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1. Introduction.
We define
o = (o B) (1 B2) - (5B,
where «, 7 «, when p 2 ¢. If N =X ), then the partition (A, 4,, ..., A)
of N with A; =X, > ... =, is denoted by (A) and we set
I, =\+n—j.
All partitions will be in descending order and the usual notation for repeated
parts will be used.

The determinant with f(s, t) in row s and column ¢ will be denoted by
| f(s, t)|. The use of s and ¢ implies that the determinant is of order =.
For other orders ¢ and = will be used.

We consider the function

{o; (A); B}
defined by o] = {a; (A); B} a2t
If every B,= 0, then we have the S-function {«; (A)} defined by
ot = {oe; (O} o
[1, chap. VI].

When 0 << » <{u, we define b(u, v) to be the v-th elementary symmetric
function of By, B, ..., Bu- We set b(0, 0) =1 =0b(u, 0) and b(u, v)=0 if
v<<0 or w<<v. We take H(u, v) as the v-th complete homogeneous
symmetric function of 8y, 8,, ..., B, when 0 << v, and H(0, 0) = H(u, 0) =1,
H(u, v) =0 if v < 0.

In this note we prove the following theorems:

TaEOREM 1. If b{(l), (r)}=|b(,, l,—l+r)|, then

{a; A); Bt =Z{a; (Aj—ry, Ag—1y, ooy A, =1 )} 0{(D), ()},

where the summation is taken over all non-negative r; such that

/\1—7‘1 2/\2_7'2 > 2/\,,—7‘” }0
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THEOREM 2. If A, <n, (u) and (u—7') are partitions conjugate to (A)
and (A—r) respectively and m,= p,+n—s, then
o{(1), ()} =|H(2n—m,, m,—mytr))| = H{(m), (+')}, say.

THEOREM 3. The function b{(l), (r)} may be expanded as a polynomial
By, By .., By, with positive integral coefficients.

Since Theorem 2 is solely concerned with the B;, we can choose n = A,
by adding a sufficient number of zero parts to (A).

Hirsch [2] considered the case of (A) = (1»—%, 0%) and his result may
be put in the form!

n—k
{a; (17%, 0%); B} = E‘.O {a; (IF="} H(k+1, 7). (1)
We may obtain the dual result
{a; (n—k, O*1); Bt = nik{a; (n—k—r}b(2n—k—1, 1) (2)
r=0

by subtracting appropriate multiples of the columns of
||, (,=2n—k—1, ly,=n—2, l;=n—3, ..., |, =0),
from the preceding columns.
Using Theorem 1, we find that in the expansion of (1) we have a term

with

A1=/\2="'=An-—k=1: An—k+1=/\n——k+2="'=An:O?
r=ry=..=1=0, ra=re=..=7_ =1 7 _,,=..=7r,=0;
so that A)= (1*%), (A—r)=(19)

and in Theorem 2
(w)= (n—Fk), (u—r')=(t).
Thus the coefficient of {«; (1%} is
b{(1), (N} =|H(2n—m,, m,—m,~+7/)|

where

my=2n—k—1, my=n—2, my=mn—3,

r =n—k—t, r)=r=..=r'=0.
The first column of |H(2n—m,, m,—m,+r,)| now has

H(k+1, n—k—t)

in the first row and zero below, since m;—m,;+r," << 0for s > 1. The other
columns will have unity on the principal diagonal position and zero below.
Hence we have (1).

! We omit zero parts when there is no danger of ambiguity.
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In (2), we find that we have a term with
M=n—k r=r N=r=0 (j>2),
and the coefficient of {«; (17%7)} is b(2n—k—1, r) from Theorem 1.
As a further example we consider
« o 1|=[o? o 1| {a; (2, 1,0); g}
o o 1 op? oy 1
o o 1 w2 oy 1}
We denote b(%, v) by u, v, {«; A} by {A}, —¢t by ¢, and find that
{x; (2,1,0); B}=1{2,1}|4,0 4,2  4,4|+{2}|4,0 4,3 4,4

2,2 2,0 2,2 2,2 2,1 2,2

0,4 0,2 0,0 0,4 0,1 0,0
+{12}|4, 1 4,2 4,4|4+{1})4,1 4,3  4,4|+]4,2 4,3 4,4
2,1 2,0 2,2 2,1 2,1 2,2 12,0 2,1 2,2
0,3 0,2 0,0 0,3 0,1 0,0 10,2 0,1 0,0

= {2, 1}4-{2}b(2, 1)+ {13 b(4, 1)+ {1}b(4, 1) b(2, 1)+‘b(4, 2) b(4, 3)|

b(2, 0) b(2, 1)
As an example of Theorem 3, we consider

4,2 4,3 4,4|=0b{(4,2,1); (2,1, 1)}
2,0 2,1 22
1,1 1,0 1,1

This is the term independent of the «; in the expansion of {a; (2,12%); 8}
and it does not factorise into determinants of the same type but lower
order. The term independent of the «; in the expansion of {«; (1%); B}
also has this property and it is (1, 3). These two terms are the first of
order 3 which have the property.

