
Proceedings of the Edinburgh Mathematical Society (2012) 55, 79–104
DOI:10.1017/S0013091510000635

THE ONE-SIDED Ap CONDITIONS AND
LOCAL MAXIMAL OPERATOR

ANA L. BERNARDIS1, AMIRAN GOGATISHVILI2, FRANCISCO JAVIER
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1Instituto de Matemática Aplicada del Litoral (CONICET),
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1. Introduction

For a function f on the real line R, the maximal function Mf at x is defined by

Mf(x) := sup
a<x<b

1
b − a

∫ b

a

|f(t)| dt.

In [8] Muckenhoupt characterized, for 1 < p < ∞, the weights w on R satisfying the
weighted norm inequality

∫ ∞

−∞
Mf(x)pw(x) dx � C

∫ ∞

−∞
|f(x)|pw(x) dx
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with a positive constant C independent of f . This result left open the characterization
of the corresponding weighted norm inequalities for the original maximal functions of
Hardy and Littlewood, namely

M−f(x) := sup
h>0

1
h

∫ x

x−h

|f(t)| dt

and its counterpart

M+f(x) := sup
h>0

1
h

∫ x+h

x

|f(t)| dt

that were later called the one-sided maximal operators. This problem was solved later,
in [13], by Sawyer, who also pointed out that such results are, for example, indispensable
in applications to estimates of the ergodic maximal function, while, on the other hand,
they are quite deep and often require the introduction of new techniques that are not
analogous to their two-sided counterparts. An elementary proof of his main theorem was
later given in [7].

In [6], Lerner and Pérez characterized boundedness of M on a general quasi-Banach
function space (not necessarily rearrangement invariant) by several criteria. The nec-
essary and sufficient conditions they established were expressed in terms of the norm
of the so-called local maximal operator, and also in terms of a generalized upper Boyd
index that they introduced for this purpose. Among the applications of this result they
established a new characterization of the Ap class of weight functions, the new feature
being a certain bump function inserted to the estimate that defines the condition Ap,1.
They presented applications to weighted Lebesgue and Lorentz spaces and to variable-
exponent spaces. In particular, for the latter application they developed a new approach
to the theorem of Nekvinda [10] on the boundedness of M on variable-exponent Lebesgue
spaces.

Our main aim in this paper is to study one-sided versions of the problems considered
in [6]. Analogously to [6, Theorem 1.2], we prove a new characterization of the bound-
edness of the one-sided maximal operator on a quasi-Banach function space by three
other equivalent statements (Theorem 3.5). To this end, we first build up an appropri-
ate theory including the introduction of the one-sided local maximal operator. We study
this operator in detail and, interestingly, we show some of its key properties that do not
have double-sided analogues. Next, we introduce a one-sided upper Boyd index. We then
present applications to weighted Lebesgue spaces and to variable-exponent spaces. The
latter application is of particular interest since it requires a very special sufficient condi-
tion for the boundedness of the one-sided maximal operator on variable-exponent spaces,
which had not been known for a long time and which was only very recently obtained by
Nekvinda [11]. Our techniques are based on a key one-sided lemma that relies on a cer-
tain local version of a reverse weak-type inequality for the one-sided maximal operator,
which, again, reveals features that do not exist in the two-sided world. In our proofs we
mostly use techniques and results that have been obtained only very recently, although
their two-sided versions have been known for several decades.
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2. The one-sided local maximal operator

The key role in our investigation is played by the one-sided local maximal operator. In
this section we introduce this operator and study its basic properties. First, we need to
recall the notion of the non-increasing rearrangement of a function.

For a measurable function f on R, we define its non-increasing rearrangement,
f∗ : [0,∞) → [0,∞), by

f∗(t) = sup{s � 0: |{x ∈ R : |f(x)| > s}| > t}, t ∈ [0,∞),

where, as usual, |E| denotes the Lebesgue measure of E.
In what follows we denote, as usual, by χE the characteristic function of a measurable

set E ⊂ R.

Definition 2.1. Given λ ∈ (0, 1), h > 0, a measurable function f on R and x ∈ R, we
define the one-sided local maximal operator m+

λ by

m+
λ f(x) = sup

h>0
(fχ(x,x+h))∗(λh).

Remark 2.2. Let λ ∈ (0, 1), α, β > 0 and let E ⊂ R be measurable. Then, the
following facts follow immediately from the definitions:

m+
λ f(x) > α ⇐⇒ M+χ{|f |>α}(x) > λ; (2.1)

m+
λ (χE)(x) = χ{M+(χE)>λ}(x); (2.2)

(m+
λ f(x))β = m+

λ (|f |β)(x); (2.3)

m+
λ (f + g)(x) � m+

λ/2f(x) + m+
λ/2g(x); (2.4)

f(x) � m+
λ f(x) almost everywhere (a.e.); (2.5)

if f is non-increasing, then f = m+
λ f for every λ > 0. (2.6)

We shall now point out a reverse weak-type inequality for the one-sided maximal
operator. This result is essentially contained, though not stated explicitly, in [13]. We
present its simple proof for the sake of completeness. Notice that in the two-sided case
the reverse weak-type inequality is stated with 1/2λ [14] instead of the best factor 1/λ,
which appears in the next result for the one-sided case.

Lemma 2.3. Let I = (a, b) ⊂ R be a fixed interval. Then

|{x ∈ I : M+(fχI)(x) > λ}| � 1
λ

∫
{x∈I : f(x)>λ}

f(x) dx

for every λ � M+(fχI)(a) and every non-negative function f ∈ L1
loc(R).

Proof. It is well known [4, Lemma 21.75, p. 423] that

|{x ∈ R : M+f(x) > λ}| =
1
λ

∫
{x∈R : M+f(x)>λ}

f(x) dx. (2.7)
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Since f(x) � M+f(x) a.e. we obtain

|{x ∈ R : M+f(x) > λ}| =
1
λ

∫
{x∈R : M+f(x)>λ}

f(x) dx � 1
λ

∫
{x∈R : f(x)>λ}

f(x) dx.

Applying this result to fχI , we get

|{x ∈ R : M+(fχI)(x) > λ}| � 1
λ

∫
{x∈I : f(x)>λ}

f(x) dx.

Since λ > M+(fχI)(a), one has {x ∈ R : M+(fχI)(x) > λ} ⊂ I, and the assertion
follows. �

We shall now show an important pointwise lower-type estimate for the rearrangement
of the local maximal operator.

