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On Graded Categorical Groups
and Equivariant Group Extensions

A. M. Cegarra, J. M. Garcı́a-Calcines and J. A. Ortega

Abstract. In this article we state and prove precise theorems on the homotopy classification of graded

categorical groups and their homomorphisms. The results use equivariant group cohomology, and

they are applied to show a treatment of the general equivariant group extension problem.

Introduction

If Γ is a group, then a Γ-graded categorical group is a groupoid G equipped with
a grading functor gr : G → Γ and with a graded monoidal structure, by graded

functors
⊗

: G ×
Γ

G → G and I : Γ → G and corresponding coherent 1-graded
associativity and unit constraints, such that for each object X, there is an object X ′

with an arrow of grade 1 X ⊗ X ′ → I (see Section 1 for the details). These graded
categorical groups were originally introduced by Fröhlich and Wall in [9], where they

presented a suitable abstract setting to study Brauer groups in equivariant situations.
An illustrative example in that context is the graded Picard categorical group, Pic

Γ
(R),

defined by a ring R on which an action by ring automorphisms of a group Γ is given:
the objects of Pic

Γ
(R) are the invertible R-bimodules, and a morphism P → Q of

grade σ ∈ Γ is a pair ( f , σ), where f : P
∼
−→ Q is an isomorphism of abelian groups

with f (rp) = σr f (p) and f (pr) = f (p)σr. The graded tensor functor is given by the
tensor product of R-bimodules, the graded unit is defined by I(σ) = (σ, σ) : R →
R, and the associativity and unit 1-graded isomorphisms are the usual ones for the

tensor product of bimodules (see the cited work [9] for more algebraic examples).

Furthermore, interesting graded categorical groups also arise from several prob-
lems in algebraic topology. To help motivate the reader, we consider the following ex-
ample (see [6] for other instances): let Γ be a (discrete) group operating on a pointed

space (X, ∗) by pointed homeomorphisms. Then, the Γ-graded categorical group of

loops, P
Γ
(X, ∗), has the loops in X based on ∗, ω : [0, 1] → X, as its objects. A mor-

phism ω → ω ′ of grade σ ∈ Γ is a pair ([H], σ), where [H] is the homotopy class
real end loops of a homotopy H : σω → ω ′, that is, of a map H : [0, 1]× [0, 1]→ X

with H(t, 0) = σω(t), H(t, 1) = ω ′(t) and H(0, s) = ∗ = H(1, s). The composition
is induced by the usual vertical composition of homotopies, according to the formula
([H ′], τ )([H], σ) = ([H ′ ◦ τH], τσ). The graded monoidal structure is induced by
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the H-group structure of the loop space Ω(X, ∗); thus, the graded tensor product is
given on objects by concatenation of loops and on morphisms with the same grade by

the horizontal composition of homotopies, and the 1-graded constraints are defined
to be the homotopy classes of the respective standard homotopies proving the asso-
ciativity and unit of the loop composition. This graded categorical group P

Γ
(X, ∗)

brings with it all information on the equivariant 2-type of (X, ∗).

The main objective of this paper is to state and prove a precise classification the-
orem for graded categorical groups. The ungraded case, that is, the classification
of categorical groups, was dealt with by Sinh in [17], where they were called Gr-
categories (see also [1], [2], [5] or [12]). In this classification, two graded categor-

ical groups over the same group of grades, say Γ, which are connected by a graded
monoidal equivalence are considered the same. Hence, the problem arises of giving
a complete invariant of this equivalence relation, which we solve by means of triples
(G,A, k), consisting of a Γ-group G, a Γ-equivariant G-module A and a cohomology

class k ∈ H3
Γ
(G,A). Here, Hn

Γ
(G,A), n ≥ 0, are the equivariant cohomology group

studied in [7].
Our classification result point out the utility of graded categorical groups in ho-

motopy theory: they arise as algebraic equivariant 2-types. Indeed, for any triple

(G,A, k) as above, there is a pointed space (X, ∗) on which the group Γ acts by
pointed homeomorphisms, unique up to equivariant weak equivalence, such that
πi(X, ∗) = 0 if i 6= 1, 2, G = π1(X, ∗) as Γ-group, π2(X, ∗) = A as Γ-equivariant
G-module and k is the unique non-trivial “equivariant Postnikov invariant” of (X, ∗)
(i.e., with the same invariants as the graded categorical group P

Γ
(X, ∗)). We should

remark that by a equivariant weak homotopy equivalence, we mean a equivariant
pointed map f : (X, ∗)→ (Y, ∗) which is a weak homotopy equivalence. This should
not be confused with the stronger notion of weak equivariant-homotopy equivalence,

which is a equivariant pointed map that induces weak homotopy equivalences on the
fixed point subspaces of all subgroups of Γ. The Postnikov invariant of a equivariant-
homotopy 2-type is not an element of a cohomology group H3

Γ
(G,A) as above, but

rather an element of a Bredon-Moerdijk-Svensson 3-rd cohomology groups [3, 14],

as it is showed in [4].
Moreover, with the aim of underlining the interest of our results on graded cate-

gorical groups for group theorists, we explain how from these results, we can deduce
an appropriate treatment of the equivariant group extensions with a non-abelian ker-

nel, including theory of obstructions. The conclusions we obtain are parallel to the
known ones for group extensions by Schreier [16] and Eilenberg-MacLane [8], which
appear now as the particular case in which Γ is trivial.

The article is organized in four sections. The first two are dedicated to stating a

minimum of necessary concepts and terminology, by reviewing definitions and some
basic facts concerning the homotopy category of Γ-graded categorical groups (Sec-
tion 1) and the homotopy category of 3-cocycles of Γ-groups (Section 2). Section 3
is the main section, since it includes our theorems on homotopy classification of Γ-

graded categorical groups and their homomorphisms. The last section is devoted to
showing a cohomological solution to the problem of classifying all equivariant group
extensions of any prescribed pair of Γ-groups, as an application of the results in Sec-
tion 3.
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1 Graded Categorical Groups

In this section we review the definition and establish some basic facts concerning
graded categorical groups. Hereafter,Γ is a fixed group, which we regard as a category
with exactly one object, say ∗, where the morphisms are the members of Γ and the

composition law is the group operation: ∗
σ
−→ ∗

τ
→ ∗ = ∗

τσ
−→ ∗.

A Γ-grading on a category G, [9], is a functor gr : G → Γ. For any morphism

f in G with gr( f ) = σ, we refer to σ as the grade of f , and we say that f is a σ-

morphism. The grading is stable if, for any object X of G and any σ ∈ Γ, there
exists an isomorphism X

∼
−→ Y with domain X and grade σ; in other words, the

grading is a cofibration in the sense of Grothendieck [10]. Suppose (G, gr) and

(H, gr) are stably Γ-graded categories. A graded functor F : (G, gr) → (H, gr) is
a functor F : G → H preserving grades of morphisms. Observe from [10, Corol-
lary 6.12] that every graded functor between stably Γ-graded categories is cocarte-

sian. Suppose F ′ : (G, gr)→ (H, gr) is also a graded functor. A graded natural equiv-

alence θ : F → F ′ is a natural equivalence of functors such that all isomorphisms
θ

X
: FX

∼
−→ F ′X are of grade 1. If (G, gr) is a graded category, the category Ker G

is the subcategory consisting of all morphisms of grade 1; by [10, Proposition 6.10],

a graded functor between stably graded categories F : (G, gr) → (H, gr) is a graded
equivalence if and only if the induced functor F : Ker G → Ker H is an equivalence
of categories.

For a Γ-graded category (G, gr), we write G×
Γ

G for the subcategory of the prod-

uct category G×G whose arrows are those pairs of arrows of G with the same grade;
this has an obvious grading, which is stable if and only if gr is.

A Γ-graded monoidal category, [9], (see [15, Chapter I, Section 4.5] for the general
notion of fibred monoidal category) G = (G, gr,⊗, I, a, l, r), is a stably Γ-graded

category (G, gr) together with graded functors

⊗
: G×

Γ
G→ G, I : Γ→ G,(1)

and graded natural equivalences

a : (−⊗−)⊗−
∼
−→ −⊗ (−⊗−)

l : I gr(−)⊗−
∼
−→ id

G
, r : −⊗I gr(−)

∼
−→ id

G

(2)

such that for any objects X,Y,Z,T ∈ G, the following two coherence conditions
hold:

a
X,Y,Z⊗T

a
X⊗Y,Z,T = (X ⊗ a

Y,Z,T )a
X,Y⊗Z,T (a

X,Y,Z ⊗ T),(3)

(X ⊗ l
Y
)a

X,I,Y
= r

X
⊗ Y.(4)

If G, H are Γ-graded monoidal categories, then a graded monoidal functor

F = (F,Φ,Φ
∗

) : G→ H,
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consists of a graded functor F : G→ H, natural isomorphisms of grade 1,

Φ = Φ
X,Y

: FX ⊗ FY
∼
−→ F(X ⊗ Y ),(5)

and an isomorphism of grade 1 (natural with respect to the elements σ ∈ Γ)

Φ
∗

: I
∼
−→ FI(6)

(where I = I(∗)) such that, for all objects X,Y,Z ∈ G, the following coherence
conditions hold:

Φ
X,Y⊗Z

(FX ⊗ Φ
Y,Z )a

FX,FY,FZ
= F(a

X,Y,Z )Φ
X⊗Y,Z (Φ

X,Y ⊗ FZ),(7)

F(r
X
)Φ

X,I (FX ⊗ Φ
∗

) = r
FX
, F(l

X
)Φ

I,X (Φ
∗
⊗ FX) = l

FX
.(8)

Suppose F ′ : G → H is also a graded monoidal functor. A homotopy (or graded

monoidal natural equivalence) θ : F → F ′ of graded monoidal functors is a graded

natural equivalence θ : F
∼
−→ F ′ such that, for all objects X,Y ∈ G, the following

coherence conditions hold:

Φ
′

X,Y
(θ

X
⊗ θ

Y
) = θ

X⊗Y
Φ

X,Y
, θ

I
Φ
∗
= Φ

′

∗
.(9)

For later use, we prove here the lemma below.

