑n

j=1 a j is the first positive pole, we get the following well-known

result

Corollary 2.3 Let α0 = 4
∑n

j=1 a j . Then

K(−1)
α0

= −2n−1(n − 1)!a1 · ·an

πn+1

(
n∑

j=1

a j |z|2 + it

)−n

,

and

−iTK(−1)
α0

=
2n−1n!

πn+1
× (

n∑
j=1

a j |z|2 + it)−n−1

is the Cauchy-Szegö kernel for the domain:

Ωn+1 =

{
(z1, . . . , zn+1) ∈ C

n+1 : Im(zn+1) >
n∑

j=1

a j |z j |2
}

.

We specialize our result to the case of (isotropic) Heisenberg groups.

Corollary 2.4 Let a1 = a2 = · · · = an = 1. Then

K(−1)
4(n+2k) = −2n−1

πn+1

(n + k − 1)!

k!
× (|z|2 − it)k

(|z|2 + it)n+k
,

and

−iTK(−1)
4(n+2k) =

2n−1

πn+1
×

[
(n + k)!

k!
· (|z|2 − it)k

(|z|2 + it)n+k+1

]
×

[
1 +

k

n + k
· |z|

2 + it

|z|2 − it

]
.

Proof The residue can now be directly computed using (2.2) and Fourier inversion

in the z variable,

K(−1)
4(n+2k)(z, t) =

−2n−1

(π)n+1
(−1)k

∫ ∞

0

e(−τ |z|2)L(n−1)
k (2τ |z|2)τ n−1e−itτ dτ .

This integral was evaluated in [12] by using identity (2.3), and it is

K(−1)
4(n+2k) = −2n−1(n + k − 1)!

πn+1k!
· (|z|2 − it)k

(|z|2 + it)n+k
.

Meanwhile,

−iTK(−1)
4(n+2k) =

2n−1(n + k − 1)!

πn+1k!

[
k(|z|2 − it)k−1

(|z|2 + it)n+k
+

(n + k)(|z|2 − it)k

(|z|2 + it)n+k+1

]

=
2n−1(n + k)!

(π)n+1k!

[
(|z|2 − it)k

(|z|2 + it)n+k+1

]
·
[

1 +
k

n + k

( |z|2 + it

|z|2 − it

)]
.
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Remark 2.5 When a1 = · · · = an = 1 the kernel Kα can be explicitly evaluated by

using formula (2.2),

(2.7) Kα =
2n−1

8πn+1
Γ

( n

2
− α

8

)
Γ

( n

2
+

α

8

)(
|z|2 + it

)−( n
2

+ α
8

)( |z|2 − it
)−( n

2
− α

8
)
.

A partial fundamental solution K(0)
α0

(which is not unique) and the kernel −iTK(−1)
α0

at α0 = −4n in Λ, i.e., the first negative singular point, were found in [10] using the

above formula. We may find them at any point α0 = ±4(n + 2k). Indeed K(−1)
α0

is as

given in Corollary 2.4, and

K(0)
±4(n+2k) =

(−1)k+12n−4(n + k − 1)!

πn+1k!
(|z|2 ∓ it)k(|z|2 ± it)−n−k

×
{(

n+k−1∑
j=k+1

1

j

)
∓

(
log

|z|2 + it

|z|2 − it

)}
.

However, the function (|z|2 ∓ it)k(|z|2 ± it)−n−k is in the kernel of Lα0
, and disre-

garding the constant multiplier, the function

(|z|2 ∓ it)k(|z|2 ± it)−n−k log
|z|2 + it

|z|2 − it

is also a partial fundamental solution. This kernel is also the integral kernel of the

projection onto the k-th “Heisenberg fan” studied by Strichartz [12].