Lemma 2.4. Let x ∈ R, f ∈ L1
loc(R), h > 0, I = (x, x + h) and λ ∈ (0, 1). If t ∈ (0, h)

and

(χIf)∗(λt) > m+
λ f(x), (2.8)

then

(χIf)∗(λt) � [χI(m+
λ f)]∗(t). (2.9)

Remark 2.5. We point out an interesting significant difference between (2.9) and the
corresponding two-sided inequality: it is shown in [6, (3.7)] that

(χIf)∗(2λt) � [χI(mλf)]∗(t),

where mλ is the two-sided local maximal operator defined in [6] by

mλf(x) = sup
h,k>0

(fχ(x−k,x+h))∗(λ(h + k)).

The factor 2 does not appear in (2.9) due to its absence from the inequality asserted in
Lemma 2.3.

Proof of Lemma 2.4. By (2.1) we know that, for every α > 0,

{y ∈ I : m+
λ f(y) > α} = {y ∈ I : M+(χ{|f |>α})(y) > λ}. (2.10)

Take ε > 0 such that (χIf)∗(λt) − ε > m+
λ f(x). Setting α = (χIf)∗(λt) − 1

2ε in (2.10)
and defining

E := {y ∈ I : |f(y)| > (χIf)∗(λt) − 1
2ε},

we get

|{y ∈ I : m+
λ f(y) > (χIf)∗(λt) − 1

2ε}| = |{y ∈ I : M+(χE)(y) > λ}|.
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Observe that, for s < h,

1
s

∫ x+s

x

χE(y) dy =
1
s
|{y ∈ (x, x + s) : |f(y)| > (χIf)∗(λt) − 1

2ε}|

� 1
s
|{y ∈ (x, x + s) : |f(y)| > m+

λ f(x) + 1
2ε}|

� 1
s
|{y ∈ (x, x + s) : |f(y)| > (fχ(x,x+s))∗(λs) + 1

2ε}|

� λ.

Then M+(χE)(x) = M+(χEχI)(x) � λ and we can apply the reverse inequality to
f = χE and λ. Therefore,

|{y ∈ I : m+
λ f(y) > (χIf)∗(λt)− 1

2ε}| � 1
λ

|{y ∈ I : |f(y)| > (χIf)∗(λt)− 1
2ε}| >

1
λ

λt = t,

and, by the definition of the non-increasing rearrangement,

[χI(m+
λ f)]∗(t) � (χIf)∗(λt) − 1

2ε.

On letting ε → 0, we obtain the claim. �

Now we are in a position to formulate a proposition that constitutes a key step in our
analysis.

Proposition 2.6. Let λ ∈ (0, 1) and let f be a measurable function. Then

(i) for every t > 0, we have
f∗(λt) = (m+

λ f)∗(t); (2.11)

(ii) for every ξ ∈ (0, 1), we have

m+
λξf(x) � m+

ξ (m+
λ f)(x) for almost every x ∈ R. (2.12)

Remark 2.7. It is worth noticing that, while in the one-sided case one has an equality
in (2.11), the corresponding two-sided statement [6, Lemma 3.1] reads as follows:

f∗(2λt) � (mλf)∗(t) � f∗( 1
3λt).

Again, this phenomenon is caused by the absence of multiplicative factors 2 and 3 in
Lemma 2.3 and (2.7), respectively.

Another, even more dramatic, difference between the one-sided and two-sided environ-
ments is illustrated by Proposition 2.6 (ii), which provides us with an important estimate
for a composition of two local maximal operators with possibly different parameters. It
shows, in fact, that the (quasi-)norm of m+

λ , ‖m+
λ ‖X , in an arbitrary quasi-Banach func-

tion space X (see Definition 3.2, below), is a submultiplicative function of λ, in contrast
to the two-sided case, where the corresponding function does not necessarily have this
property (although it is comparable to a submultiplicative one). This is caused, once
again, by the fact that the one-sided world allows a sharper reverse weak-type inequality
(Lemma 2.3).
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Proof of Proposition 2.6. We may assume that f ∈ L1
loc(R). From (2.1) and the

weak-type (1, 1) inequality for M+ we get

|{x : m+
λ f(x) > α}| = |{x : M+(χ{|f |>α})(x) > λ}|

=
1
λ

|{x : M+(χ{|f |>α})(x) > λ} ∩ {x : |f(x)| > α}|

=
1
λ

|{x : |f(x)| > α}|.

Then (i) follows from the above inequalities and the definition of the non-increasing
rearrangement.

As for (ii), let h > 0 and t = ξh. Assume that (2.8) holds for t and I = (x, x + h).
Then, by Lemma 2.4, we get

(fχ(x,x+h))∗(ξλh) � [χ(x,x+h)(m+
λ f)]∗(ξh) � m+

ξ (m+
λ f)(x) for almost every x.

On the other hand, if (2.8) does not hold for t = ξh, then, using (2.5), we get

(fχ(x,x+h))∗(ξλh) � m+
λ f(x) � m+

ξ (m+
λ f)(x) for almost every x.

Taking the supremum over all h > 0, we obtain (2.12). �

We finish this section by establishing a pointwise inequality between the local and the
ordinary one-sided maximal operators.

Proposition 2.8. Let λ ∈ (0, 1) and let f be a measurable function. Then

m+
λ f(x) � 4

λ log(1/λ)
M+(M+f)(x), x ∈ R. (2.13)

Proof. Let h > 0 and I = (x, x+ h). As in the two-sided case, we have the inequality

f∗∗(t) � 2(M+f)∗(t), t ∈ (0,∞),

where

f∗∗(t) =
1
t

∫ t

0
f∗(s) ds

(see [1, p. 122] for the two-sided case). Then

(fχI)∗(λ|I|) � 1
λ|I|

∫ λ|I|

0
(fχI)∗(τ) dτ

� 1
λ log(1/λ)|I|

∫ λ|I|

0
(fχI)∗(τ) log

(
|I|
τ

)
dτ

� 1
λ log(1/λ)|I|

∫ |I|

0
(fχI)∗∗(τ) dτ

� 2
λ log(1/λ)|I|

∫ |I|

0
(M+(fχI))∗(τ) dτ.
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Next, ∫ |I|

0
(M+(fχI))∗(τ) dτ = sup

|E|=|I|

∫
E

M+(fχI)(y) dy

� sup
|E|=h

∫
E∩(−∞,x)

M+(fχ(x,x+h))(y) dy

+ sup
|E|=h

∫
E∩(x,x+h)

M+(fχ(x,x+h))(y) dy

� hM+f(x) +
∫ x+h

x

M+f(y) dy

� hM+f(x) + hM+(M+f)(x)

� 2hM+(M+f)(x).