Lemma 1.1 Every graded monoidal functor F = (F,Φ,Φ
∗

) : G→ H is homotopic to

a graded monoidal functor F ′ = (F ′,Φ ′,Φ ′
∗

) with F ′I = I and Φ ′
∗
= id

I
.

Proof Consider the family of 1-graded isomorphisms in H, θ
X
=

{
id

FX
if X 6= I

Φ
−1
∗

if X = I
,

X ∈ G. Then, F can be deformed to a new graded monoidal functor, say F ′, in a
unique way such that θ : F → F ′ becomes a homotopy. Namely,

F ′X =

{
FX if X 6= I

I if X = I
, F ′( f : X → Y ) =

(
θ

Y
F( f )θ−1

X
: F ′X → F ′Y

)
,

Φ
′

X,Y
= θ

X⊗Y
Φ

X,Y
(θ

X
⊗ θ

Y
)−1, Φ ′

∗
= θ

I
Φ
∗
= id

I
.

In a monoidal category, an object X is regular if the endofunctors X⊗− and−⊗X

are equivalences. A categorical group is a monoidal category in which every arrow is
invertible and every object is regular, that is, a monoidal groupoid that is compact, in
the sense that for each object X there is another object X ′ with an arrow X ⊗ X ′ → I

(cf. [17, 16, 9, 12, 1]).
If G is a Γ-graded monoidal category, then the subcategory Ker G inherits a mon-

oidal structure, whose tensor product
⊗

: Ker G× Ker G→ Ker G is the restriction
of the graded tensor product (1), the unit object is I = I(∗) and the associativity, left
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and right constraints are the same as G. When Ker G is a categorical group, then G is
said to be a Γ-graded categorical group. Since Ker G is a groupoid if and only if G is,

a Γ-graded categorical group can be defined as a Γ-graded monoidal groupoid such
that for any object X there is an object X ′ with an 1-arrow X ⊗ X ′ → I.

We write

Γ
CG

for the category of Γ-graded categorical groups, whose morphisms are the graded
monoidal functors between them. Indeed,

Γ
CG is a 2-category, whose deformations

are the homotopies between graded monoidal functors. Every homotopy is invert-
ible, so we can define the homotopy category of Γ-graded categorical groups to be the
quotient category with the same objects, but morphisms are homotopy classes of
graded monoidal functors. We write Hom

Γ
CG[G,H] for the homsets of the homo-

topy category, that is,

Hom
Γ
CG[G,H] =

Hom
Γ
CG(G,H)

homotopies
.(10)

A graded monoidal functor inducing an isomorphism in the homotopy category
is said to be a graded monoidal equivalence and two graded categorical groups are

equivalent if they are isomorphic in the homotopy category.
The homotopy classification of Γ-graded categorical groups is our major objec-

tive. For, we will associate to each Γ-graded categorical group G the algebraic data
π

0
G, π

1
G and k(G), which are invariant under graded monoidal equivalences. We

next introduce the first two.
Let us recall that a Γ-group G means a group G enriched with a left Γ-action by

automorphisms, and that an equivariant module over a Γ-group G is a Γ-module A,
that is, an abelian Γ-group, endowed with a G-module structure such that σ(xa) =
(σx)(σa) for all σ ∈ Γ, x ∈ G and a ∈ A [7, Definition 2.1].

Suppose G = (G, gr,⊗, I, a, l, r) is a Γ-graded categorical group. Then we take
the invariant made up of:

- π
0
G = the set of 1-isomorphism classes of the objects in G.

- π
1
G = the set of 1-automorphisms of the unit object I.

Thus, π
i
G = π

i
Ker G, i = 0, 1, the first invariants of the categorical group

Ker G considered by Sinh in [17, Chapter I, Sections 1, 2, Definition 1]. Therefore,
we know that π

0
G is a group, where multiplication is induced by tensor product,

[X][Y ] = [X ⊗ Y ], and that π
1
G is an abelian group, where operation is composi-

tion, with a canonical structure of π
0
G-module as follows [17, Chapter I, Sections 1,

2, Proposition 4]: if s ∈ π
0
G and a ∈ π

1
G, then sa is determined by the formula

δ
X
(a) = γ

X
(sa) for X ∈ s,(11)

where

Aut
1
(X)

δX←−−−−
∼

π
1
G

γX
−−−−→
∼

Aut
1
(X)(12)
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are the isomorphisms defined respectively by δ
X
(a) = r

X
(X ⊗ a)r−1

X
and γ

X
(a) =

l
X
(a ⊗ X)l−1

X
. The proof that (11) defines a π

0
G-module structure on π

1
G uses the

following equalities by [15, Chapter I, Sections 2, (2.2.6.1)] or [9, Theorem 2.2]:

δ
X⊗Y

(a) = X ⊗ δ
Y
(a), γ

X⊗Y
(a) = γ

X
(a)⊗ Y,

δ
X
(a)⊗ Y = X ⊗ γ

Y
(a), δ

I
(a) = a = γ

I
(a),

(13)

for all objects X,Y ∈ G and a ∈ π
1
G. In addition, we shall remark the followings

equalities:

gγ
X
(a) = γ

Y
(σa)g, gδ

X
(a) = δ

Y
(σa)g,(14)

for all σ ∈ Γ, g : X → Y a morphism in G of grade σ and a ∈ π
1
G, where

σa = I(σ)aI(σ)−1.(15)

These equalities (14) can be easily proved: since lX is an isomorphism and we have

γ
Y
(σa)gl

X

nat
== γ

Y
(σa)l

Y

(
I(σ)⊗ g

) def
== l

Y
(σa⊗ Y )

(
I(σ)⊗ g

)

(15)
== l

Y

(
I(σ)⊗ g

)
(a⊗ X)

nat
== gl

X
(a⊗ X)

def
== gγ

X
(a)l

X
,

we deduce the left equality in (14). The proof of the other equality is similar.
It is clear that (15) defines a Γ-module structure on π

1
G. Next we observe that

π
0
G is a Γ-group: if σ ∈ Γ and s ∈ π

0
G, then we write

σs = s ′,(16)

whenever there exists a morphism of grade σ, X → X ′, with X ∈ s and X ′ ∈ s ′.
Since the grading on G is stable, σs is defined for all σ ∈ Γ and s ∈ π

0
G. The map

Γ × π
0
G → π

0
G, s 7→ σs, is well defined since every morphism in G is invertible: if

g : X → X ′ and g ′ : Y → Y ′ are both σ-morphisms and h : X → Y is an 1-morphism,
then h ′ = g ′hg−1 : X ′ → Y ′ is an 1-morphism. Therefore, [X ′] = [Y ′] ∈ π

0
G.

If s, t ∈ π
0
G, X ∈ s, Y ∈ t and g : X → X ′ and h : Y → Y ′ are two σ-morphisms,

then g ⊗ h : X ⊗ X ′ → Y ⊗ Y ′ is also a σ-morphism; whence,

σ(st) = σ[X ⊗ Y ] = [X ′ ⊗ Y ′] = [X ′][Y ′] = σsσt.

Furthermore, if σ, τ ∈ Γ, then for any s = [X] ∈ π
0
G, any τ -morphism h : X → Y

and any σ-morphism g : Y → Z, since the composition f g is a στ -morphism, we
have

στ s = [Z] = σ[Y ] = σ(τ s).

Hence, π
0
G is a Γ-group.

We now are ready for the following proposition which prepares the way for the
classification of graded categorical groups.
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Proposition 1.2 If G = (G, gr,⊗, I, a, l, r) is a Γ-graded categorical group, then π
0
G

is a Γ-group, with Γ-action (16), and π
1
G is a Γ-equivariant π

0
G-module, with Γ-

action (15) and π
0
G-action (11).

Proof It only remains to prove that the π
0
G-action map on π

1
G, (s, a) 7→ sa, is Γ-

equivariant, that is, σ(sa) = (σs)(σa), for each σ ∈ Γ, s ∈ π
0
G and a ∈ π

1
G. For,

suppose X ∈ s and let g : X → Y be any morphism in G of grade σ. Then Y ∈ σs and

γ
Y

(
σ(sa)
)

g
(14)
== gγ

X
(sa)

(11)
== gδ

X
(a)

(14)
== δ

Y
(σa)g.

Since g is invertible, it follows that γ
Y

(
σ(sa)
)
= δ

Y
(σa), whence σ(sa) = (σ s)(σa), as

required.

We shall note that the correspondence

G 7→ (π
0
G, π

1
G)

is the mapping on objects of a functor from
Γ
CG. Let us introduce the symbol (G,A)

(and call it aΓ-pair) to signify that G is aΓ-group and A is aΓ-equivariant G-module.
Suppose that (G ′,A ′) is another Γ-pair. If we have an equivariant homomorphism
p : G → G ′ (so that A ′ becomes a Γ-equivariant G-module via p) and a homo-

morphism of Γ-equivariant G-modules q : A → A ′ (i.e., a homomorphism which is
both of Γ- and G-modules), then the composite object (p, q) is called a morphism of

Γ-pairs; symbolically,

(p, q) : (G,A)→ (G ′,A ′).(17)

Thus, with the obvious definition for the composition of morphisms, (p, q)(p ′, q ′) =
(pp ′, qq ′), we have the category of Γ-pairs, denoted by

Γ
Pairs.

Proposition 1.3

(i) Every graded monoidal functor between Γ-graded categorical groups F : G → H

induces a morphism of Γ-pairs

(π
0
F, π

1
F) : (π

0
G, π

1
G) −→ (π

0
H, π

1
H),(18)

π
0
F : [X] 7→ [FX],

π
1
F : a 7→ Φ−1

∗
F(a)Φ

∗
.

