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Abstract

In determining geometrical conditions on a Banach space under which a Chebychev set is
convex, Vlasov (1967) introduced a smoothness condition of some interest in itself. Equivalent forms
of this condition are derived and it is related to uniformly weak differentiability of the norm and
rotundity of the dual norm.

In a normed linear space X a set M is said to be a Chebychev set if for each
x G X there exists a unique nearest point p(x)E M; that is,

\\x-y || > | |x -p(x) | | for ally eM\{p(x)}.

We call the mapping xl—>p(x) the metric projection of X onto M.
In a rotund reflexive Banach space every closed convex set is Chebychev.

But there has been considerable interest in determining conditions under which
a Chebychev set is convex. Klee (1961; page 300) used uniformly weak
differentiability of the norm in every direction in formulating the first charac-
terisation of closed convex sets in terms of the Chebychev property. Vlasov
(1967; page 403) showed that in a Banach space with norm uniformly weakly
differentiable in every direction, and Vlasov (1970; page 778) showed that in a
Banach space with rotund dual, a Chebychev set with continuous metric
projection is convex.

In his earlier paper, Vlasov actually showed that a normed linear space
where the norm is uniformly weakly differentiable in every direction satisfies a
property which we will refer to as the Vlasov smoothness condition, (Vlasov
(1967; page 402)), and it is this property which he used directly to achieve his
result; we are interested in examinig the relation between uniformly weak

393

https://doi.org/10.1017/S1446788700019224 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019224


394 J. R. Giles [2]

differentiability of the norm in every direction, and the Vlasov smoothness
condition. In his later paper Vlasov used quite different techniques; we are also
interested in examining the relation between the Vlasov smoothness condition
and rotundity of the dual.

In §1 we examine uniformly weak differentiability of the norm and derive a
characterisation for it in terms of the continuity of a support mapping; we use
this characterisation to establish duality relations for uniformly weak differntia-
bility of the norm. In §2 we examine the Vlasov smoothness condition and derive
equivalent reformulations for it; we use these to establish relations between
smoothness, the Vlasov smoothness condition, uniformly weak dif-
ferentiability of the norm, and rotundity of the dual.

I would like to thank Dr. A. L. Brown for drawing my attention to these
differentiability conditions and for the correspondence we have had on the
subject. I would like to thank my student Christine Paine for her critical review
of the work as it has been produced.

1. Uniformly weak differentiability of the norm

Throughout this paper will confine our attention to real normed linear
spaces. For a normed linear space X we denote by S(X) the unit sphere
{x G X: || x || = 1}. We say that the norm of X is

(i) weakly differentiable at x E S(X) in the direction y G S(X) if for real A,

r II ^ + Ay || - || A: || .
hm u -y"—u—u exists,
A—•() A

(ii) uniformly weakly differentiable in the direction y G S(X) if convergence
to the limit in (i) is uniform for all x G S(X).

We denote the dual space by X*, and for each x G S(X) we denote
by D(x) the set {/£ S(X*):f(x) = 1}. We denote by D(X) the set
U {D(x): x G 5(X)}. A mapping x\—*fx of X into X* is called a support mapping
if for each x G S(X) and real A l O , / , E D ( i ) and fkx = A/,.

Weak differentiability of the norm can be characterised by a continuity
property of the support mapping, (Giles (1971; page 107)), and uniformly weak
differentiability of the norm can be similarly characterised. Cudia (1964; page
302) and Zizler (1968; page 423) have given such a characterisation of uniformly
weak differentiability of the norm but ours is a local characterisation and is
proved by a simpler argument following the pattern of Giles (1971; page 107).

THEOREM 1. The norm of X is uniformly weakly differentiable in the
direction y G S(X) if and only if there exists a support mapping x\—*fx such that
the real mapping x\—>fx(y) is uniformly continuous on S(X).
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[3] Weak differentiability of the norm 395

PROOF. Given any support mapping x\—*f, on X, for x, y
A > 0 ,

/X+AV(V) ^ Ilx + Ay H-ll x | L

Ay |

5(X) and real

(Giles (1971; page 108)).

For A < 0 these inequalities are reversed.
It is clear from these inequalities that the continuity property of the mapping
implies the uniformly weak differentiability of the norm in the direction y.