Therefore, we have

(fχI)∗(λ|I|) � 4
λ log(1/λ)

M+(M+f)(x), x ∈ R,

and the desired inequality (2.13) follows by taking the supremum over all such intervals
on the left. �

3. The main results

We shall work in the environment of the so-called quasi-Banach function spaces on R.

Definition 3.1. We say that a linear space X of measurable functions on R, equipped
with a complete quasi-norm ‖·‖X , is a quasi-Banach function space if the following three
conditions are satisfied:

• if |f | � |g| almost everywhere in R, then ‖f‖X � c‖g‖X for some absolute c > 0;

• if 0 � fn ↗ f almost everywhere in R, then ‖fn‖X ↗ ‖f‖X ;

• χE ∈ X for every measurable E such that |E| < ∞.

Definition 3.2. Let X be a quasi-Banach space of functions on R. We define

Φ+
X(λ) := ‖m+

λ ‖X = sup
‖f‖X�1

‖m+
λ f‖X , λ ∈ (0, 1).

Observe that Φ+
X is non-increasing on (0, 1) and Φ+

X(λ) � 1. Moreover, by (2.12), Φ+
X

is a submultiplicative function of λ. Consequently, if Φ+
X(λ) < +∞ for some λ ∈ (0, 1)

then it is so for all such λ.

Definition 3.3. Let X be a quasi-Banach space of functions on R. Then the upper
one-sided Boyd index of X is defined as

α+
X :=

⎧⎪⎨
⎪⎩

lim
λ→0

log Φ+
X(λ)

log(1/λ)
= inf

0<λ<1

log Φ+
X(λ)

log(1/λ)
if Φ+

X(λ) < +∞ for all λ ∈ (0, 1),

+∞ if Φ+
X(λ) = +∞ for all λ ∈ (0, 1).
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In order to see that the one-sided Boyd index is well defined we proceed as in [1, p. 147]
and [6]. We sketch the argument. First, we need the following lemma.

Lemma 3.4. Let ω be a real-valued, non-decreasing, non-negative and subadditive
function on (0, +∞). Then ω(s)/s tends to a finite limit α as s → +∞ and

α = lim
s→+∞

ω(s)
s

= inf
s>0

ω(s)
s

.

We omit the proof since it is completely analogous to that of [1, Chapter 3, Lemma 5.8].
Now we can justify that α+

X is well defined. Assume that Φ+
X(λ) < +∞ for all λ ∈

(0, 1). Then Lemma 3.4 can be applied to the function ω(s) = log Φ+
X(exp (−s)), s > 0.

Therefore, the finite limit

α = lim
s→+∞

log Φ+
X(exp (−s))

s
= inf

s>0

log Φ+
X(exp (−s))

s

exists. Finally, it is obvious that the change of variable λ = exp (−s) gives

α = lim
λ→0

log Φ+
X(λ)

log(1/λ)
= inf

0<λ<1

log Φ+
X(λ)

log(1/λ)
.

In conclusion, α+
X is well defined.

We shall now characterize the action of the one-sided maximal operator on quasi-
Banach function spaces.

Theorem 3.5. Let X be a quasi-Banach function space on R. Then the following
statements are equivalent:

(i) M+ is bounded on X;

(ii) α+
X < 1;

(iii) Φ+
X ∈ L1(0, 1);

(iv) limλ→0 λΦ+
X(λ) = 0.

Proof. The proof follows the pattern of the proof of [6, Theorem 1.2] and uses ideas
from [1]. We shall show the following implications: (iii) ⇒ (iv) ⇒ (ii) ⇒ (iii), (i) ⇒ (iv)
and (ii) ⇒ (i).

(iii) ⇒ (iv) Since Φ+
X is non-increasing, we have

λ

2
Φ+

X(λ) �
∫ λ

λ/2
Φ+

X(t) dt �
∫ λ

0
Φ+

X(t) dt.

It is clear that

lim
λ→0

∫ λ

0
Φ+

X(t) dt = 0

because Φ+
X is integrable. This implies (iv).
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(iv) ⇒ (ii) It follows from (iv) that there exists δ ∈ (0, 1) such that λΦ+
X(λ) < 1

2 for
all λ ∈ (0, δ). Then

log Φ+
X(λ)

log(1/λ)
< 1 +

log 2
log λ

< 1

for all λ ∈ (0, δ). Consequently, Φ+
X(λ) < +∞ for all λ ∈ (0, δ) and

α+
X = inf

0<λ<1

log Φ+
X(λ)

log(1/λ)
< 1.

(ii) ⇒ (iii) Since α+
X < 1 we have that Φ+

X(λ) < +∞ for all λ and

lim
λ→0

log Φ+
X(λ)

log(1/λ)
< 1.

Then there exist ε, δ ∈ (0, 1) such that

log Φ+
X(λ)

log(1/λ)
< 1 − ε

or, equivalently,

Φ+
X(λ) <

1
λ1−ε

for all λ ∈ (0, δ). Thus,

∫ 1

0
Φ+

X(λ) dλ �
∫ δ

0

1
λ1−ε

dλ + Φ+
X(δ)(1 − δ) < +∞,

which yields (iii).

(i) ⇒ (iv) By Proposition 2.8, we have

‖m+
λ f‖X � 4C

λ log(1/λ)
‖f‖X

and

Φ+
X(λ) � 4C

λ log(1/λ)
,

and (iv) follows.

(ii) ⇒ (i) We know that there exist C > 0 and δ ∈ (0, 1) such that

‖m+
λ f‖X � Cλ−δ‖f‖X .

Now, for every interval I ⊂ R,

1
|I|

∫
I

f(y) dy �
∫ 1

0
(fχI)∗(λ|I|) dλ.
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Thus,

M+f(x) �
∫ 1

0
m+

λ f(x) dλ �
∞∑

i=1

2−im+
2−if(x).