(ii) The mapping F 7→ (π
0
F, π

1
F) defines a functor

(π
0
, π

1
) :

Γ
CG→

Γ
Pairs .

(iii) Two homotopic graded monoidal functors induce the same morphism of Γ-pairs.

(iv) A graded monoidal functor is a graded monoidal equivalence if and only if the

induced Γ-pair morphism is an isomorphism.
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Proof (i) Since the restriction F : Ker G → Ker H is a monoidal functor between
categorical groups, it follows from [17, Chapter I, Section 1, 1, Proposition 9] that

π
0
F : π

0
G → π

0
H is a group homomorphism and that π

1
F : π

1
G → π

1
H is a π

0
G-

module homomorphism, considering π
1
H as π

0
G-module via π

0
F. Therefore, it only

remains to prove that π
0
F and π

1
F are Γ-equivariant maps.

Suppose σ ∈ Γ and s ∈ π
0
G with σs = s ′. This means that there exists an arrow

in G of grade σ, say g : X → X ′, with X ∈ s and X ′ ∈ s ′. Then, π
0
F(σ[X]) =

π
0
F([X ′]) = [FX ′] = σ[FX] = σ

(
π

0
F(s)
)

, because the arrow F f : FX → FX ′.
Therefore, π

0
F is a Γ-group homomorphism.

Suppose now that σ ∈ Γ and a ∈ π
1
G. We have the following diagram,

FI
F(a)

$$HHHHHH

FI(σ)
//

3

FI
F(σa)

zzvvvvvv

1

FI
FI(σ)

//

4

FI

2

I

Φ∗

OO

I(σ)
//

?

I

Φ∗

OO

I

Φ∗

OO

π
1

F(a)

::vvvvvvvv

I(σ)

// I
π

1
F(σa)

ddHHHHHHHH

Φ∗

OO

in which region 4 and the outside commute by the naturalness ofΦ
∗

, regions 1 and 2

commute by definition of π
1
F, and region 3 commutes since F is a functor. It follows

that the region distinguished by the question mark commutes, which tells us that
π

1
F(σa) = σ

(
π

1
F(a)
)

, that is, π
1
F is equivariant.

(ii) It is straightforward.
(iii) Suppose F, F ′ : G → H are two graded monoidal functors made homotopic

by θ : F → F ′. Then, for all object X ∈ G, θ
X

: FX → F ′X has grade 1 and therefore
[FX] = [F ′X], that is, π

0
F([X]) = π

0
F ′([X]). Furthermore, for any a ∈ π

1
G, in the

following diagram,

FI
Fa

//

θ
I

��

FI

θ
I

��

I

Φ∗ ;;vvvvvvv

Φ
′

∗

##GGGGGG
I,

Φ∗
ddHHHHHHH

Φ
′

∗

{{vvvvvv

F ′I
F ′a

// F ′I

the triangles commute by (9) and the square in the middle by naturalness. Hence,

π
1
F(a) = Φ−1

∗
F(a)Φ

∗
= Φ

′

∗

−1
F(a)Φ ′

∗
= π

1
F ′(a).
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(iv) Let F : G → H be a graded monoidal functor between graded Γ-graded
categorical groups. We know that F is a graded equivalence if and only if its restriction

F : Ker G → Ker H is an equivalence, which occurs if and only if π
0
F and π

1
F are

isomorphisms by [17, Chapter I, Sections 1, 2, Proposition 9]. Then, to complete the
proof it is enough to observe that if F is a graded equivalence, then it is actually a
graded monoidal equivalence.

Assume F is a Γ-equivalence. Then there exists a graded functor F ′ : H → G

and graded natural equivalences θ : FF ′
∼
−→ id

H
and θ ′ : F ′F

∼
−→ id

G
such that

F ′θ = θ ′F ′ and Fθ ′ = θF. Now, observe that F ′ can be provided in a unique way
with a monoidal structure such that θ and θ ′ become homotopies, by means of the

isomorphisms Φ ′
X,Y

: F ′X ⊗ F ′Y → F ′(X ⊗ Y ) and Φ ′
∗

: I → F ′I, which make the
following diagrams commutative:

F(F ′X ⊗ F ′Y )
(Φ ′X,Y )

//

ΦF ′X,F ′Y

��

FF ′(X ⊗ Y )

θX⊗Y

��
FF ′X ⊗ FF ′Y

θX⊗θY
// X ⊗ Y

, FI
F(Φ ′∗)

// FF ′I

I

Φ∗

__???????? ΦI

>>||||||||

.

2 The Category of 3-Cocycles of Γ-Groups

In the previous section, we showed that every Γ-graded categorical group has asso-
ciated a Γ-pair (G,A), that is, a Γ-group G and a Γ-equivariant G-module A, whose
cohomology groups Hn

Γ
(G,A) are studied in [7]. The homotopy classification of Γ-

graded categorical groups will be done, in the next section, by showing an equivalence
of categories with the homotopy category of the category 3-cocycles of Γ-groups, Z3

Γ
,

whose brief study this section is dedicated to.

Before introducing the category Z3
Γ
, we shall recall from [7] that the cohomology

groups Hn
Γ

(G,A), which are a kind of cotriple cohomology for the algebraic category
of Γ-groups, for n ≤ 3, can be computed as the cohomology groups of the truncated
cochain complex

C̃
Γ
(G,A) : 0→ C1

Γ
(G,A)

∂
−→ C2

Γ
(G,A)

∂
−→ Z3

Γ
(G,A)→ 0,(19)

in which C1
Γ
(G,A) consists of normalized maps f : G→ A, C2

Γ
(G,A) consists of nor-

malized maps g : G2 ∪ (G × Γ) → A and Z3
Γ
(G,A) consists of all normalized maps

h : G3 ∪ (G2 × Γ) ∪ (G× Γ2)→ A satisfying the following 3-cocycle conditions:

h(x, y, zt) + h(xy, z, t) = xh(y, z, t) + h(x, yz, t) + h(x, y, z),(20)

σh(x, y, z) + h(xy, z, σ) + h(x, y, σ) = h(σx, σ y, σz) + (σx)h(y, z, σ) + h(x, yz, σ),

(21)
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σh(x, y, τ ) + h(τx, τ y, σ) + h(x, σ, τ ) + (στ x)h(y, σ, τ ) = h(x, y, στ ) + h(xy, σ, τ ),

(22)

σh(x, τ , γ) + h(x, σ, τγ) = h(x, στ , γ) + h(γx, σ, τ ),(23)

for x, y, z, t ∈ G, σ, τ , γ ∈ Γ. For each f ∈ C1
Γ
(G,A), the coboundary ∂ f is given by

(∂ f )(x, y) = x f (y)− f (xy) + f (x),(24)

(∂ f )(x, σ) = σ f (x)− f (σx),(25)

and for g ∈ C2
Γ
(G,A), ∂g is given by

(∂g)(x, y, z) = xg(y, z)− g(xy, z) + g(x, yz)− g(x, y),(26)

(∂g)(x, y, σ) = σg(x, y)− g(σx, σ y)− (σx)g(y, σ) + g(xy, σ)− g(x, σ),(27)

(∂g)(x, σ, τ ) = σg(x, τ )− g(x, στ ) + g(τx, σ).(28)

Let us remark that any morphism ofΓ-pairs (p, q) : (G,A)→ (G ′,A ′) yields mor-
phisms of cochain complexes

C̃
Γ
(G ′,A ′)

p∗

−→ C̃
Γ
(G,A ′)

q∗
←− C̃

Γ
(G,A),

where A ′ is considered an equivariant G-module via p : G→ G ′.
We now define the category of 3-cocycles of Γ-groups, Z3

Γ
.

An object of Z3
Γ

is a triple T = (G,A, h), where (G,A) is aΓ-pair and h ∈ Z3
Γ
(G,A).

Suppose T ′ = (G ′,A ′, h ′) is another object in Z3
Γ
. A morphism P : T → T ′ is a

triple P = (p, q, g), where (p, q) : (G,A) → (G ′,A ′) is a Γ-pair morphism and g ∈
C2
Γ
(G,A ′) is a 2-cochain of G in A ′, such that q∗(h) = p∗(h ′) + ∂g. The composite

of P with the morphism P ′ = (p ′, q ′, g ′) : T ′ → T ′ ′ is defined as the triple P ′P =(
p ′p, q ′q, p∗(g ′) + q ′∗(g)

)
. It is easy to verify that P ′P : T → T ′ ′ is a morphism,

that the composition of morphisms is associative and that identity morphisms exist
(namely id

(G,A,h)
= (idG, idA, 0)). Thus we have indeed constructed a category.

The above notion of morphism is, however, a little too rigid for most purposes and
we conclude by showing how to relax it. We say that two morphisms, say (p, q, g),

(p ′, q ′, g ′) : (G,A, h)→ (G ′,A ′, h ′), are homotopic if p = p ′, q = q ′ and there exists
a 1-cochain of G in A ′, f ∈ C1

Γ
(G,A ′), such that g ′ = g + ∂ f . Homotopy is an

equivalence relation among morphisms, and it is also easy to see that it is compatible
with the composition in Z3

Γ
. We can therefore define the homotopy category of 3-

cocycles of Γ-groups, to be the corresponding quotient category.
Closely related to the category Z3

Γ
is the category of 3-cohomology classes of Γ-

groups, H3
Γ
, which plays a fundamental role to state our classification theorem for

Γ-graded categorical groups. It is defined below.

An object of H3
Γ

is a triple (G,A, c), where (G,A) is a Γ-pair and c ∈ H3
Γ
(G,A).