Conversely, if the norm of X is uniformly weakly differentiate in the
direction y £ S(X), then given e > 0 there exists a S(e, y) > 0 such that for every
x £ S(X) and every /, £ D(x),

Ay||-|H -My) < e when =<

Then

+ Ay | 1 - + Ay || - 1
< 4 e

when ||x - z || < e5.

We say that
(i) a normed linear space X is weakly uniformly rotund in the direction

g £ S(X*) if given e > 0 there exists a 8(s, g) > 0 such that, for x, y £ S(X)

| g ( * - y ) l < e w h e n ll* + y | | > 2 - 6

(ii) a dual space X* is weafc* uniformly rotund in the direction y £ S(X) if
given e > 0 there exists a 5(e, y ) > 0 such that, for /, g £ S(X*)

\(f-g)(y)\<e when | | / + g | | > 2 - g .

For a Banach space X, Smulian (1940; page 645) established duality
relations between uniformly weak differentiability of the norm in X and weak*
uniform rotundity of X*, and also between uniformly weak differentiability of
the norm in X* and weakly uniform rotundity of X. We establish local duality
relations using the characterisation of uniformly weak differentiability of the
norm given in Theorem 1; our argument is an adaptation of Giles (1971; page
111). Cudia (1964; page 295) has also given a proof of these local duality relations
but our argument using Theorem 1 is again much simpler.

THEOREM 2. (i) The norm of X is uniformly weakly differentiable in the
direction y £ 5(X) if and only ifX* is weak * uniformly rotund in the direction y;
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(ii) for a Banach space X, the norm of X* is uniformly weakly differenti-
able in the direction g G S(X*) if and only if X is weakly uniformly rotund in the
direction g.

PROOF, (i) Given any support mapping x\—*fx on X the following primi-
tive parallelogram law holds,

for all x, z G X.
When X* is weak* uniformly rotund in the direction y G S(X) then, given e > 0
there exists a 8(e, y ) > 0 such that, for / „ / , G S(X*)

l ( / x - / , ) ( y ) | < e when

Therefore, when || x - z || < 5

+/, || > 2 - 5.

so we conclude that | (fx - fz)(y) | < e. From Theorem 1 we have that the norm of
X is uniformly weakly differentiable in the direction y.

Conversely, when the norm of X is uniformly weakly diflferentiable in the
direction y G S(X), it follows that, given e >0 there exists a 5(e, y ) > 0 such
that

| x + Ay || — || x || , ,
A ~>x( < e

and

-Jc+Ay I H
< £

for every x G S(X) when | A | < 8.
Therefore,

|| x + Ay || + || x - Ay || < 2 + 2eA for every \x G S(X)

and 0 < A < 8.

For any /, g G S(X*) such that ( / - g ) ( y ) § 3 e we have

||/ + g|| = sup{(/+g)(x):xGS(X)}

= sup{/(x + Ay)+ g(x - Ay)- (/ - g)(Ay): x G S(X)}

§sup{||x + Ay || + | | x -Ay | | -3eA:xGS(X)} for all A > 0,

< 2 - e8 when 0 < A < 8.
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[5] Weak differentiability of the norm 397

Therefore,

I if ~ g) (y) I < 3e when || / + g || > 2 - eS and so X* is weak*

uniformly rotund in the direction y.
(ii) It follows from (i) that if the norm of X* is uniformly weakly

differentiable in the direction g £ S(X*) then X** is weak* uniformly rotund in
the direction g, and this implies that X is weakly uniformly rotund in the
direction g.

Conversely, when X is weakly uniformly rotund in the direction g G S(X*),
then given e >0 there exists a 5(e, g )>0 such that, for x, y G S(X)

| g ( x - y ) | < e when ||x + y | | > 2 - 5 .