Hence, using a version of the Aoki–Rolewicz Theorem (see, for example, [5, p. 3]), for
some p � 1,

‖M+f‖X � ‖
∞∑

i=1

2−im+
2−if‖X � 41/p

( ∞∑
i=1

‖2−im+
2−if‖p

X

)1/p

� C

( ∞∑
i=1

2−(1−δ)pi

)1/p

‖f‖X � C‖f‖X .

�

Corollary 3.6. Let X be a quasi-Banach function space on R. Then M+ is bounded
on X if and only if the operator M+

r , defined by

M+
r f := (M+|f |r)1/r,

is bounded on X for some r > 1.

Proof. We first define the space Xr by

‖f‖Xr
:= ‖|f |1/r‖r

X .

Note that the boundedness of M+
r on X is equivalent to that of M+ on Xr. Therefore,

by Theorem 3.5, it suffices to establish that α+
X < 1 if and only if there is an r > 1 such

that α+
Xr

< 1. It follows from (2.3) that

Φ+
Xr

(λ) = Φ+
X(λ)r, λ ∈ (0, 1).

Then α+
Xr

= rα+
X , and the assertion follows. �

Remark 3.7. If a quasi-Banach function space X on R is rearrangement invariant,
then α+

X coincides with the upper-Boyd index of X denoted by ᾱX . An analogous result
for the two-sided index can be found in [6, Theorem 1.2], where ᾱX is defined as

ᾱX = inf
1<t<∞

log hX(t)
log t

= lim
t→∞

log hX(t)
log t

, (3.1)

with

hX(t) = sup
‖f‖X�1

‖D(1/t)f‖X and D(1/t)f(x) = f

(
x

t

)
.

Let us show that α+
X = ᾱX . Let f� be the symmetric rearrangement of a measurable

function f , that is,
f�(x) = f∗(2|x|).
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The functions f and f� are equimeasurable. It follows from (Dλf)∗(t) = f∗(λt) and
(2.11) that

(Dλf)�(x) = (Dλf)∗(2|x|) = f∗(2λ|x|) = (m+
λ f)∗(2|x|) = (m+

λ f)�(x).

Therefore,
‖Dλf‖X = ‖m+

λ f‖X .

Thus, hX(t) = Φ+
X(1/t), and the desired identity α+

X = ᾱX follows from (3.1) and
Definition 3.3.

Remark 3.8. One can define, with obvious modifications only, the functions m−
λ , Φ−

X

and the index α−
X associated to the left one-sided Hardy–Littlewood maximal operator

M−. It is not difficult to prove then that the following relations hold:

max(m−
λ , m+

λ ) � mλ � m−
λ + mλ.

It follows that

max(Φ−
X(λ), Φ+

X(λ)) � ΦX(λ) � 2 max(Φ−
X(λ), Φ+

X(λ)),

where ΦX(λ) = ‖mλ‖X . Therefore,

max{log Φ−
X(λ), log Φ+

X(λ)}
log(1/λ)

� log ΦX(λ)
log(1/λ)

� log 2
log(1/λ)

+ max
{

log Φ−
X(λ)

log(1/λ)
,
log Φ+

X(λ)
log(1/λ)

}
.

On letting λ → 0, we have
max{α−

X , α+
X} = αX ,

where

αX = lim
λ→0

log ΦX(λ)
log(1/λ)

is the two-sided index introduced in [6]. Then, for instance, Theorem 1.2 from [6] in
dimension 1 is a consequence of Theorem 3.5 and the corresponding one for the left
one-sided case.

4. An application to weighted Lebesgue spaces

Let u be a weight, that is, a non-negative measurable function on R. We shall give a
characterization of the boundedness of M+ on the weighted Lebesgue space Lp

u by using
the main result of the preceding section (Theorem 3.5).

One of the principal results of this section is Theorem 4.6, in which we compute
the one-sided Boyd index and the function Φ+ for a weighted Lebesgue space. Once
equipped with this result, combining it with Theorem 3.5, we get, as an application, a
new characterization of the boundedness of the one-sided maximal operator on a weighted
Lebesgue space. Moreover, as a corollary, we get a new proof of the earlier, celebrated
Sawyer characterization [13].
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In this connection it is of interest to recall the corresponding restricted weak-type
inequality, which had been characterized in [12] by the A+

p,1 condition. Again, we shall
obtain a new proof of this result as a corollary of our main results. We note that our
characterization of it is similar to A+

p,1, but it contains a bump-function factor.
We start by computing Φ+

Lp
u

and establishing some results that will be needed in the
proofs of the main theorems of this section.

Lemma 4.1. Let p > 0 and define

Ψ+
p (λ) := sup

E

(
u({x : M+χE(x) > λ})

u(E)

)1/p

,

where the supremum is taken over all measurable sets such that u(E) > 0. Then, we
have

Φ+
Lp

u
(λ) = Ψ+

p (λ), λ ∈ (0, 1). (4.1)

Proof. By (2.2),

Φ+
Lp

u
(λ) � ‖m+

λ (χE)‖Lp
u

‖χE‖Lp
u

=
(

u({x : M+χE(x) > λ})
u(E)

)1/p

.

Taking the supremum over all E, we obtain

Ψ+
p (λ) � Φ+

Lp
u
(λ), λ ∈ (0, 1).

As for the converse inequality, we use (2.1) in order to get

u({x : m+
λ f(x) > α}) = u({x : M+χ{|f |>α}(x) > λ})

� [Ψ+
p (λ)]pu({x : |f(x)| > α}),

Thus,
‖m+

λ f‖Lp
u

� Ψ+
p (λ)‖f‖Lp

u
.

Therefore,
Φ+

Lp
u
(λ) � Ψ+

p (λ), λ ∈ (0, 1),

finishing the proof. �

In what follows, we will use the following notation: if I = (a, c) and a < b < c, then
I− = (a, b) and I+ = (b, c). By saying that a certain statement holds ‘for all intervals I,
I− and I+’ we mean that it holds for all intervals I and all possible partitions of I into
intervals I− and I+.

Proposition 4.2. Let ϕ be a non-increasing function on R and let ψ be a non-
decreasing function on R.
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(i) If

u({x : M+f(x) > λ}) � Cϕ(λ)
∫

R

ψ(|f(x)|)u(x) dx

holds with some C > 0 independent of f and λ, then

u(I−)
(

ϕ

(
1
|I|

∫
I+

|f(y)| dy

))−1

� C

∫
I+

ψ(|f(y)|)u(y) dy

holds with some C > 0 for all functions f on R, all intervals I, I− and I+.