An arrow (p, q) : (G,A, c) → (G ′,A ′, c ′) in H3
Γ

is a morphism of Γ-pairs (p, q):
(G,A) → (G ′,A ′) such that p∗(c ′) = q∗(c) ∈ H3

Γ
(G,A ′). The composition in H3

Γ
is

the composition of Γ-pair morphisms: (p ′, q ′)(p, q) = (p ′p, q ′q).
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We have the cohomology class functor

cl : Z3
Γ
→ H3

Γ
,(29)

(G,A, h) 7→
(

G,A, cl(h)
)
, (p, q, g) 7→ (p, q),

where cl(h) ∈ H3
Γ
(G,A) denotes the cohomology class of h ∈ Z3

Γ
(G,A). This func-

tor clearly carries two homotopic morphisms of Z3
Γ

to the same morphism in H3
Γ
;

it is surjective on objects, and it is full: if (p, q) : cl(G,A, h) → cl(G ′,A ′, h ′) is any

morphism in H3
Γ
, then p∗(h ′) and q∗(h) both represent the same class in H3

Γ
(G,A ′);

so there is a 2-cochain g ∈ C2
Γ
(G,A ′) such that q∗(h) = p∗(h ′) + ∂g, that is,

(p, q, g) : (G,A, h) → (G ′,A ′, h ′) is a morphism in Z3
Γ

with cl(p, q, g) = (p, q).
Observe that if the maps p and q are invertible, then, for any f ∈ C 1

Γ
(G ′,A), the

morphism of Z3
Γ

(
p−1, q−1,−(p−1)∗(q−1)∗(g) + ∂ f

)
: (G ′,A ′, h ′)→ (G,A, h)

is a homotopy inverse of (p, q, g). The next proposition now becomes quite obvious.

Proposition 2.1

(i) For any object (G,A, c) ∈ H3
Γ
, there is an object T of Z3

Γ
with an isomorphism

cl(T) ∼= (G,A, c).

(ii) For any isomorphism (p, q) : cl(T) ∼= cl(T ′), there is a homotopy equivalence

P : T
∼
−→ T ′ such that cl(P) = (p, q).

(iii) cl(P) is an isomorphism if and only if P is a homotopy equivalence.

We also have underlying functors into the category of Γ-pairs

Z3
Γ

U
−→ Γ Pairs

U
←− H3

Γ(30)

(G,A, h)
� // (G,A) (G,A, c)

�oo

(p, q, h)
� // (p, q) (p, q),�oo

(31)

which are clearly surjective on objects, but neither is full and U : Z3
Γ
→

Γ
Pairs

is not faithful. Suppose T = (G,A, h), T ′ = (G ′,A ′, h ′) are objects in Z3
Γ
. If

(p, q) : (G,A)→ (G ′,A ′) is any morphism of Γ-pairs, then we will refer to the coho-
mology class

Obs(p, q) = cl
(

p∗(h ′)− q∗(h)
)
∈ H3

Γ
(G,A ′)(32)

as the obstruction of (p, q).
Vanishing Obs(p, q) means that (p, q) : cl(T) → cl(T) is a morphism in H3

Γ
and

therefore, since cl is full, that there exists a morphism in Z3
Γ
, say P = (p, q, g) : T →

T ′, which realizes (p, q) by the forgetful functor (30). In such a case, observe that

any other realization of (p, q), P ′ : T → T ′, is necessarily written in the form P ′ =

(p, q, g + g ′) with g ′ ∈ Z2
Γ
(G,A ′) and, moreover, that P and P ′ are homotopic if and

only if g ′ = ∂ f for some f ∈ C1
Γ
(G,A ′). Hence, we have the proposition below for

later use.
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Proposition 2.2 Let T = (G,A, h), T ′ = (G ′,A ′, h ′) be objects of Z3
Γ
, and let

(p, q) : (G,A)→ (G ′,A ′) be a morphism of Γ-pairs. Then,

(i) The obstruction Obs(p, q) ∈ H3
Γ
(G,A ′), (32), depends only on the homotopy type

of T and T ′ in Z3
Γ
.

(ii) There exists a morphism T → T ′ in Z3
Γ

that realizes (p, q) by the forgetful functor

U , (30), if and only if its obstruction vanishes.

(iii) If Obs(p, q) = 0, then the set of homotopy classes of arrows T → T ′ in Z3
Γ

that

realize (p, q) are in bijection with the elements of the group H2
Γ
(G,A ′).

3 The Classification Theorems

In this section we describe and study the device, namely a functor
∫
Γ

: Z3
Γ

: →
Γ
CG,

which allows us to prove precise homotopy classification results for Γ-graded cate-
gorical groups. We have summarized these results in two theorems stated below.

Theorem 3.1 There is a classifying functor

cl :
Γ
CG −→ H3

Γ
,(33)

G 7→
(
π

0
G, π

1
G, k(G)

)
,

F 7→ (π
0
F, π

1
F),

which has the following properties:

(i) For any object (G,A, c) ∈ H3
Γ
, there exists a Γ-graded categorical group G with an

isomorphism cl(G) ∼= (G,A, c).

(ii) For any isomorphism (p, q) : cl(G) ∼= cl(H), there is a graded monoidal equiva-

lence F : G
∼
−→ H such that cl(F) = (p, q).

(iii) cl(F) is an isomorphism if and only if F is a graded monoidal equivalence.

Theorem 3.2 Let G,H be Γ-graded categorical groups.

(i) There is a canonical partition of the set of homotopy classes of graded monoidal

functors from G to H,

Hom
Γ
CG[G,H] =

⊔

(p,q)

Hom
(p,q)

[G,H],(34)

where for each morphism of Γ-pairs (p, q) : (π
0
G, π

1
G) → (π

0
H, π

1
H),

Hom
(p,q)

[G,H] is the set of homotopy classes of those F : G → H which realize

(p, q), in the sense that π
0
F = p and π

1
F = q.

(ii) Each morphism of Γ-pairs (p, q) : (π
0
G, π

1
G)→ (π

0
H, π

1
H) determines a three-

dimensional cohomology class

Obs(p, q) = p∗
(

k(H)
)
− q∗
(

k(G)
)
∈ H3

Γ
(π

0
G, π

1
H),(35)

which depends only on the graded equivalence classes of G and H. This invariant

is called the obstruction of (p, q).
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(iii) A morphism of Γ-pairs (p, q) : (π
0
G, π

1
G) → (π

0
H, π

1
H) is realizable, that is,

Hom
(p,q)

[G,H] 6= ∅, if and only if its obstruction vanishes.

(iv) If the obstruction of a morphism of Γ-pairs (p, q) : (π
0
G, π

1
G) → (π

0
H, π

1
H)

vanishes, then there is a (non-natural) bijection

Hom
(p,q)

[G,H] ∼= H2
Γ
(π

0
G, π

1
H).(36)

After Propositions 2.1 and 2.2, both Theorems 3.1 and 3.2 are immediate conse-

quence of the one below.

Theorem 3.3 There is a faithful functor

∫
Γ

: Z3
Γ
−→

Γ
CG ,

which makes the diagram below commutative:

Z3
Γ

∫

Γ

//

U ""EE
EE

E
Γ
CG

(π
0
,π

1
)

{{xxx
xx

Γ
Pairs

,(37)

and induces an equivalence of categories over
Γ

Pairs between the corresponding homo-

topy categories.

Proof This is given in five successive stages.

1. The definition of the functor
∫
Γ

: Z3
Γ
→
Γ

CG.

Every 3-cocycle of a Γ-group G in a Γ-equivariant G-module A, h ∈ Z3
Γ
(G,A),

gives rise to a Γ-graded categorical group

∫

Γ

(G,A, h) =
(∫

Γ

(G,A, h), gr,⊗, I, a, l, r
)
,

which is defined as follows: the objects are the elements x ∈ G and their arrows are

pairs (a, σ) : x → y consisting of an element a ∈ A and an element σ ∈ Γ with
σx = y; the composition of two morphisms x

(a,σ)
−→ y

(b,τ )
→ z is defined by

(b, τ )(a, σ) =
(

b + τa + h(x, τ , σ), τσ
)
.(38)

This composition is associative and unitary owing to the 3-cocycle condition (23)

and the normalization condition of h. Since every arrow is invertible (observe that

(a, σ)−1
=
(
−σ

−1

a − h(x, σ−1, σ), σ−1
)

),
∫
Γ

(G,A, h) is a groupoid. The stable Γ-
grading is given by gr(a, σ) = σ.
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The graded tensor product
∫
Γ

(G,A, h) ×
Γ

∫
Γ

(G,A, h)
⊗
−→
∫
Γ

(G,A, h) is defined
by

(x
(a,σ)
−−−−→ y)⊗ (x ′

(b,σ)
−−−−→ y ′) = (xx ′

(a+y b+h(x,x ′,σ),σ)
−−−−−−−−−−→ yy ′),(39)

which is a functor thanks to the 3-cocycle condition (22) and the normalization of h.
The associativity isomorphisms are

ax,y,z =
(

h(x, y, z), 1
)

: (xy)z → x(yz),(40)

which satisfy the coherence condition (3) because of the 3-cocycle condition (20) of
h, and define a graded natural equivalence a : (−⊗−)⊗−

∼
−→ −⊗ (−⊗−) thanks

to the 3-cocycle condition (21).
The unit graded functor I : Γ→

∫
Γ

(G,A, h) is defined by

I(∗
σ
−→ ∗) = (1

(0,σ)
−→ 1),(41)

and the unit constraints are identities: l
x
= (0, 1) = r

x
: x→ x.

Since for any object x ∈ G, we have x ⊗ x−1
= xx−1

= 1 = I,
∫
Γ

(G,A, h) is
actually a Γ-graded categorical group.