3 H-type Groups

3.1 H-type Groups and Sub-Laplacians on Clifford-valued Functions

We recall that a step two nilpotent algebra n = V ⊕ t, [V,V ] ⊂ t is of Heisenberg

type, or simply of H-type, if there is an inner product ( · , · ) in N such that the linear

map J : t → End(V ) defined by ( Jt (u), v) =
1
2
(t, [u, v]) satisfies J2

t = −|t|2I for all

t ∈ t. Here I is the identity map on V . Then the dimension p = dim V is even, and

we write p = 2n and denote q = dim t.
The corresponding Lie group N will be identified with the Lie algebra n, and the

group product is

(x, t) · (y, s) = (x + y, t + s + 1
2
[x, y]).

Groups of H-type were introduced by Kaplan in [8], and they have been studied

in several contexts for different motivations, see [4, 5, 7]. We will introduce certain

Dirac operator and Kohn sub-Laplacians on vector-valued functions and find their

fundamental solutions.

Let t
∗ be the dual of t. We equip t

∗ with the induced inner product ( · , · ) by

identifying v ∈ t with the element w → (v, w) in t
∗. Let W be any Clifford module

of t
∗. Recall that a Euclidean space W is a Clifford module if there is a linear map

ρ : t∗ → End(W ) such that

ρ(T)2
= −‖T‖2I, T ∈ t

∗
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where I is the identity map on W . For any W C-valued function f , we define the Dirac

operator

(3.1) ρ(∂2) f (v, t) =

q∑
j=1

ρ(T j
∗)(∂T j

f ).

It is easy to see that it is well defined, namely, it is independent of the choice of the

orthonormal basis.

Note that when N is the Heisenberg group R
2n ⊕ R, a 2m-dimensional Clifford

module W of R is given by a skew symmetric matrix ρ with ρ2
= −I. The com-

plexification of W is W C
= C

m
+ + C

m
− with ρ acting by ±i. The Dirac operator is

then

ρ(∂2) f (v, t) = i∂t f+(v, t) − i∂t f−(v, t),

where f = f+ + f− and f± are the decomposition of f as C
m
±-valued functions. For

W being the dual of the subspace R
2n, those are the (1, 0) and (0, 1)-forms on the

Heisenberg group with the given CR-structure [10].

Let {e j}p
1 and {Tk}q

1 be an orthonormal basis of V , respectively t . We let {E j}
and {Tk} be the corresponding left-invariant differential operators acting on vector-

valued functions. They are given by Tk f (v, t) = ∂Tk
f (v, t) and

E j f (v, t) = ∂e j
f + 1

2
∂[v,e j ] f = ∂e j

f +
q∑

k=1

( JTk
v, e j)Tk f ,

in terms of the operator J. Let

(3.2) Lα = −
2n∑
j=1

E2
j + αρ(∂2)

be the Kohn type sub-Laplacian acting on W C-valued functions. We are interested

in finding the fundamental solution of Lα, namely, an End(W C)-valued distribution

such that Lα f = δI.

3.2 Kohn Sub-Laplacians on Horizontal Differential Forms

In this subsection we shall find a formula for the Kohn sub-Laplacian acting on hor-

izontal j-forms on the H-type group H = V × t; for j = 1 this is a special case

considered in the previous subsection with the defining Clifford action of t
∗ on V ∗.

Let T(N) be the tangent bundle of the H-type group N and T∗(N) the dual tan-

gent bundle. For each x ∈ N we identify the tangent space Tx(N) with n via the (dif-

ferential of the) left multiplication lx : n = T0(N) → Tx(N). We let TH,x(N) be the

subspace TH,x(N) = lxV and T∗
H,x(N) the dual space; we shall identify T∗

H,x(N) with

V ∗, with {dv1, . . . , dvp} being a dual basis to a fixed orthonormal basis {∂v1
, . . . , ∂vp

}
of V . Let TH(N) and T∗

H(N) be the corresponding vector bundles, which we shall call

the horizontal tangent, respectively cotangent, bundles. We consider the exterior
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product ∧ jT∗
H(N) for 1 ≤ j ≤ p, and their smooth sections, which will be called the

horizontal differential j-forms; see [6]. Any section of the bundle is of the form

f =
∑

I

fIdvI

where dvI
= dvi1

∧ · · · ∧ dvi j
, I = (i1, . . . , i j) with 1 ≤ i1, . . . , i j ≤ p. We define the

following horizontal differentiation

dH f =
∑

I

(
p∑

k=1

Ek fIdvk

)
∧ dvI

and d∗
H its formal adjoint.