(ii) If there exists a C > 0 such that

u(I−)
(

ϕ

(
4
|I|

∫
I+

|f(y)| dy

))−1

� C

∫
I+

ψ(|f(y)|)u(y) dy

for all functions f on R, all intervals I, I− and I+, then

u({x : M+f(x) > λ}) � Cϕ(λ)
∫

R

ψ(|f(x)|)u(x) dx

holds for all f and λ.

Proof. Assertion (i) follows by testing the inequality on the functions f = χI+ . For
the proof of (ii), as usual, we write

{x ∈ R : M+f(x) > λ} =
∞⋃

i=1

(ai, bi),

where

λ =
1

bi − ai

∫ bi

ai

|f(x)| dx

and

λ <
1

bi − x

∫ bi

x

|f(y)| dy, x ∈ (ai, bi).

For a fixed i ∈ N, we define the sequence {xi,n} by

xi,0 = ai;

and when xi,n−1 is established, we define xi,n ∈ (xi,n−1, bi) so that
∫ xi,n

xi,n−1

|f | =
∫ bi

xi,n

|f |.

We also define Ii,n := (xi,n, xi,n+1). Then, of course,

λ <
1

bi − xi,n

∫ bi

xi,n

|f(y)| dy =
4

bi − xi,n

∫ xi,n+2

xi,n+1

|f(y)| dy.
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Consequently,

u({x ∈ R : M+f(x) > λ}) =
∞∑

i=1

∞∑
n=1

u(Ii,n)

�
∞∑

i=1

∞∑
n=1

u(Ii,n)ϕ(λ)
(

ϕ

(
4

bi − xi,n

∫ xi,n+2

xi,n+1

|f(y)| dy

))−1

� Cϕ(λ)
∞∑

i=1

∞∑
n=1

u(Ii,n)
(

ϕ

(
4

bi − xi,n

∫ xi,n+2

xi,n+1

|f(y)| dy

))−1

� Cϕ(λ)
∞∑

i=1

∞∑
n=1

∫
Ii,n+1

ψ(|f(x)|)u(x) dx

� Cϕ(λ)
∫

R

ψ(|f(x)|)u(x) dx.

�

The next result can be obtained in the same way as Proposition 4.2.

Proposition 4.3. Let ϕ be a non-increasing function on R and let ψ be a non-
decreasing function on R.

(i) If
u({x : M+χE(x) > λ}) � Cϕ(λ)u(E)

holds with some C > 0 independent of the set E ⊂ I+ and λ > 0, then

u(I−)
ϕ(|E|/|I|) � Cu(E)

holds with some C > 0 for all intervals I, I−, I+ and all E ⊂ I+.

(ii) If there exists a C > 0 such that

u(I−)
ϕ(4|E|/|I|) � Cu(E)

holds with some C > 0 for all intervals I, I−, I+ and all E ⊂ I+, then

u({x : M+χE(x) > λ}) � Cϕ(λ)u(E)

holds with some C > 0 independent of the set E ⊂ R and λ > 0.

It is worth noticing that Proposition 4.3 immediately yields the characterization of
the restricted weak-type (p, p) of M+ by the A+

p,1 condition, proved earlier in [12]. For a
weight u on R and a measurable set E ⊂ R, we write u(E) for

∫
E

u(y) dy.

Corollary 4.4. Let u be a weight on R and let 1 < p < ∞. Then the following
statements are equivalent.
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(i) There exists a C > 0 such that

u({x : M+χE(x) > λ}) � C

λp
u(E)

for all sets set E ⊂ R and all λ > 0.

(ii) There exists a C > 0 such that

|E|
|I| � C

(
u(E)
u(I−)

)1/p

for all intervals I, I−, I+ and all E ⊂ I+.

Definition 4.5. Let u be a weight on R. We define

ν+
u (λ) := inf

I,I−,I+
inf

|E|=λ|I|,E⊂I+

u(E)
u(I−)

, 0 < λ < 1,

where the infima are taken over all intervals I, I− and I+ and all subsets E ⊂ I+ with
|E| = λ|I|.

The principal result in this section is the following theorem.

Theorem 4.6. For any p > 0, we have

1
(ν+

u )1/p(λ)
� Φ+

Lp
u
(λ) � C2

(ν+
u )1/p( 1

4λ)
(4.2)

and

α+
Lp

u
=

1
p

lim
λ→0

log(1/ν+
u (λ))

log 1/λ
. (4.3)

Proof. By Lemma 4.1, we have

(
Φ+

Lp
u

(
|E|
|I|

))−1

�
(

u(E)
u(I−)

)1/p

whenever E ⊂ I+ and |E| = λ|I|. Therefore,

1
(ν+

u )1/p(λ)
� Φ+

Lp
u
(λ).

By the definition of ν+
u , we know that

ν+
u

(
|E|
|I|

)
� u(E)

u(I−)

whenever E ⊂ I+. Clearly,

ϕ(λ) :=
1

ν+
u ( 1

4λ)
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is non-increasing. Hence, by Proposition 4.3,

u({x : M+(χE)(x) > λ}) � Cϕ(λ)u(E).

From this and from Lemma 4.1, we obtain

Φ+
Lp

u
(λ) � C

1
(ν+

u )1/p( 1
4λ)

, 0 < λ < 1.

This proves (4.2). Finally, (4.3) follows on taking the appropriate limits in (4.2). �

Our next aim is to apply Theorem 4.6 to get a new description of boundedness of M+

on weighted Lebesgue spaces. To this end, we need to introduce the notion of a bump
function.

Definition 4.7. We say that a function ψ on [1,∞) is a bump function and write
ψ ∈ A if ψ is non-decreasing, positive, limt→∞ ψ(t) = ∞ and ψ(t) = O(tε) for every
ε > 0.

Now we can state and prove the main application theorem.