If (p, q, g) : (G,A, h) −→ (G ′,A ′, h ′) is a morphism in Z3
Γ
(G,A), then the associ-

ated graded monoidal functor

∫

Γ

(p, q, g) :

∫

Γ

(G,A, h)→

∫

Γ

(G ′,A ′, h ′),

is given by

(x
(a,σ)
−−−−→ y) 7→

(
p(x)

(q(a)+g(x,σ),σ)
−−−−−−−−→ p(y)

)
,(42)

together with the isomorphisms

Φx,y = (g(x, y), 1) : p(x)p(y)→ p(xy),(43)

and

Φ∗ = (0, 1) = id
I
: p(1)→ 1.(44)

So defined, and taking in account that (p, q) : (G,A) → (G ′,A ′) is a morphism of
Γ-pairs such that q∗(h) = p∗(h ′) + ∂g, it is ot hard to see that

∫
Γ

(p, q, g) is a functor
because of the coboundary condition (28) and because g is normalized, that the iso-

morphisms (43) define a graded natural equivalence owing to coboundary condition
(27) and that the coherence condition (7) follows from (26) and the normalization
of g.

For (G,A, h)
(p,q,g)
−→ (G ′,A ′, h ′)

(p ′,q ′,g ′)
−→ (G ′ ′,A ′ ′, h ′′) two composable

morphisms in Z3
Γ
, it is straightforward to verify that

∫
Γ

(p ′, q ′, g ′)
∫
Γ

(p, q, g) =
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∫
Γ

(
p ′p, q ′q, p∗(g ′) + q ′∗(g)

)
, and that

∫
Γ

(id
G
, id

A
, 0) = id∫

Γ
(G,A,h). Hence,

∫
Γ

: Z3
Γ
→

Γ
CG is indeed a functor, which is plainly recognized to be faithful.

2. The commutativity of (37).
Let us note that, for any object (G,A, h) ∈ Z3

Γ
, Ker

∫
Γ

(G,A, k) can be identified

(writing x
(a,1)
−→ x by x

a
→ x) with the categorical group whose objects are the elements

of the group G, whose hom-sets are given by

Hom
1
(x, y) =

{
A for x = y

∅ for x 6= y,

whose composition is addition in A, whose tensor product is given by

(x
a
−→ x)⊗ (x ′

b
−→ wx ′) = (xx ′

a+y b
−→ xx ′ ′),

whose associativity isomorphism is

h(x, y, z) : (xy)z −→ x(yz),

and whose (strict) unit object is the 1 of G. Then, we see that

(
π

0

∫

Γ

(G,A, h), π
1

∫

Γ

(G,A, h)
)
= (G,A)(45)

as pairs of groups. Moreover, for any σ ∈ Γ and x ∈ G, (0, σ) : x→ σx is a morphism

of grade σ in
∫
Γ

(G,A, h), so the Γ-action (16) coincides with the one originally given.
Since, for any σ ∈ Γ and a = (a, 1) ∈ Aut 1(1), we have

I(σ)aI(σ)−1
= (0, σ)(a, 1)(0, σ−1)

(37)
== (σa, 1) = σa,

it follows that the Γ-action on A, (15), is the given one. Moreover, the group isomor-
phisms (12) for our graded categorical group

∫
Γ

(G,A, h) are

A
δx−−−−→
∼

A
γx−−−−→
∼

A, x ∈ G,

where δx(1
a
−→ 1) = (x

0
−→ x) ⊗ (1

a
−→ 1) = (x

xa
→ x) and γx(1

a
−→ 1) =

(1
a
−→ 1)⊗ (x

0
−→ x) = (x

a
→ x), whence the G-action on A defined by (11) is also

the given G-module structure. Therefore, equality (45) is of Γ-pairs, from which it

is now easy to complete the proof that the composite Z3
Γ

∫

Γ−→ CG
(π

0
,π

1
)

−→
Γ

Pairs is the

same as the forgetful functor U (30), (G,A, h) 7→ (G,A).

3. Morphisms in Z3
Γ

are homotopic if and only if their associated morphisms by
∫
Γ

are homotopic.
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Let (p, q, g), (p ′, q ′, g ′) : (G,A, h) −→ (G ′,A ′, h ′) be two morphisms in Z3
Γ
, and

suppose first that they are homotopic, so that g = g ′ + ∂ f for some f ∈ C1
Γ
(G,A ′).

Then, the family of isomorphisms of grade 1 in
∫
Γ

(G ′,A ′, h ′),

θx =
(

f (x), 1
)

: p(x) −→ p(x), x ∈ G,

is easily recognized as a graded equivalence θ :
∫
Γ

(p, q, g) −→
∫
Γ

(p ′, q ′, g ′), thanks

to coboundary condition (27), which, owing to (26) and the normalization of f also
satisfies the coherence conditions (9). That is, θ is a homotopy of graded monoidal
functors. And conversely, if we suppose θ :

∫
Γ

(p, q, g) −→
∫
Γ

(p ′, q ′, g ′) is any ho-

motopy and we write θx = ( f (x), 1) : p(x) → p(x) for a map f : G → A ′, then we

can see that f ∈ C1
Γ
(G,A ′) and g = g ′ + ∂ f amount to the conditions of θ being

a graded monoidal equivalence. Therefore, (p, q, g) and (p ′, q ′, g ′) are homotopic
morphisms in Z3

Γ
.

4. The induced functor by
∫
Γ

between the homotopy categories is full.

Suppose that F = (F,Φ,Φ
∗

) :
∫
Γ

(G,A, h) −→
∫
Γ

(G ′,A ′, h ′) is any graded mon-

oidal functor, where (G,A, h) and (G ′,A ′, h ′) are objects of Z3
Γ
. By Lemma 1.1, there

is no loss of generality in assuming that F satisfies that Φ
∗
= id1 and note that, then,

by coherence condition (7), Φx,1 = id1 = Φ1,x for all x ∈ G.

Let (p, q) = ((π
0
F, π

1
F) : (G,A) −→ (G ′,A ′) be the induced morphism ofΓ-pairs

(see Proposition 1.3). Then,

p(x) = F(x), F(1
(a,1)
−→ 1) = 1

(q(a),1)
−→ 1,

for all x ∈ G and a ∈ A. Further, since every morphism of grade 1, say x
(a,1)
−→ x, can

be expressed in the form

(x
(a,1)
−→ x) = (1

(a,1)
−→ 1)⊗ (x

(0,1)
−→ x),

where (0, 1) = idx, we deduce by naturalness that

F(x
(a,1)
−→ x) = F(1

(a,1)
−→ 1)⊗ F(x

(0,1)
−→ x) = (1

(q(a),1)
−→ 1)⊗

(
p(x)

(0,1)
−→ p(x)

)

= p(x)
(q(a),1)
−→ p(x).

Let us write

F(x
(0,σ)
−→ y) = p(x)

(g(x,σ),σ)
−→ p(y),

with g(x, σ) ∈ A ′, for each σ ∈ Γ and x ∈ G, where y = σx, and

Φx,y = p(x)p(y)
(g(x,y),1)
−→ p(xy),

with g(x, y) ∈ A ′, for each x, y ∈ G.
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Thus we get a 2-cochain g ∈ C2
Γ
(G,A ′), which, together with p and q, determines

completely F. In fact, for any morphism in
∫
Γ

(G,A, h), say (a, σ) : x → y, where

y = σx, we have

F(x
(a,σ)
−→ y) = F(x

(0,σ)
−→ y)F(y

(a,1)
−→ y)

=
(

p(x)
(g(x,σ),σ)
−→ p(y)

)(
p(y)

(q(a),1)
−→ p(y)

)

= p(x)
(q(a)+g(x,σ),σ)
−→ p(y).

It is straightforward to see that the equality q∗(h) = p∗(h ′) + ∂g amounts to
the properties of F being a graded monoidal functor. More precisely, qh(x, y, z) =
h ′
(

p(x), p(y), p(z)
)

+ ∂g(x, y, z) follows from the coherence condition (7);

qh(x, y, σ) = h ′
(

p(x), p(y), σ
)

+∂g(x, y, σ) owing to the naturalness of the isomor-

phismsΦx,y and qh(x, σ, τ ) = h ′
(

p(x), σ, τ
)

+∂g(x, σ, τ ) is a direct consequence of

F being a functor.
Thus, (p, q, h) : (G,A, h) −→ (G ′,A ′, h ′) is a morphism in Z3

Γ
and, by construc-

tion (see (42), (43) and (44)), it is clear that
∫
Γ

(p, q, g) = F.

5. For any graded categorical group G, there exists a 3-cocycle

h
G

∈ Z3
Γ
(π

0
G, π

1
G),(46)

with a graded monoidal equivalence

F :

∫

Γ

(π
0
G, π

1
G, h

G

)
∼
−→ G

such that
π

i
F = id

πi G
, i = 0, 1.

A graded category (C, gr) is skeletal when Ker C is a skeletal category, that is, when

any two objects isomorphic by an isomorphism of grade 1 are equal. The graded
categorical group G is equivalent to a skeletal one, say Ĝ, which can be constructed
as follows: for each each s ∈ π

0
G, let us choose an object

Xs ∈ s, with X
1
= I,

and for any other X ∈ s, we fix an arrow of grade 1

Γ
X

: X → Xs, with Γ
Xs
= id

Xs
, Γ

I⊗Xs
= l

Xs
and Γ

Xs⊗I
= r

Xs
.

Let Ĝ be the full subcategory of G whose objects are all Xs, s ∈ π
0
G. Then, Ĝ is stably

Γ-graded with ĝr = gr |
Ĝ

; the inclusion functor in : Ĝ ↪→ G is a graded equiva-
lence and clearly Ĝ is a skeletal graded category. Now, the graded categorical group
structure of G can be transported to a graded categorical group structure on Ĝ in
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a unique way such that the inclusion functor in , together with the isomorphisms
Φ

Xs ,Ys
= Γ

Xs⊗Xt
: Xs ⊗ Xt → Xs ⊗̂Xt = Xst , Φ∗ = id

I
, turns out to be a graded

monoidal equivalence (see (7)). Note that in the resulting skeletal graded categorical
group Ĝ = (Ĝ, ĝr, ⊗̂, Î, â, l̂, r̂), the unit Î = I is strict in the sense that l̂ = id = r̂.