Definition 3.1 We define the Kohn sub-Laplacian on the horizontal differential

forms by

(3.3) ¤H = d∗
HdH + dHd∗

H .

Let Ml be the multiplication operator by dvl, Ml f = dvl ∧ f and ιl the (negative

of) dual of Ml,

ιldvi1
∧ · · · ∧ dvi j

=

{
0, l /∈ I

(−1)ik−1dvi1
∧ · · · d̂vik

· · · ∧ dvi j
, l = ik ∈ I

;

see [10].

We also define a Dirac operator ρ(∂2) on ∧ jV ∗-valued functions by

ρ(∂2) f :=
∑

I

q∑
s=1

p∑
k,l=1

(∂s fI)( JTs
ek, el)ikMldvI .

The operator ρ(∂2) cannot be formulated as in (3.1). For j = 1 this coincides with

(3.1); see below. However, for j > 1 the induced action t
∗ on ∧ jV ∗ does not form a

Clifford module.

Proposition 3.2 The Kohn sub-Laplacian (3.3) is of the form

¤H = −
( p∑

j=1

E2
j + 2ρ(∂2)

)
.

For j = 1 the Dirac operator ρ(∂2) coincides with the Dirac operator ρ(∂2) in Section 3.1

with the Clifford action of t
∗ on V ∗ given by the dual action.

Proof Let f =
∑

I fIdvI . By definition,

−¤H f =
∑

I

( p∑
k=1

E2
k fIdvI +

p∑
k,l=1

([Ek, El] fI)ιkMldvI
)

.
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Let cs
k,l be the structural constants, i.e., [Ek, El] =

∑q
r=1 cs

k,lTs with

cs
k,l = (Ts, [Ek, El]) = 2( JTs

Ek, El).

Namely,

[Ek, El] f = 2
q∑

r=1

( JTs
Ek, El)Ts f = 2

q∑
r=1

( JTs
Ek, El)∂s f .

The second term can then be written as

p∑
k,l=1

([Ek, El] fI)ιkMldvI
= 2

q∑
s=1

p∑
k,l=1

(∂s fI)( JTs
Ek, El)ιkMldvI .

This proves the first claim.

For j = 1 one observes that the formula

T∗ 7→
p∑

k,l=1

( JTek, el)ikMl,

where T ∈ t is the dual element of T∗ ∈ t
∗ defined T∗(v) = (v, T), defines a Clifford

action, and it coincides with the dual action of t on V , which can be seen easily by

choosing an orthonormal basis {e1, . . . , en; en+1, . . . , e2n} such that JTek = |T|en+k,

JTen+k = −|T|ek, j = 1, . . . , n.

The above proposition is a generalization of the known formula for the Kohn sub-

Laplacian on (0, q)-forms on the Heisenberg group C
n + R; see e.g., [10, Proposition

2.2, Chapter XIII].

3.3 Fundamental Solution

We now compute the fundamental solution of the operator Lα in (3.2) for any Clif-

ford module W of t
∗ (identified with t). Let Wα,β(x) be the Whittaker function; see

e.g., [14].

Theorem 3.3 Let W be a Clifford module of t as in Section 3.1. Then for |Re(α)| < 2n

the fundamental solution of the equation Lα f = δI is given by f =
1
2
( f+ + f−), where

f+(v, t) = f (α)
0 (v, t)I + ρ(∂2) f (α)

1 (v, t),

f−(v, t) = f (−α)
0 (v, t)I − ρ(∂2) f (−α)

1 (v, t),

and

f (α)
0 (v, t) =

Γ( n
2
± α

4
)

(2π)q4πn|v|n
∫

t

|τ |n/2−1W∓α/4,n−1/2(|τ | · |v|2)ei(t,τ )dτ ,

f (α)
1 (v, t) =

Γ( n
2
± α

4
)

(2π)q4πn|v|n
∫

t

|τ |n/2−2W∓α/4,n−1/2(|τ | · |v|2)ei(t,τ )dτ .