Theorem 4.8. Let 1 < p < ∞. Given a weight u on R, then the following statements
are equivalent:

(i) M+ is bounded on Lp
u;

(ii) lim
λ→0+

ν+
u (λ)
λp

= ∞;

(iii) lim
λ→0+

1
log 1/λ

log
(

1
ν+

u (λ)

)
< p;

(iv) if ψ ∈ A, then there exists a positive constant C such that, for all intervals I, I−,
I+ and every E ⊂ I+,

|E|
|I| ψ

(
|I|
|E|

)
� C

(
u(E)
u(I−)

)1/p

; (4.4)

(v) if ψ ∈ A, then there exists a positive constant C such that, for all intervals I, I−,
I+ such that |I−| = |I+| and every E ⊂ I+,

|E|
|I| ψ

(
|I|
|E|

)
� C

(
u(E)
u(I−)

)1/p

.

Proof. The equivalences (i) ⇔ (ii) ⇔ (iii) follow from Theorems 3.5 and 4.6. Since
(iv) ⇒ (v) is obvious, it will suffice to show (iv) ⇒ (ii), (iii) ⇒ (iv) and (v) ⇒ (iv).

We have from (4.4) that

ψ

(
1
λ

)p

� C
ν+

u (λ)
λp

.

Since limt→∞ ψ(t) = ∞, the implication (iv)⇒(ii) follows.
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Let us assume that (iii) holds. Then there exists a δ ∈ (0, 1) such that

λδ � Cν+
u (λ)1/p.

Therefore,
(

|E|
|I|

)δ

� C

(
u(E)
u(I−)

)1/p

,

that is,

|E|
|I|

(
|I|
|E|

)1−δ

� C

(
u(E)
u(I−)

)1/p

.

Since ψ(t) = O(tε) for every ε > 0, we have

|E|
|I| ψ

(
|I|
|E|

)
� C

(
u(E)
u(I−)

)1/p

,

as desired.
Finally, we shall prove (v) ⇒ (iv). Assume that (v) holds and let I = (a, c), I− = (a, b),

I+ = (b, c) and E ⊂ I+. If |I−| � |I+|, we can choose ā � a such that if J = (ā, c),
J− = (ā, b) and J+ = (b, c). Then we have |J−| = |J+|. Applying (v), we get

|E|
|J | ψ

(
|J |
|E|

)
� C

(
u(E)
u(J−)

)1/p

.

Since |I| � |J | � 2|I|, I− ⊂ J− and ψ is non-decreasing,

|E|
|I| ψ

(
|I|
|E|

)
� 2C

(
u(E)
u(I−)

)1/p

.

If |I+| � |I−|, we proceed in a similar way choosing c̄ � c, J = (a, c̄), J− = (a, b) and
J+ = (b, c̄). �

The following corollary is immediate from Theorem 4.8 (iii).

Corollary 4.9. Let 1 < p < ∞. Given a weight u, if M+ is bounded on Lp
u, then M+

is bounded on Lq
u for some q < p.

We shall finish this section by pointing out that Theorem 4.8 leads to a new proof of
the equivalence of the condition A+

p to the boundedness of M+ on Lp
u proved first by

Sawyer in [13] (more precisely, its sufficiency part).
We start with proving an auxiliary technical assertion.

Lemma 4.10. If u ∈ A+
p , then there exists C > 0 such that for any function f and

any interval I = (a, d),

1
|I|

∫
I

|f(x)| dx � C[M+
u (|f |pχI)(a)]1/p. (4.5)
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Proof. Let {xi} be a sequence such that x0 = d and u(xi+1, xi) = u(a, xi+1). Since
u ∈ A+

p ,

∫ xi

xi+1

|f(y)| dy �
( ∫ xi

xi+1

|f(y)|pu(y) dy

)1/p( ∫ xi

xi+1

u(y)−1/(p−1) dy

)(p−1)/p

� C

( ∫ xi

xi+1

|f(y)|pu(y) dy

)1/p( ∫ xi+1

xi+2

u(y) dy

)−1/p

(xi − xi+2)

� C

[
1

u(a, xi)

∫ xi

a

|f(y)|pu(y) dy

]1/p

(xi − xi+2)

� C[M+
u (|f |pχI)(a)]1/p(xi − xi+2).

Summing over i, we obtain the lemma. �

The following proposition is the key to our application goal.

Proposition 4.11. Let 1 < p < ∞. If u ∈ A+
p , then there exists C > 0 such that, for

every interval I = (a, c) and E ⊂ I+ = (b, c),

|E|
|I| log1−1/p

(
e +

|I|
|E|

)
� C

(
u(E)
u(I−)

)1/p

.

In other words, the A+
p condition implies (4.4) with ψ(t) := log1−1/p(e + t).

Proof. By the equivalence (iv) ⇔ (v) in Theorem 4.8, we may assume that |I−| =
|I+|. The proof follows the lines of [6]. However, we have to overcome several technical
obstacles caused by the nature of the one-sided setting.

Claim 4.12. If u ∈ A+
p , then there exists C > 0 such that for every interval I = (a, c)

and all E ⊂ I+

1
|I|

∫
I

M+(χE)(x) dx � C[M+
u (M+

u (χE))(a)]1/p, (4.6)

where

M+
u f(x) := sup

h>0

1
u(x, x + h)

∫ x+h

x

|f(y)|u(y) dy,

where the quotient is understood as zero when u(x, x + h) = 0.

Proof of Claim 4.12. It follows from the lemma that

M+(fχI)(x) � C[M+
u (|f |pχI)(x)]1/p (4.7)

for all x ∈ I. Now, by (4.5), with f replaced by M+(fχI) and applying (4.7), we get

1
|I|

∫
I

M+(fχI)(x) dx � C[M+
u (M+

u (|f |p))(a)]1/p. (4.8)

Taking f = χE , with E ⊂ I+ in (4.8), we get the claim. �
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Claim 4.13. There exists a C > 0 such that for every interval I = (a, c) and all
E ⊂ I+

1
|I|

∫
I

M+(χE)(x) dx � C
|E|
|I| log

(
e +

|I|
|E|

)
.

Proof of Claim 4.13. We have∫
I

M+(χE)(x) dx =
∫ ∞

0
|{x ∈ I : M+(χE)(x) > λ}| dλ

=
∫ |E|/|I+|

0
|{x ∈ I : M+(χE)(x) > λ}| dλ

+
∫ ∞

|E|/|I+|
|{x ∈ I : M+(χE)(x) > λ}| dλ

=: I + II.