Therefore, given any support mapping xl—»/, on X, when \\fx - fy \\< S

so we conclude that | g (x - y) | < e. So the real mapping fx I—» x (g) is uniformly
continuous on D(X). Since X is a Banach space, D(X) is norm dense in S(X*)
so this mapping has a unique continuous extension which is uniformly continu-
ous on S(X*).
Consider any / G S(X*) and a sequence {/«„} where /,„ G D(X) and {/,„} is norm
convergent to /. Now the sequence {£„} has a subnet {£„„} weak* convergent to
F£B(X**). But

| F(f) - 11 ̂  | F(f) - xna (/) | + | /(*„„) - fXn(xna) |,

and so FED(f).
Therefore, the extension is a mapping /|—» Ff(g) which is uniformly continuous
on S(X*). By Theorem 1 we have that the norm of X* is uniformly weakly
differentiable in the direction g.

Zizler (1968; page 429), investigating isomorphism properties, has shown
that every separable Banach space can be equivalently renormed to have norm
uniformly weakly differentiable in every direction. This, of course, implies that
there are non-reflexive Banach spaces with norm uniformly weakly differenti-
able in every direction. Such an observation points to the great significance of
Vlasov's result for Chebychev sets in that it applies even in non-reflexive spaces.

Zizler (1968; page 427) has also shown that every Banach space with
separable dual can be equivalently renormed to have norm weakly uniformly
rotund in every direction. From Theorem 2 we see that a Banach space so
renormed has second dual weak* uniformly rotund in every direction. However,
it is known (Giles (1974)), that a non-reflexive Banach space has non-smooth
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398 J. R. Giles [6]

third dual, so a Banach space which has dual weak* uniformly rotund in every
direction does not necessarily have smooth second dual.

2. The Vlasov smoothness condition

In our discussion of the Vlasov smoothness condition we use geometrical
argument associated with two dimensional subspaces of a normed linear space.
For a normed linear space X, given a,bE S(X), a^ b, we denote by Xab the
Minkowskian plane associated with the normed linear subspace generated by a
and b. For a choice of /„ E. D{a) and fb G D(b) in X*, in Xab we denote by Ta

and Tb the tangent lines, {x £ Xab:fa{x) = 1} and {x E Xab: fb(x) = 1}, to S(Xab)
at a and b. If Ta or Tb meet the straight line through 0 parallel to a - b, we
denote the points of intersection by p and q.

We make use of the following general geometrical property associated with
support mappings on a normed linear space. A similar result has been given by
Browder (1965; page 370).

LEMMA 1. Given a support mapping x I—» /, on X and a,b e S(X), a^ b, if
inXab the ray through cx = \a + (1 - \)bfor 0 < A < 1 meets S(Xab) indx, then

(fa -fb)(a-b)^A = 2sup{\\ck - dK ||: 0 < A < 1}.

PROOF. Case 1: Suppose that cA £? S(Xab) for some 0 < A < 1. Then p and
q are defined. Let Ta and Tb meet the ray through cA in aK and bx.

S(Xab)

Figure 1.

Now

and

fa(a-b) =

h(b-a) =
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[7] Weak differentiability of the norm 399

11/7 - r . II 11/.. - / • . II
W e h 3 V e " " i - | | * - « M + | | * - c A | ,

| cA - dk ||, and similarly

Therefore,
(fa-fb)(a-b)>2\\ck-d,\\

Case 2: Suppose that cA G S(Xab) for all 0 < A < 1. Then A = 0. If /„ has
been chosen so that (>£T, then fa{a - b) = 0. A similar remark could be made
for fb. But again the result holds.

COROLLARY FOR CASE 1.

II r 1 II A

PROOF. We have from the proof of Lemma 1, that

M .i , II a -foil

and Ik II < } a _ t \\ for all 0 < A < 1 .
II CA uA ||

We now define the Vlasov smoothness condition and derive equivalent
reformulations of it which give some geometrical insight into the nature of the
condition and which reveal it as a differentiability of the norm condition related
to uniformly weak differentiability of the norm.

THEOREM 3. In a normed linear space X for a given y £ S(X) the following
conditions are equivalent.

(i) The uniform chord condition in the direction y.
Given e > 0 there exists a S(e,y)>0 and a support mapping x I—» fx on X such

that for all a,bE S(X), a/ b, where a - b is parallel to y,

min

when || a - b \\ < 8.

(ii) The Vlasov smoothness condition in the direction y.