Moreover, f defines a tempered distribution for |Re(α)| < 2n and has meromorphic

continuation to the whole plane with simple poles at {±2(n + 2k) : k ∈ Z+}.
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Proof We seek the Fourier transform g of the fundamental solution f , namely

f (v, t) =
1

(2π)q

∫

t

ei(t,τ )g(v, τ )dτ .

The formal computations below will be justified in the end. The distribution δ(v, t)

in (v, t) is the Fourier transform of the function δ(v) in v,

δ(v, t) =
1

(2π)q

∫

t

ei(t,τ )δ(v)dτ .

Let the Kohn sub-Laplacian Lα act on f ,

Lα f (v, t) =
1

(2π)q

∫

t

ei(t,τ )
{
−

2n∑
j=1

(∂ j + i( Jτ v, e j))2 + αρ(τ )
}

g(v, τ )dτ ,

where {e j}p
1 is an orthonormal basis of V. Thus we look for a solution g(v, τ ) of the

equation

[ 2n∑
j=1

∂2
j − |τ |2|v|2 + 2i( Jτ v, e j)∂ j + iαρ(τ )

]
g(v, τ ) = δ(v)I.

By rotation invariance, we can require that ( Jτ v, e j)∂ jg(v, τ ) = 0, since the previous

equation for g is rotation invariant. Then the function g(v, τ ) satisfies

{
−

[ 2n∑
j=1

∂2
j − |τ |2|v|2

]
+ iαρ(τ )

}
g(v, τ ) = δ(v)I.

The operator ρ(τ̂ ), τ̂ =
τ
|τ | defines a complex structure of W , and its complexifi-

cation is

W C
= W C

+ ⊕W C

−, W C

± = Ker(ρ(τ̂ ) ± i),

with 1
2
(I ± iρ(τ̂ )) the projection onto W C

± parallel to W C

∓. Accordingly, we write the

functions g and I in terms of the decomposition as

g(v, τ ) =
1
2

(
g+(v, τ ) + g−(v, τ )

)
,

I =
1
2

(
(I + iρ(τ̂ )) +

(
I − iρ(τ̂ ))

)
,

g±(v, t) =
1
2
(I ± iρ(τ̂ )

)
g.

The equation for g then breaks into two equations,

(
−

[ 2n∑
j=1

∂2
j − |τ |2|v|2

]
+ α|τ |

)
g+(v, τ ) = δ(v)

(
I + iρ(τ̂ )

)

and

(
−

[ 2n∑
j=1

∂2
j − |τ |2|v|2

]
− α|τ |

)
g−(v, τ ) = δ(v)

(
I − iρ(τ̂ )

)
.
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But they are the (matrix-valued) Hermite oscillator equations in 2n-variables studied

in [3] with α → ±α|τ |, λ j → |τ |, so the solution is, for α|τ | /∈ |τ |{−(2n + 4k) :

k ∈ Z+}, i.e., α /∈ {±2(n + 2k) : k ∈ Z+}, formally given by

g+(v, τ ) =
|τ |n/2−1

Γ( n
2

+ α
4

)W−α/4,n−1/2(|τ | · |v|2)

4πn|v|n (I + iρ(τ̂ )),

and

g−(v, τ ) =
|τ |n/2−1

Γ( n
2
− α

4
)Wα/4,n−1/2(|τ | · |v|2)

4πn|v|n (I − iρ(τ̂ )).

See [3, (12)]1 with our 2n corresponding to their n. The solution f is then

f =
1

2
( f+ + f−), f±(v, t) =

1

(2π)q

∫

t

ei(t,τ )g±(v, τ )dτ .