Now

b{(4, 2, 1), (2,1, 1)}
= BiBet(Bi+B2) (Bs+Bs)+BsBs  BiBa(BstBa)+(Bi+B2)BsBs BiBaBsby
1 Bi+B; BB
0 1 B
= (Bs1+Bs) B tB: BB 0 1+ BB 0 0
1 Bl+182 Blﬁz‘ 1 B1+B2 ﬁlB2
0 1 B 0 1 B:
= (,33+B4)/313+513:82-
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Since this note was first submitted, Foulkes [8] has given a different
method of obtaining (1), (2) and Theorem 1.

2. Ezpansion of {«; (A); B}
We have, when k <[,

k
W= X b(k,6)ak,
i=k~1

so that |al| is the determinant of the product of the matrices
A=[oh="] and B=[b(l, |—1,+0)],

where 0,7=0,1,2, ..., ;; s,t=1,2, ..., n
It is well-known [¢f. 3, 86] that the determinant | A B| is the sum of the

<l1j;1> products of pairs of corresponding n-th order determinants

which can be formed from A4 and B’, the transpose of B, each determinant
occurring once only.
The determinant in B’ corresponding to [ol=7¢] is

lb(ls: ls—lt-l'rt)" (3)

We may select, and account for all n-th order determinants from A4,
by demanding that

L—r > =1y > .. > 1, =7, 6. AM—T ZA—T3 2= ... ZA,—7,.

Moreover, r; <, since [;—7, > n—1, the least possible exponent for column ¢.
Hence the coefficient of {a; (\;—7, A;—7y, ..., A,—7,)} in the expansion
of {a; (A); B} is

|6, Li—1+1)|.

We have [, <1, and [,—l,+7r, <r, for j <g <h. Hence, if r, <0,
then &(,, I,—!;+7,) = 0. In this case (3) vanishes, having zero elements
in the first g terms of the last n—g--1 rows. This completes the proof of
Theorem 1.

If r, oy <l —1,, ie. 7, 3 <A,_,—A,, we can show similarly that (3)
factorises into two lower order determinants of the same kind as (3).
We note that the graph [1, 67] of the partition (A, —ry, Ap—75, ..., A,—75)
must be regular for a non-zero term. However, if we construct this graph
by removing the last 7, nodes from row ¢ of the graph of (A) fort =1, 2, ..., n
in succession, and if we have a regular graph at any, except the lest, stage,
then (3) will factorise.
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3. Duality.

Levmma 1. The p-th order matrices H,= [H(p—7+1, 7—0o)] and
B, = [(—1)y—"b(p—o, 7—0)] are reciprocal and hence adjoint.

Proof. If H=[H(p, 7—0)], B=[(—1Y—"b(p, 7—0)}, then HB=1,
the unit matrix [¢f. 3, 115]. We set ¢,, as the p-th order square matrix
with 1 on the principal diagonal, —B, in row »—1 of column 7, and zero
elsewhere,

Qu= Qu,p Qu,p-—l s Qu, P—u+2 a‘nd Q = Qp Qp—l A Qz'
Now b(t+1, j+1) =06, j+1)+B1 b6, J),
H(+1, j+1)=H(@, j+1)+Bi H@+1, j).
Then since H(r, 0)=b(r, 0)=1=15(0,0), we have HE =H, and
Q1B= DB, Hence H,B,=1, and since the determinant of H; is 1,
then H, and B, are adjoint.

Lemma 2. If (A, Ay, ..o A) and (pg, Re, ---, pby,) QTe cOnjugate parti-
tions, then n+s—A, and n+14-p,—s (s=1, 2, ..., n), form a permutation
of 1,2, ..., 2n. ’

This is merely a re-statement of Aitken’s rule [5], that

(A, Apqg+1, o, i+n—1) and  (u,, ppyt+1, -y p+n—1)
form bicomplementary sets in relation to the set 0, 1, 2, ..., 2n—1.

Proof of Theorem 2. This is based on a similar proof in [5]. If
ry4ret ... r, =7, then | (—1)a—ttreb(l,, I,—1,+r,)| is the minor of B, (for
p = 2n) formed by rows n-4s—A, and columns n+4t— (A,—r,), which by
Jacobi’s theorem and Lemma 2, is equal to (—1)" times the minor formed
from the transpose of H, by rows n+1+4u,—s and columns n+ 14 u,—7,'—t.
Hence we have
,b(ls: Zs_ll_*_rt)[ = (_' 1)r| (_‘l)ls_lﬁLrt b(ls: ls——ll_i_rl)’

=|H{2n+1—(n+14p,—s), nt+1+p—s— (n+1+p—r/—1)}|
= |H(2n—m,, m;—m,+7/)|.
This completes the proof of Theorem 2.