For given d,e(EX, d^ e, where d — e is parallel to y, and given e > 0 there

exists an R > 0 such that for any z G X where \\z -(d + e)/2\\= R we have

minlll z - d II, \\z-e\\}<s+R.
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(iii) One sided uniformly weak differentiability of the norm in the direc-

tion
Given e > 0 there exists a S > 0 such that, for all

x + Ay | | - j | x | | g O for all A } ,

min j U + A y | | - | U i
A

|x-Ay|H|x| < e

when 0 < A < 5.

Before proceeding with the proof of this theorem we should explain that the
name "uniform chord condition" signifies the geometrical interpretation of
property (i). When p and q are defined then

a-b 1
\a-b\\) \\p\\

and so property (i) is equivalent to

and fb
b-a

\a-b\

inL 1

III P IP I k I < e when

So property (i) has the following geometrical interpretation.
For all given a, b G S{X), a/ b, where a - b is parallel to y, and when p and q
are defined, for given R > 0 there exists a 8 > 0 such that

\\p-q\\>R when | | a - f c | | < 8 .

PROOF, (i) => (ii).

Suppose that X does not have the Vlasov smoothness condition in the direction
y. Then for a given d,eGX, d/ e, where d — e is parallel to y, and for some
£i>0 and any R >0 there exists a z EX where || z - (d + e)/2\\ = R and

and

£ , + Z - -

2 I

d + e\
S z - e
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[9] Weak differentiability of the norm 401

Consider the similarity transformation taking B [ z ; e , + R ] to B(X). Then

but

d + e
fd + e

There exist d", e"G S(Xde), d"^ e", where the straight line defined by d' and e'
in Xdf meets S(Xde). Denoting by p" and q" the points of intersection of the
tangent lines Td- and Te with the straight line through 0 parallel to y, we deduce
from the Corollary for Case 1 of Lemma 1 that \\p"- q"\\ < 2(\\d - e \\)/eu

although ||d"— c"|[ —>0 as /?—>=c. So we conclude that X does not have the
uniform chord condition in the direction y.

(ii) => (iii)-
For given d, e G X, d^ e, where d — e is parallel to y, and given e > 0 and

2 G X satisfying the Vlasov smoothness condition, consider the similarity
transformation taking B[z; R] to B(X). Then writing

d + e
" Z d-eX^~n^- y=n~d^\\ and A

we have that the Vlasov smoothness condition in the direction y takes the
following form.
Given e > 0 there exists a A > 0 such that for all x G S(X) we have

,,|* + Ay | | - | | x | | || x - Ay || - |
m , n / i J i_U U U li J-U 1

\\a-e\\

Using the monotonicity of (|| x + Ay || - || x ||)/A as a function of A we deduce that
X has one sided uniformly weak differentiability of the norm in the direction y.

(iii) => (i)
For a given x G y±, consider a,b G S(Xxy), a^ b where a — b is parallel to

y. Suppose that the ray through 0 and a meets the straight line through x parallel
to y in x + Ay and the straight line through a and b meets the ray through 0 and
x in c.

Working in Xxy we deduce that

A = || x + Ay || || a - c ||.
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Then

But also we have

and therefore,

Ayll-IUII 1 I
A II a - c || A •

1 ~, l U + A y l l - H - V
A

A < IIP II \ \ a - c \ (*)

Suppose that X does not have the uniform chord condition in the direction y.
Then there exists an r > 0 and a sequence {*„} where xn £ y \ and sequences
{an },{/>„} where an, bn G S(Xxy) and an - bn is parallel to y and || an - bn\\< \/n
but also || pn - qn || < r, where pn, qn denote the points of intersection of the
tangent lines Tan, TK with the straight line through 0 parallel to y. Suppose that
the rays through 0 and an, and 0 and bn meet the straight line through xn parallel
to y in points xn + Any and xn - \'ny. We note from the inequalities (*) above,
that for given 0 < e < Mr,

only if
r \\pn

< : I Pn II II Qn ~ C
n - 1

Now denote by b'n the point of intersection of the ray through 0 and xn - Any
with S(X»ny). Denote by c'n the point of intersection of the ray through 0 and xn

with the straight line through b'n parallel to y.
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[11] Weak differentiability of the norm

0

403

xn - Ky xn - A 'ny xn

Figure 4.