Notice that if x ∈ I− and λ < |E|/2|I+|, then M+(χE)(x) > λ, so that

I �
∫ |E|/2|I+|

0
|{x ∈ I− : M+(χE)(x) > λ}| dλ = 1

2 |E|.

In order to estimate II, we use a version of the reverse inequality for the one-sided
maximal operator from [2, Lemma 3.3]. We get

II � C

∫ ∞

|E|/|I+|

1
λ

∫
{x∈I+ : χE(x)>λ}

χE(x) dxdλ

= C

∫
E

∫ 1

|E|/|I+|

1
λ

dλ dx

= C|E| log
(

|I+|
|E|

)
;

hence

1
|I|

∫
I

M+(χE)(x) dx � |E|
2|I| + C

|E|
|I| log

(
|I|

2|E|

)
� C

|E|
|I| log

(
e +

|I|
|E|

)
.

This proves Claim 4.13. �

Claim 4.14. There exists a C > 0 such that

M+
u (M+

u (f))(a) � CM+
u,L log L(f)(a),

where
M+

u,L log L(f)(a) := sup
b>a

‖f‖u,L log L,(a,b)

and

‖f‖u,L log L,(a,b) := inf
{

λ > 0:
1

u(a, b)

∫ b

a

|f(x)|
λ

log
(

e +
|f(x)|

λ

)
u(x) dx � 1

}
.
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Proof of Claim 4.14. First, we shall prove that

1
u(J)

∫
J

(M+
u f)(x)u(x) dx � C‖f‖u,L log L,J (4.9)

for all f such that supp(f) ⊂ J , where J is an interval. In fact, by a homogeneity
argument we may assume that ‖f‖u,L log L,J = 1 and, thus,

1
u(J)

∫
J

|f(x)| log(e + |f(x)|)u(x) dx � 1.

Now, using the weak-type (1, 1) inequality for M+
u with respect to the measure u(x) dx,

we get∫
J

(M+
u f)(x)u(x) dx =

∫ ∞

0
u({x ∈ J : M+

u f(x) > λ}) dλ

� u(J) + C

∫ ∞

1

1
λ

∫
{x∈J : |f(x)|>1/2}

|f(x)|u(x) dxdλ

= u(J) + C

∫
{x∈J : |f(x)|>1/2}

|f(x)|u(x)
∫ 2|f(x)|

1

1
λ

dλ dx

= u(J) + C

∫
{x∈J : |f(x)|>1/2}

|f(x)|u(x) log(2|f(x)|) dx

� u(J) + C

∫
J

|f(x)| log(e + |f(x)|)u(x) dx.

� Cu(J).

Hence, (4.9) follows for f such that supp f ⊂ J .
Let d > a and let d̃ > d be such that u(a, d) = u(d, d̃). (The existence of such d̃ is

guaranteed by the condition A+
p .) We write f = f1 +f2 with f1 = fχJ , where J = (a, d̃).

Then

1
u(a, d)

∫ d

a

(M+
u f)(x)u(x) dx

� 1
u(a, d)

∫ d

a

(M+
u f1)(x)u(x) dx +

1
u(a, d)

∫ d

a

(M+
u f2)(x)u(x) dx

=: I + II.

By (4.9),

I � 2
u(J)

∫
J

(M+
u f1)(x)u(x) dx � C‖f1‖u,L log L,J � CM+

u,L log L(f)(a).

On the other hand, since (M+
u f2)(x) � 2(M+

u f2)(a) for every x ∈ (a, d), we get

II � 2(M+
u f2)(a) � 2M+

u,L log L(f)(a).

The claim now follows on taking the supremum over d > a. �
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Claim 4.15. There exists a C > 0 such that, for every interval I = (a, c) and all
E ⊂ I+,

M+
u (M+

u (χE))(a) � C
u(E)
u(I−)

log
(

e +
u(I−)
u(E)

)
.

Proof of Claim 4.15. Let h > 0 such that λh := ‖χE‖u,L log L,(a,a+h) > 0. Then

1
λh

log
(

e +
1
λh

)
=

u(a, a + h)
u(E ∩ (a, a + h))

� u(I−)
u(E)

. (4.10)

Define φ(t) := t log(e + t). Then

φ

(
1
λh

)
� u(I−)

u(E)
;

hence
1
λh

� φ−1
(

u(I−)
u(E)

)
.

Since φ−1(t) ≈ t/ log(e + t) for large t, we have

λh � C
u(E)
u(I−)

log
(

e +
u(I−)
u(E)

)

and taking supremum in h > 0 we get the claim by applying Claim 4.14 to f = χE . This
shows Claim 4.15. �

Now, if B(t) := t log(e + 1/t), then we obtain from Claims 4.12, 4.13 and 4.15 that

B

(
|E|
|I|

)
� C

[
B

(
u(E)
u(I−)

)]1/p

. (4.11)

The rest of the proof is exactly the same as that in [6]. In fact, since

B−1(B(t)p) ∼ tp logp−1
(

e +
1
t

)
, 0 < t < 1,

from (4.11) (
|E|
|I|

)p

logp−1
(

e +
|I|
|E|

)
� C

u(E)
u(I−)

,

and we obtain the assertion of the proposition. �

Finally, combining Theorem 4.8 and Proposition 4.11, we get the (sufficiency part of
the) following result of Sawyer.

Corollary 4.16. Let u be a weight on R and let 1 < p < ∞. Then M+ is bounded
on Lp

u if and only if there exists C > 0 such that
∫

I−
u

( ∫
I+

u−1/(p−1)
)p−1

� C|I|p

for all intervals I, I− and I+.
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5. An application to variable-exponent Lebesgue spaces

In this final section, we shall present applications of Theorem 3.5 to variable-exponent
Lebesgue spaces.

Let p : R → [1,∞) be a measurable function. We denote by Lp(·)(R) the space of all
measurable functions f on R such that, for some λ > 0,

∫
R

∣∣∣∣f(x)
λ

∣∣∣∣
p(x)

dx < ∞,

endowed with the norm

‖f‖Lp(·)(R) = inf
{

λ > 0:
∫

R

∣∣∣∣f(x)
λ

∣∣∣∣
p(x)

dx � 1
}

.

The space Lp(·)(R) is a particular instance of the so-called Musie�lak–Orlicz space [9].
We denote by P+(R) the class of all measurable functions p : R → [1,∞), for which

M+ is bounded on Lp(·)(R). We further denote by B the set of all measurable functions
p : R → [1,∞) such that

1 < p− := ess inf{p(x); x ∈ R} � ess sup{p(x); x ∈ R} =: p+ < ∞.