Hence, Ĝ has the following properties:
P1. Î(σ) ⊗̂ f = f = f ⊗̂ Î(σ) for any morphism f in Ĝ of grade σ, (due to the

naturalness of the unit constraints).
P2. âXr ,Xs,Xt

= id
Xrst

, whenever one of r, s or t is 1, (because of the coherence
condition (4) and [12, Proposition 1.1]).

P3. For any σ ∈ Γ, there exists a morphism of grade σ in Ĝ, Xs → Xt , if and only

if σs = t , (according to (16)).
P4. For any s ∈ π

0
G, the group isomorphisms (12),

Aut
1
(Xs)

δ̂
←− π

1
Ĝ = π

1
G

γ̂
−→ Aut

1
(Xs),

are given by δ̂(a) = Xs ⊗̂ a, γ̂(a) = a ⊗̂Xs.

P5. For any s ∈ π
0
Ĝ = π

0
G and a ∈ π

1
Ĝ = π

1
G,

Xs ⊗̂ a = sa ⊗̂Xs,

(according to (11)).

P6. IfΥ : Xr → Xs is any morphism in Ĝ of grade σ, then, for any a ∈ π
1
Ĝ = π

1
G,

Υ(Xr ⊗̂ a) = (σa ⊗̂Xs)Υ,

(by (14)).

We are now ready to build the 3-cocycle h
G

(46). To do so, we begin by choosing,
for each σ ∈ Γ and each s ∈ π

0
Ĝ = π

0
G, an arrow in Ĝ with domain Xs and grade σ,

say

Υ(s,σ) : Xs → Xσs, withΥ(1,σ) = Î(σ) andΥ(s,1) = idXs
.

Then, using the group isomorphisms γ̂ described in P4, we determine a 3-cochain

h
G

∈ C3
Γ
(π

0
G, π

1
G) by the equations

âXr ,Xs,Xt
= h

G

(r, s, t) ⊗̂Xrst ,(47)

Υ(rs,σ) =
(

h
G

(r, s, σ) ⊗̂Xσ(rs)

)(
Υ(r,σ) ⊗̂Υ(s,σ)

)
,(48)

Υ(τ r,σ)Υ(r,τ ) =
(

h
G

(r, σ, τ ) ⊗̂X(στ)r

)
Υ(r,στ ).(49)

Observe that h
G

satisfies the normalization conditions as a consequence of the

above properties, P1 and P2. To prove that h
G

is indeed a 3-cocycle, note that the

coherence equations for the associativity constraint (3) say that, for any r, s, t, u ∈
π

0
G,

(
h

G

(r, s, tu) ⊗̂Xrstu

)(
h

G

(rs, t, u) ⊗̂Xrstu

)

=
(

Xr ⊗̂ h
G

(s, t, u) ⊗̂Xstu

)(
h

G

(r, st, u) ⊗̂Xrstu

)(
h

G

(r, s, t) ⊗̂Xrstu

)
.
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Then, by property P5, we deduce the equality

(
h

G

(r, s, tu)h
G

(rs, t, u)
)
⊗̂Xrstu =

(
rh

G

(s, t, u)h
G

(r, st, u)h
G

(r, s, t)
)
⊗̂Xrstu,

from which follows the cocycle condition (20) (written multiplicatively).

The cocycle condition (21) is a consequence of the naturalness of the associativity
constraint: for any arrow σ ∈ Γ and any r, s, t ∈ π

0
G, we have the diagram

Xσ

3

2

σh(r,s,t) ⊗̂ Xσ
// Xσ

5

Xσ

h(rs,t,σ) ⊗̂ Xσ

<<zzzzzzzzzzzzzzzzzz

X

4

1

Υrst

OO

h(r,s,t) ⊗̂ X
//

Υrs ⊗̂Υt

oo

(Υr ⊗̂Υs) ⊗̂Υt

��

X

6

Υr ⊗̂Υst

//

Υrst

OO

Υr ⊗̂(Υs ⊗̂Υt )
��

Xσ

h(r,st,σ) ⊗̂ Xσ

bbDDDDDDDDDDDDDDDDDD

Xσ

h(r,s,σ) ⊗̂ Xσ

bbDDDDDDDDDDDDDDDDDD

h(σr,σ s,σt) ⊗̂ Xσ

// Xσ

(σ r)h(s,t,σ) ⊗̂ Xσ

<<zzzzzzzzzzzzzzzzzz

where we have written Xrst by X, Xσrσ sσt by Xσ , Υ(x,σ) by Υx, for x = r, s, t , and h by

h
G

. In this diagram, region 1 commutes by the naturalness of a and region 2 is com-

mutative thanks to the property P6. Since h(r, s, σ) ⊗̂Xσ =
(

h(r, s, σ) ⊗̂Xσr

)
⊗̂Xσ sσt

and Xσr ⊗̂
(

h(s, t, σ) ⊗̂Xσ sσt

) P5
==

(σr)h(s, t, σ) ⊗̂Xσ , the regions 3–6 commute by the

definition of h = h
G

, (48). Then, the outside region is also commutative, since
(Υr ⊗̂Υs) ⊗̂Υt is invertible, and the cocycle condition (21) follows.

Cocycle condition (22) can be deduced from the fact that ⊗̂ : Ĝ ×
Γ

Ĝ → Ĝ is a
functor: for every τ , σ ∈ Γ and r, s ∈ π

0
Ĝ = π

0
G, we can compute the composition

morphism

J = (Xrs

Υ(rs,τ)
−→ Xτ (rs)

Υ(τ (rs),σ)
−→ Xστ (rs))

in two ways. Writing Xστ (rs) by X, on the one hand, we have

J
(48)
==
(

h
G

(rs, σ, τ ) ⊗̂X
)
Υ(rs,στ )

(47)
==
(

h
G

(rs, σ, τ ) ⊗̂X
)(

h
G

(r, s, στ ) ⊗̂X
)(
Υ(r,στ ) ⊗̂Υ(s,στ )

)

=
(

h
G

(rs, σ, τ )h
G

(r, s, στ ) ⊗̂X
)(
Υ(r,στ ) ⊗̂Υ(s,στ )

)
,
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and on the other hand,

J
(47)
== Υ(τ (rs),σ)

(
h

G

(r, s, τ ) ⊗̂Xτ (rs)

)
(Υ(r,τ ) ⊗̂Υ(s,τ ))

P6
==
(
σh

G

(r, s, τ ) ⊗̂X
)
Υ(τ (rs),σ)(Υ(r,τ ) ⊗̂Υ(s,τ ))

(47)
==
(
σh

G

(r, s, τ ) ⊗̂X
)(

h
G

(τ r, τ s, σ) ⊗̂X
)(
Υ(τ r,σ) ⊗̂Υ(τ s,σ)

)
(Υ(r,τ ) ⊗̂Υ(s,τ ))

=
(
σh

G

(r, s, τ )h
G

(τ r, τ s, σ) ⊗̂X
)

(Υ(τ r,σ)Υ(r,τ ) ⊗̂Υ(τ s,σ)Υ(s,τ ))

(48)
==
(
σh

G

(r, s, τ )h
G

(τ r, τ s, σ) ⊗̂X
)

[(
h

G

(r, σ, τ ) ⊗̂Xστ r
)
⊗̂
(

h
G

(s, σ, τ ) ⊗̂Xστ s
)]

(Υ(r,στ ) ⊗̂Υ(s,στ ))

=
(
σh

G

(r, s, τ )h
G

(τ r, τ s, σ) ⊗̂X
)[(

h
G

(r, σ, τ ) ⊗̂Xστ r
)
⊗̂Xστ s

]

[
Xστ r ⊗̂

(
h

G

(s, σ, τ ) ⊗̂Xστ s
)]

(Υ(r,στ ) ⊗̂Υ(s,στ ))

P5
==
(
σh

G

(r, s, τ )h
G

(τ r, τ s, σ) ⊗̂X
)(

h
G

(r, σ, τ ) ⊗̂X
)(

(στ r)h
G

(s, σ, τ ) ⊗̂X
)

(Υ(r,στ ) ⊗̂Υ(s,στ ))

=
(
σh

G

(r, s, τ )h
G

(τ r, τ s, σ)h
G

(r, σ, τ )(στ r)h
G

(s, σ, τ ) ⊗̂X
)

(Υ(r,στ ) ⊗̂Υ(s,στ )).

Hence, by comparison and taking into account that Υ(r,στ ) ⊗̂Υ(s,στ ) is invertible, we
arrive at (22).

To prove (23) let γ, τ , σ ∈ Γ and r ∈ π
0
Ĝ = π

0
G. We have the diagram

X

hG(r,σ,τγ) ⊗̂ X

��

hG(r,στ ,γ) ⊗̂ X
//

3

X

hG(γ r,σ,τ ) ⊗̂ X

��

2

Xr
Υ(r,γ)

//

Υ(r,τγ)

��

Υ(r,στγ)
ddIIIIIII

1

Xγ r

Υ(γ r,στ)
::uuuuuuu

Υ(γ r,τ)

��

4

Xτγ r

Υ(τγ r,σ)zzuuuuuu

hG(r,τ ,γ) ⊗̂ Xτγ r

//

5

Xτγ r

Υ(τγ r,σ) $$IIIIII

X
σhG(r,τ ,γ) ⊗̂ X

// X

where we have written X by Xστγ r . In this diagram, regions 1–4 are commutative
by (49) and region 5 commutes by the property P6. Hence, the outside region is
commutative (since Υ(r,στγ) is invertible) and (23) follows.
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Since F = (F,Φ = id,Φ
∗
= id) :

∫
Γ

(π
0
G, π

1
G, h

G

)→ Ĝ, where

F(r
(a,σ)
−−−−→ s) = (Xr

(a ⊗̂ Xs)Υ(r,σ)
−−−−−−−→ Xs),

is easily recognized as an equivalence (actually an isomorphism) of graded categorical

groups with π
i
F = idπ

i
G, i = 0, 1, the proof of the theorem is complete.