We note that from Lemma 1 we may deduce modified Wronski recur-
rence formulae; for 1 <» <{p—1, we have
b(p—l: O)H(p—", 7)_b(27—1: I)H(Z‘_r 7_1)

+b(p—1, 2) H(p—r, 7—2)—+... =0.
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If we replace b(u, r) by H(2n—u, r) in b{(l), (r)}, we obtain
|H(2n—1,, s—-l,—i—r,)|
which is equal to |b(m,, me—m, 1)),

thus illustrating the duality.
As in Section 2, we find that H{(m), (r')} will factorise if

Tomy < My_y—Mm,, i.e. Toe1 < Hgo1— g
Hence if we remove 7, nodes from column ¢ of the graph of () in succession,
and if, at any stage except the last, we have a regular graph, then H {(m), (r")}
will factorise into two determinants of the same type but of lower order.
4. Proof of Theorem 3.
We assume that
roa=l,—1l, 9=2,3, .., n)

so that 6{(l), (r)} does not factorise.
When 0<<q <!, ;—!,, we define

(luoy; LY9)
to be the g-th elementary symmetric function of
841> Bias - Buy
We set (J,_,, 2,30) =1 and (/,_,, L,0r)=01if r<0 or r>1,_,—I,.
We denote the n-th order determinant
b(l,, L—l+r4v)| (=12, .., u—1; s =u,utl, ..., n),

by [v15 Vs «-vs Vyq]-
Now
ln_lu-i-l .
b(lu: lu_ll_i_/rt) = pE—:O (lw lu+1§l u+1 p)b( u-41s u+1 l+rl+.p) (4)
Hence b{(?) }=p2 (4 AL —1l—p1) [P,
the term for p,; = 0 vanishing.
Similarly,
la—l3
[pul= -—p bX o » 2 (Las LSl —l—p10) Loy 13Tl —1l3—Dg5) [(P11+P12s Do)
12 22_
=Z| (b LU —1l3—py,) (las LWly—l3— (P2o—p11)) [P11FD12> P22,

(Lo LU —l—p1—P12) (Lo LTl —1l—pg,) (5)
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where the summation is taken over
0<pr<l—ls, 1< Py <l—1,,
subject to P1tPie > Py > 0.
We set
Py, =pyt+p, 00t +Pn when ¢t <u, P, =0 when {>u,
and use X, to denote summation over
0 <pjy <ly—1lyyy, te P, <P, < Li—lu+ Py uss
subject to P,>P,>..>P,>0
Then (5) may be written
[Pul= Zzl (2 laﬁlz_ls‘*‘Pu_Pvz)l [Pra, Paol (0, 7=1, 2).
Now Py, 4> P, ,, for s> 1, and hence from (4)
b(l,, lu_lt+"t+Ps,u—1)
Li~lit1+ Py,

= ) (lw lu+1§lu_lu+1+Ps,u—1_w)b(lu+11 lu+1_lt+rl+w)'

w=0

-

Then by a proof similar to that of Theorem 1 we obtain
[Pl, u—1> P2,u—1’ cees Pu-—l’ u—1]
= Zu!(lw lu+1§lu_lu+1+Po,u—1"‘P7,u), [Prus Pous -oes Puul
(0, 7=1,2, ..., u). (6)
We find that if
P,>P,,>..>P,, =0,
then the coefficient of

[le P2m LRRE] Puu] (7)
in the expansion of (6) is
|(lu, lu+1§l“——lu+1—i—P,,u_l——PT,u)] (o, 7=1, 2, ..., u). (8)
Then in (8), Pl —l, =Py

otherwise the first j elements of the last n—j+1 rows of (8) will be
zero, and the determinant vanishes. Also

P, >P

i, u—1>

otherwise the last »—j+1 elements of the first j rows will be zero and
the determinant vanishes. If P,, =0, then rows » and u-+1 of (7)
are equal. Hence the expansion of (6) follows.
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We set ¢ =1ly—l,+ P,y y+nto,
N, =P, y+nt7;

then &, =6, and 9, =7,

Hence | (L lu+1§lu_lu+1+PV,u—l—'P'r,u)I
is the S-function [1, 110]

{Em (9)

of ' 81141 o> Brm1s Brus (10)
where the tilde denotes conjugate partition.

Now € =290,

where the g, are non-negative integers determined by

{&Hn} = Zgee{é}

[¢f. 1, 110, 91-96]. Since {Z} itself may be expanded as a polynomial in
(10) with positive integral coefficients?, all the terms in the expansion of
(6) as a polynomial in (10) have positive integral coefficients. Theorem 3
follows on repeated application of this argument.

We note that we may write in symbolic form:

|6(l, t,—U+7,)]
n—1
= Hl {Zu|(lw lu+1§lu—lu+1+Pﬂ,u——l_PT,u) | l b(lm ln_lt+rl+ Pa, n—1) |}
w=

1 This is well known [¢f. 7). Aitken [6] gives a direct proof that (9) may be expanded
with positive integral coefficients.
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