It has been proved in [3] that if p satisfies the following uniform continuity condition

p(x) − p(y) � K

− log(|x − y|) (5.1)

for x, y ∈ R, 0 < y − x � 1
2 and if p is constant outside some large interval, then p ∈

P+(R). Their condition thus contains two separate requirements (a control over the local
behaviour and constancy near infinity). Recently, Nekvinda [11, Theorem 1] improved
this result by finding certain finer conditions at ∞, still sufficient for the boundedness of
the one-sided maximal operator. Precisely, he proved that if p satisfies (5.1) and there
exists a non-increasing function q ∈ B(R) and a constant c > 0 such that

∫
{x : |p(x)−q(x)|�=0}

c1/(|p(x)−q(x)|) dx < ∞, (5.2)

then, again, M+ is bounded on Lp(·)(R).
We will give an alternative proof of the Nekvinda’s Theorem, based on Theorem 3.5.

This step is done in the spirit of [6].

Theorem 5.1. Let p be a bounded positive function with p− > 0, satisfying (5.1)
and (5.2). Then

‖m+
λ f‖Lp(·)(R) � C

λ1/p−
‖f‖Lp(·)(R), 0 < λ < 1,

where C depends on p.
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In the case when p− > 1 the conditions of Theorem 5.1 coincide with those of [11,
Theorem 1]. In this case, Theorem 5.1 clearly yields

α+
Lp(·) � 1

p−
< 1

and thus, by Theorem 3.5, the boundedness of M+ on Lp(·)(R).

Proof of Theorem 5.1. The statement of the theorem is equivalent to saying that
there exists a constant C > 0, independent of f and λ, such that

∫
R

(λ1/p−m+
λ f(x))p(x) dx � C (5.3)

whenever ∫
R

|f(x)|p(x) dx � 1.

We fix a function f and set

f1 = fχ{|f |�1} and f2 = f − f1.

Let us show that, for any x,

(λ1/p−m+
λ/2f1(x))p(x) � Cλm+

λ/2(f
p(·)
1 )(x), (5.4)

(λ1/p−m+
λ/2f2(x))p(x) � C(ψ(x) + λm+

λ/4(f
p(·)
2 )(x)), (5.5)

with some ψ ∈ L1, where C and ‖ψ‖L1 depend on p.
Assume, for the time being, that (5.4) and (5.5) are satisfied. We note that these

estimates easily imply (5.3). Indeed, since (2.11) implies

‖m+
λ f‖L1 =

1
λ

‖f‖L1 , (5.6)

and, next, ∫
R

|f(x)|p(x) dx � 1,

we conclude that (5.6) shows that the L1-norms of the right-hand sides of (5.4) and (5.5)
are bounded by constants depending only on p. Observing also that, by (2.4),

(λ1/p−m+
λ f(x))p(x) � 2p+−1((λ1/p−m+

λ/2f1(x))p(x) + (λ1/p−m+
λ/2f2(x))p(x)),

we obtain that (5.4) and (5.5) imply (5.3). To prove (5.4), fix arbitrary x and h > 0. We
claim that

F (x, h) := [λ1/p−(f1χ(x,x+h))∗( 1
2λh)]p(x)−p−(x,x+h) � C, (5.7)

where we define p−(x, x + h) := infy∈(x,x+h) p(y).
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For h > 1
2 , we get, using the Chebyshev inequality,

λ1/p−(f1χ(x,x+h))∗
(

λh

2

)
�

(
2
h

)1/p−

‖f1‖p−

�
(

2
h

)1/p−( ∫
R

|f1(x)|p(x) dx

)1/p−

�
(

2
h

)1/p−

,

whence F (x, h) � 4(p+−p−)/p− , while, if h � 1
2 , by (5.1) we get

F (x, h) �
(

2
h

)(p(x)−p−(x,x+h))/p−

�
(

2
h

)K/(−p− log h)

= 2K/(p− log 1/h)
(

1
h

)K/(p− log 1/h)

� 2K/(p− log 2)
(

1
h

)K/(p− log 1/h)

= 2log2 exp(K/p−)
(

1
h

)log1/h exp(K/p−)

= exp
(

2K

p−

)
,

which shows (5.7). Now, (5.7) combined with (2.3) yields

(
λ1/p−(f1χ[x,x+h))∗

(
λh

2

))p(x)

� C

(
λ1/p−(f1χ[x,x+h))∗

(
λh

2

))p−(x,x+h)

= Cλp−(x,x+h)/p−(fp−(x,x+h)
1 χ[x,x+h))∗

(
λh

2

)

� Cλm+
λ/2(f

p(·)
1 )(x),

and (5.4) follows.
To prove (5.5), we apply [6, Lemma 5.5] together with (2.3) and (2.4), which yields

(λ1/p−m+
λ/2f2(x))p(x)

� α1/(|p(x)−q(x)|) +
((

1
α

)1/p−

+ 1
)

(λ1/p−m+
λ/2f2(x))q(x)

� α1/(|p(x)−q(x)|) +
((

1
α

)1/p−

+ 1
)

(λq(x)/p−m+
λ/2(f

q(·)
2 )(x))
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� α1/(|p(x)−q(x)|) +
((

1
α

)1/p−

+ 1
)

(λq(x)/p−m+
λ/4(α

1/(|p(x)−q(x)|))(x))

+ λq(x)/p−

((
1
α

)1/p−

+ 1
)

m+
λ/4(|f2|p(·))(x).

By (5.2) and the monotonicity of q, we get q(x) > p−. Thus,

(λ1/p−m+
λ/2f2(x))p(x) � α1/(|p(x)−q(x)|) +

((
1
α

)1/p−

+ 1
)

λm+
λ/4(α

1/(|p(x)−q(x)|))(x)

+ λ

((
1
α

)1/p−

+ 1
)

m+
λ/4(|f2|p(·))(x),

and (5.5) follows with

ψ(x) = α1/(|p(x)−q(x)|) + λ

((
1
α

)1/p−

+ 1
)

m+
λ/4(α

1/(|p(x)−q(x)|))(x),

by (5.6) and (5.2). It is clear that ‖ψ‖L1 depends only on p.
The proof of the theorem is complete. �
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