It is a consequence of Theorem 3.3 that the cohomology class of cocycle (46), h
G

∈
Z3
Γ
(π

0
G, π

1
G), depends only on the homotopy equivalence class of G. We denote it

by

k(G) = cl(h
G

) ∈ H3
Γ
(π

0
G, π

1
G).

The classifying functor (33) in Theorem 3.1,

cl :
Γ
CG→ H3

Γ
, G 7→

(
π

0
G, π

1
G, k(G)

)
,

is the composition of the functors over the category Γ Pairs,

ΓCG // //

(π0,π1) ))SSSSSSSSSSSSSSSSSSSS HoΓ CG

∫
−1
Γ

∼

//

(π0,π1)

$$IIIIIIIII
Ho Z3

Γ

cl
//

U

{{vv
vv

vv
vv

v

H3
Γ
,

Uuukkkkkkkkkkkkkkkkkkk

Γ Pairs

where
Γ
CG → Ho

Γ
CG is the homotopy class functor,

∫ −1

Γ

denotes a quasi-inverse,

over
Γ

Pairs, of the equivalence induced by
∫
Γ

between the homotopy categories, and

cl : Z3
Γ
→ H3

Γ
is the cohomology class functor (29).

Therefore, Theorems 3.1 and 3.2 follow from Theorem 3.3 and Propositions 2.1

and 2.2.

4 Equivariant Group Extensions

For G and N two given Γ-groups, by an equivariant group extension of G by N we
mean a short exact sequence of Γ-groups and equivariant homomorphisms

E : N
i

� E
p

� G;(50)

thus, N can be identified with a normal Γ-subgroup of E and E/N ∼= G as Γ-groups.
If E and E ′ represent two such equivariant group extensions, then we say that they
are equivalent if there exists a Γ-group homomorphism g : E → E ′ such that gi = i ′

and p ′g = p. Note then that g must be an isomorphism. We denote by

Ext
Γ
(G,N)(51)
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the set of equivalence classes of equivariant group extensions of G by N .
In this section, we show a cohomological solution to the problem of classifying

all equivariant group extensions of any prescribed pair of Γ-groups, (G,N). The
treatment is parallel to the known theory [8] of extensions of groups, which appears
now as the particular case in which Γ = 1, the trivial group. However, the proofs
here bear only an incidental similarity with those by Eilenberg and MacLane, since

we derive the results on equivariant group extensions from the results obtained on
the classification of graded categorical groups.

Our conclusion here can be summarized as follows.
If N is a Γ-group, then the group Aut(N) of all (group) automorphisms of N

is also a Γ-group under the diagonal Γ-action, σ f : n 7→ σ f (σ
−1

n), and the map
C : N → Aut(N) sending each element n ∈ N into the inner automorphism given

by conjugation with n, Cn : n ′ 7→ nn ′n−1, is a Γ-group homomorphism. Then, the
center of N , Z(N) = Ker(C), and the group of automorphism classes Out(N) =
Aut(N)/ In(N) = coker(C), are both Γ-groups. Furthermore, Z(N) is a Γ-equi-
variant Out(H)-module with action [ f ]a = f (a).

If (50) is an equivariant extension of G by N , then the assignment to each e ∈ E

of the operation of conjugation by e in N induces an equivariant homomorphism
p

E
: G→ Out(N). A pair (N, p), where p : G → Out(N) is a homomorphism of

Γ-groups, is what we call an equivariant G-kernel (cf. [8]).

We state the following theorem.

Theorem 4.1 Let G,N be two Γ-groups.

(i) There is a canonical partition

Ext
Γ
(G,N) =

⊔

p

Ext
Γ

(
G, (N, p)

)
,

where, for each equivariant homomorphism p : G → Out(H), Ext
Γ

(
G, (N, p)

)

is the set of classes of equivariant extensions E : N � E � G, of G by N, which

realize p, that is, with p
E
= p .

(ii) Each equivariant G-kernel (N, p) invariably determines a 3-dimensional coho-

mology class

Obs(p) ∈ H3
Γ

(
G,Z(N)

)
,

of G with coefficients in the center of N (with respect to the equivariant G-module

structure on Z(N) obtained via p). This invariant is called the obstruction of

(N, p).

(iii) An equivariant G-kernel, (N, p) is realizable, that is, Ext
Γ

(
G, (N, p)

)
6= ∅, if

and only if its obstruction vanishes.

(iv) If the obstruction of an equivariant G-kernel, (N, p), vanishes, then there is a

bijection

Ext
Γ

(
G, (N, p)

)
∼= H2

Γ

(
G,Z(N)

)
.

This theorem is in fact an application of Theorem 3.2 for two particular Γ-graded
categorical groups, G = dis

Γ
G and H = Hol

Γ
N , canonically built from the Γ-groups

G and N as follows:
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The discrete Γ-graded categorical group dis
Γ
G defined by a Γ-group G, has the

elements of G as objects and their arrows σ : x → y are the elements σ ∈ Γ with
σx = y. Composition is multiplication in Γ and the grading gr : dis

Γ
G → Γ is the

obvious map gr(σ) = σ. The graded tensor product is given by

(x
σ
−→ y)⊗ (x

σ
−→ y) = (xx

σ
−→ yy),(52)

and the graded unit I : Γ→ dis
Γ
G by

I(∗
σ
−→ ∗) = (1

σ
−→ 1);(53)

the associativity and unit isomorphisms are identities.
The holomorph Γ-graded categorical group of a Γ-group N , Hol

Γ
N , has the el-

ements of the Γ-group Aut(N) as objects. An arrow of grade σ, σ ∈ Γ, is a pair

(n, σ) : f → g, where n ∈ N , with σ f = Cng. The composition of two arrows

f
(n,σ)
−→ g

(m,τ )
−→ h is given by

(m, τ ) · (n, σ) = (τnm, τσ),(54)

the graded tensor product is

( f
(n,σ)
−−−−→ g)⊗ ( f ′

(n ′,σ)
−−−−→ g ′) = ( f f ′

(ng n ′,σ),σ)
−−−−−−→ gg ′),(55)

and the graded unit I : Γ→ Hol
Γ
N is defined by

I(∗
σ
−→ ∗) = id

N

(0,σ)
−→ id

N
.(56)

The associativity and unit constraints are identities.
Observe that the complete invariants (33) of these Γ-graded categorical groups

are of the form

cl(dis
Γ
G) = (G, 0, 0),

cl(Hol
Γ
N) =

(
Out(N),Z(N), k(N)

)
,

(57)

where we are writing k(N) for k(Hol
Γ
N) ∈ H3

Γ

(
Out(N),Z(N)

)
. Hence, a mor-

phism of Γ-pairs (p, q) : (π
0
dis

Γ
G, π

1
dis

Γ
G) → (π

0
Hol

Γ
N, π

1
Hol

Γ
N) is the same as

an equivariant G-kernel, p : G→ Out(N).
To apply Theorem 3.2 in order to get Theorem 4.1, we develop next the device

of factor sets for equivariant group extensions, such as Schreier [16] did for ordi-

nary group extensions. This allows us to show how the graded monoidal functors
dis

Γ
G→ Hol

Γ
N are the appropriate systems of dates to construct the manifold of all

equivariant group extensions of G by N .

Theorem 4.2 (Schreier Theory for Equivariant Group Extensions) For any Γ-

groups G, N, there is a bijection

Hom
Γ
CG[dis

Γ
G,Hol

Γ
N] ∼= Ext

Γ
(G,N),(58)

between the set of homotopy classes of graded monoidal functors from dis
Γ
G to Hol

Γ
N

and the set of equivalence classes of equivariant extensions of G by N.
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Proof First, let us recall from Lemma 1.1 that every graded monoidal functor is ho-
motopic to one F = (F,Φ,Φ

∗
) in which FI = I and Φ

∗
= idI . Hence, we can restrict

our attention to this kind of graded monoidal functors F = (F,Φ) : dis
Γ
G→ Hol

Γ
N .

Second, observe that the system of data describing such a graded monoidal functor
F = (F,Φ) consists of a pair of maps ( f , ϕ), where

f : G→ Aut(N), ϕ : (G× G) ∪ (G× Γ)→ N,(59)

such that we write

F(x
σ

−−−−→ σx) = fx
(φ(x,σ),σ)
−−−−−→ fσx, Φx,y = fx fy

(φ(x,σ),1)
−−−−−→ fxy ,(60)

for all x, y ∈ G and σ ∈ Γ. When we try to write the conditions of (F,Φ) being a

graded monoidal functor in terms of ( f , ϕ), then we find the following conditions
for ( f , ϕ):

f1 = id
N
, ϕ(x, 1) = 1 = ϕ(1, y),(61)

fx fy = Cϕ(x,y) fxy ,(62)

σ fx = Cϕ(x,σ) fσx,(63)

ϕ(x, y)ϕ(xy, z) = fx

(
ϕ(y, z)

)
ϕ(x, yz),(64)

σϕ(x, y)ϕ(xy, σ) = ϕ(x, σ) f
(σ x)

(
ϕ(y, σ)

)
ϕ(σxσ y),(65)

ϕ(x, στ ) = σϕ(x, τ )ϕ(τx, σ),(66)

for all x, y, z ∈ G, σ, τ ∈ Γ. To prove this in full, several verifications are needed,
but they are straightforward: conditions (62) and (63) say that

(
ϕ(x, y), 1

)
and(

ϕ(x, σ), σ
)

in (60) are, respectively, morphisms in Hol
Γ
N ; (64) expresses the co-

herence condition (7), while (65) means that the isomorphisms Φx,y are natural and
(66) that F preserves the composition of morphisms. The normalization condition
(61) says that F preserves both identities as the unit object.