The function f+ can be written, using the formula for g+, as a sum of a scalar multiple

of I and an integration of the matrix ρ(τ̂ ), namely

f+(v, t) = f (α)
0 (v, t) +

Γ( n
2

+ α
4

)

(2π)q4πn|v|n
∫

t

|τ |n/2−1W−α/4,n−1/2(|τ | · |v|2)iρ(τ̂ ) ei(t,τ )dτ

where the scalar function f (α)
0 is given as stated. The second integration of ρ(τ̂ ), apart

from the constant factors, can then be expressed as the operator ρ(∂2) acting on an

integration, namely

∫

t

|τ |n/2−1W−α/4,n−1/2(|τ | · |v|2)iρ(τ̂ ) ei(t,τ )dτ =

ρ(∂2)

∫

t

|τ |n/2−2W−α/4,n−1/2(|τ | · |v|2) ei(t,τ )dτ .

Here we have used the trivial fact that |τ |ρ(τ̂ ) = ρ(τ ) and that ρ(∂2)ei(t,τ )
=

iρ(τ )ei(t,τ ). This proves the formula for f+, and that for f− is the same.

The functions g+ and g− defines a tempered distribution in (v, τ ) for |Re(α)| < 2n

and has meromorphic continuation to the complex plane with simple poles as indi-

cated, which can be proved by similar methods as the proof of Theorem 2.1 using ex-

pansion in terms of Hermite polynomials. Thus the functions f+ and f− are also well-

defined tempered distributions. This completes the proof of the Theorem 3.3.

We note that there is a discrepancy between the pole set Λ = {±4(n + 2k)} in

Section 2 for the Heisenberg group and the pole set {±2(n+2k)} in Section 3. This is

due to the different normalizations, the Jt operator for the Heisenberg group satisfies

J2
t = −4t2 instead of −t2.

1Note that there is a typo in the formula [3, (12)]. The Whittaker function W
−

α
4λ

, n
2
−

1
2

should be in
the numerator instead of the denominator.
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[4] M. Cowling, A. Dooley, A. Korányi, and F. Ricci, An approach to symmetric spaces of rank one via
groups of Heisenberg type. J. Geom. Anal. 8(1998), no. 2, 199–237.

[5] , H-type groups and Iwasawa decompositions. Adv. Math. 87(1991), no. 1, 1–41.
doi:10.1016/0001-8708(91)90060-K

[6] G. B. Folland, A fundamental solution for a subelliptic operator. Bull. Amer. Math. Soc. 79(1973),
373–376. doi:10.1090/S0002-9904-1973-13171-4

[7] J. Heinonen and I. Holopainen, Quasiregular maps on Carnot groups. J. Geom. Anal. 7(1997), no. 1,
109–148.

[8] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of
quadratic forms. Trans. Amer. Math. Soc. 258(1980), no. 1, 147–153. doi:10.2307/1998286

[9] A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector fields. I. Basic properties.
Acta Math. 155(1985), no. 1–2, 103–147. doi:10.1007/BF02392539

[10] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals.
Princeton Mathematical Series, 43, Monographs in Harmonic Analysis, III, Princeton University
Press, Princeton, NJ, 1993.

[11] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton
Mathematical Series, 32, Princeton University Press, Princeton, NJ, 1971.

[12] R. S. Strichartz, Lp harmonic analysis and Radon transforms on the Heisenberg group. J. Funct. Anal.
96(1991), no. 2, 350–406. doi:10.1016/0022-1236(91)90066-E

[13] S. Thangavelu, Lectures on Hermite and Laguerre expansions. Mathematical Notes, 42, Princeton
University Press, Princeton, NJ, 1993.

[14] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general
theory of infinite processes and of analytic functions: with an account of the principal transcendental
functions. Fourth ed., Reprinted Cambridge University Press, New York, 1962.

Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310032, China
e-mail: yongyang@zjut.edu.cn

Department of Mathematics, Chalmers University of Technology and Göteborg University, Göteborg, Sweden
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