Let us note that when Γ = 1, the trivial group, then a pair ( f , ϕ) describing a

graded monoidal functor from disG to HolN is just a Schreier system of factor sets
for a group extension of G by N .

Suppose ( f ′, ϕ ′) describes another monoidal functor F ′ = (F ′,Φ ′) : dis
Γ
G →

Hol
Γ
N . Then, any homotopy θ : F → F ′ is given by a map

g : G→ H,(67)

such that one writes

θx = fx
(g(x),1)
−→ f ′x ,(68)

for all x ∈ G. In terms of map g, the conditions for θ to be a homotopy are:

g(1) = 1(69)

fx = Cg(x) f ′x ,(70)

ϕ(x, y)g(xy) = g(x) f ′x
(

g(y)
)
ϕ ′(x, y),(71)

ϕ(x, σ)g(σx) = σg(x)ϕ ′(x, σ),(72)
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for all x, y ∈ G, σ ∈ Γ. Condition (70) expresses that θx is a morphism in Hol
Γ
N

from fx to f ′x , (72) is the naturalness of θ and (71) and (69) say that the coherence

conditions (9) hold.

We now are ready to prove bijection (58).

Every graded monoidal functor ( f , ϕ) : dis
Γ
G→ Hol

Γ
N gives rise to an equivari-

ant Γ-group extension

∆( f , ϕ) : N
i

� N×( f ,ϕ)G
p

� G,(73)

that we call a crossed product equivariant extension, in which: Γ-group N × ( f ,ϕ)G has
the same elements as N × G, multiplication according to the rule

(n, x)(m, y) =
(

n fx(m)ϕ(x, y), xy
)
,(74)

and Γ-action given by

σ(n, x) = (σnϕ(x, σ), σx).(75)

The maps i and p are defined by

i(n) = (n, 1), p(n, x) = x.(76)

It is well known (see [13, Lemma 8.1]) that operation (74) in fact defines a group
structure on N×( f ,ϕ)G thanks to conditions (61), (62) and (64). Furthermore, a

routine calculation shows that (63) and (65) yield σ[(n, x)(m, y)] = σ(n, x)σ(m, y),
and that (66) yields τ

(
σ(n, x)

)
=
τσ(n, x). Hence, N × ( f ,ϕ)G is a Γ-group and it is

easy to check that then∆( f , ϕ) is actually an equivariant group extension of G by N .

Suppose ( f ′, ϕ ′) : dis
Γ
G → Hol

Γ
N is also a graded monoidal functor. If there

is a Γ-group isomorphism, say g : N×( f ′,ϕ ′)G → N×( f ,ϕ)G, establishing an equiv-
alence between the corresponding crossed product equivariant extensions, then we
can write g in the form g(n, x) = g(n, 1)g(1, x) = (n, 1)

(
g(x), x

)
=
(

ng(x), x
)

for

a map g : G→ N. Since g
(

(1, x)(n, 1)
)
= g
(

f ′x (n), x
)
=
(

f ′x (n)g(x), x
)

, while

g(1, x)g(n, 1) =
(

g(x) fx(n), x
)

, then f ′x = Cg(x) fx; that is, (70) holds. Because

g
(
σ(1, x)

)
=
(
ϕ ′(x, σ)g(σx), σx

)
, while σg(1, x) =

(
σg(x)ϕ(x, σ), σx

)
, we see that

(72) holds. Therefore, g defines a homotopy between (the graded monoidal functors
defined by) ( f ′, ϕ ′) and ( f , ϕ).

Conversely, if ( f ′, ϕ ′) and ( f , ϕ) are made homotopic by a g : G → N , thus sat-
isfying (69)–(72), then they lead to isomorphic crossed product equivariant exten-
sions, just by the map g : (n, x) 7→

(
ng(x), x

)
, as we see by retracing our steps.

Finally, we prove that any equivariant group extension of G by N , (50), has an
associated factor set, that is, it is equivalent to a crossed product extension ∆( f , ϕ)
for some graded monoidal functor ( f , ϕ) : dis

Γ
G→ Hol

Γ
N .

Let E : N
i

� E
p

� G be an equivariant group extension of G by N . There is no loss
of generality in assuming that i is the inclusion map.
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For each x ∈ G, let us choose a representative ux ∈ E, so that p(ux) = x, with
u

1
= 1. Since p(uxuy) = xy = p(uxy) and p(σux) = σx = p(uσx), there are unique

elements ϕ(x, y), ϕ(x, σ) ∈ N , for each x, y ∈ G, and σ ∈ Γ, such that

uxuy = ϕ(x, y)uxy ,(77)

σux = ϕ(x, σ)uσx.(78)

Moreover, each x ∈ G induces an automorphism fx of N :

fx : n 7→ uxnu−1
x .(79)

It is not true that f : x 7→ fx defines a Γ-group homomorphism f : G → Aut(N)
(recall that Γ acts diagonally on Aut(N)), but by (77) and (78) we have fx fy =

Cϕ(x,y) fxy and σ fx = Cϕ(x,σ) fσx; that is, the pair of maps

(
f : G→ Aut(N), ϕ : (G× G) ∪ (G× Γ)→ N

)

satisfies conditions (62) and (63) for being a graded monoidal functor. To observe
the remaining conditions (64)–(66), note that every element e ∈ E has a unique
expression of the form e = nux, with n ∈ N and x ∈ G. Because (79) can be written
as uxn = fx(n)ux, it follows that the Γ-group structure of E can be described in terms

of the Γ-group structures of N and G and the pair ( f , ϕ) by

(nux)(muy) = n fx(m)ϕ(x, y)uxy ,(80)

σ(nux) = σnϕ(x, σ)uσx.(81)

It is well known that (64) follows from the associative law ux(uyuz) = (uxuy)uz in
E; and similarly it is not hard to see that (65) follows from the equality σ(uxuy) =
σux
σuy , while (66) is a consequence of the equality τ (σux) = τσux.

Hence, ( f , ϕ) defines a graded monoidal functor, and we recognize that it is a
factor set for the given equivariant group extensions by the existence of the Γ-group
isomorphism

N ×( f ,ϕ) G
∼=
→ E, (n, x) 7→ nux.

Thus, we have proved that the map ( f , ϕ) 7→ ∆( f , ϕ) induces the announced
bijection (58), whose inverse is induced by the correspondence mapping any of its
associated factor sets to an equivariant extension of G by N , and the proof of the
theorem is complete.

As an additional comment, let us observe that our Schreier theory, for equivariant
group extensions, may be viewed as an special case of Grothendieck’s general theory
of extensions of groups in a topos [11], when it is applied to the topos of Γ-sets, that

is, to Γ-groups. To be more specific, recall that a group extension N
i

� E
p

� G in
any topos consists in the underlying N-bitorsor E � G in the topos, together with a

bitorsor map E ∧
N

E → E (where E ∧
N

E is the quotient of the fiber product E ×
G

E
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by the relation (en, e ′) ∼ (e, ne ′)), corresponding to the group multiplication in E,
and for which the associativity diagram is commutative.

This geometric point of view would make more intelligible the various cocycle

conditions for a pair ( f , ϕ), (59). The bitorsor E = N × G
pr
� G is defined by

the map f (by putting n ′ · (n, x) = (n ′n, x) and (n, x) · n ′ =
(

n fx(n ′), x
)

). The

fact that the bitorsor is in the topos of Γ-sets is expressed by the elements ϕ(x, σ),
such as in (75), and equations (63) and (66). Similarly, the group multiplication
bitorsor morphism is given by the elements ϕ(x, y) satisfying equation (62), and the
fact that this multiplication is equivariant translates to equation (65). Finally, the

commutativity of the associativity diagram is given by (64).

The bijection (58) is all one needs to obtain the classification of equivariant group
extensions as stated in Theorem 4.1 from Theorem 3.2.

Some readers may be interested in seeing an explicit construction of a 3-cocycle
hp ∈ Z3

Γ

(
G,Z(N)

)
, representing the cohomology class

Obs(p) = p∗
(

k(N)
)
= [p∗h

Hol
Γ

N

] ∈ H3
Γ

(
G,Z(N)

)
,

for a given equivariant G-kernel p : G→ Out(N). As a final comment, let us observe

how the general construction of 3-cocycles h
G

, (46), specializes to Hol
Γ
N , leading

to the following construction of hp
= p∗(h

Hol
Γ

N

): in each automorphism class p(x),
x ∈ G, let us choose an automorphism fx of N ; in particular, select f

1
= id

N
. Since

p(xy) = p(x)p(y) and σ p(x) = p(σx), for x, y ∈ G, and σ ∈ Γ, we can select

elements ϕ(x, y), ϕ(x, σ) ∈ N , such that fx fy = Cϕ(x,y) fxy and σ fx = Cϕ(x,σ) fσx, with
ϕ(x, 1) = 1 = ϕ(1, y) = ϕ(1, σ). The pair of maps

(
f : G→ Aut(N), ϕ : (G× G) ∪ (G× Γ)→ N

)
,

satisfies conditions (61), (62) and (63), but (64)–(66) need not be satisfied. The

measure of such a deficiency is given by the map

hp : G3 ∪ (G2 × Γ) ∪ (G× Γ2)→ ZN

determined by the equations:

hp(x, y, z)ϕ(x, y)ϕ(xy, z) = fx

(
ϕ(y, z)

)
ϕ(x, yz),

hp(x, y, σ)σϕ(x, y)ϕ(xy, σ) = ϕ(x, σ) fσ x

(
ϕ(y, σ)

)
ϕ(σx, σ y),

hp(x, τ , σ)ϕ(x, τ , σ) = τϕ(x, σ)ϕ(σx, τ ),

for x, y, z ∈ G, σ, τ ∈ Γ. This hp is a 3-cocycle such that cl(hp) = Obs(p) (cf. [8]).
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