Xn + \ny

We may assume that An > A '„, for which it follows that || q '„ || S || qn \\ < r where q '„
denotes the point of intersection of the tangent line Tbn with the straight line
through 0 parallel to y.
Working in XXny we have

An =\\an- cn || ||xn + Any | for An

But also

so

= | | 6 : - c : | | \\xn-\ny\\^\\b:-c:\\,

We have again from the inequalities (*) above, that

anly if
2r

But (i) and (ii) give us that there does not exist a S > 0 for all x G yx to satisfy
jne sided uniformly weak differentiability of the norm in the direction y.

The result given by Vlasov (1967; page 402) can easily be deduced from
brms (iii) or (i) of Theorem 3.
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COROLLARY. // the norm of X is uniformly weakly differentiable in the
direction y G S(X) then X satisfies the Vlasov smoothness condition in the
direction y.

However, the converse of this corollary is not true in general; the Vlasov
smoothness condition in a direction is a weaker property than uniformly weak
differentiability of the norm in that direction.

EXAMPLE 1. Consider R2 with norm generated from the unit sphere given
by the graph of the mapping

/(«) =

- - + V l - a 2 0 < o S

completed by symmetry about 0.

Figure 5.

Consider a,b & S(X), a^ b where a - b is parallel to the Y-axis. Now
||p - q || ^•oc as || a - b ||—*•(). But \\q || = 1, so

(A"/*)
a-b
a-b\

for all such a, b £ S(X), although we may have || a - b ||—»0.
Yet it is clear that if X has the Vlasov smoothness condition in every direction
then X is smooth.
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[13] Weak differentiability of the norm 405

In his later paper Vlasov (1970; page 776) gave the following important
characterisation of rotundity of the'dual of a normed linear space.

LEMMA 2. For a normed linear space X, the dual space X* is rotund if and
only if for any sequence of closed balls {Bn}, Bn = B[zn, Rn], where Bn C. Bn+, for
all n, and Rn —>cc, then U Bn is either X or a half-space of X.

We use this lemma to derive the following duality relation, which estab-
lishes that Vlasov's result (1967; page 403) is included in his result (1970; page
778).

THEOREM 4. / / a normed linear space X satisfies the Vlasov smoothness
condition in every direction then its dual X* is rotund.

PROOF. If X* is not rotund then from Lemma 2, we have that there exists a
sequence of closed balls {Bn}, Bn = B[zn, Rn], where Bn C Bn+1 for all n, and
Rn—>=c, but where U Bn is not X and is not a half-space. It is clear from the
separation properties of convex sets that there exist linearly independent
continuous linear functionals / and g such that

UBBC/-1[0 ,oc)ng- I [0 ,oc) .

However, since U B . C c o { / '(0), g '(0)} w e s e e t n a t t n e r e exists d, e<£ U Bn but
(d + e)/2 = Z\. For any given n, consider the similarity transformation taking Bn

to B(X). Then

but
d + e

(d + e\
2 ) Rn

B{X).

There exist d", e"£ S(Xde), d"/ e", where the straight line defined by d' and e'
in X&-e- meets S{Xde). Denoting by p" and q" the points of intersection of the
tangent lines Td- and Te with the straight line through 0 parallel to d - e, we
deduce from the Corollary for Case 1 of Lemma 1 that \\p"- q"\\ < (|| d - e ||)/i?,
although | |d"-e"| |—»0 as Rn—>x. So we conclude that X does not have the
uniform chord property in the direction d — e.

Now there exists a smooth normed linear space X where the dual X* is not
rotund (Cudia (1964; page 289)), so this theorem shows that not every smooth
normed linear space satisfies the Vlasov smoothness condition in every direction.

For a normed linear space X we say that the dual space X* has the Vlasov
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rotundity condition in the direction y G S(X) if given e >0 there exists a
S(E, y )>0 and a support mapping xl—>/x on X such that for all a, b G S(X),
a ^ />, where a - b is parallel to y,

when||/.+M|>2-&
We now establish a duality relation for the Vlasov smoothness and

rotundity conditions similar to that given in Theorem 2(i) for uniformly weak
differentiability of the norm and weak* uniform rotundity.

THEOREM 5. A normed linear space X satisfies the Vlasov smoothness
condition in the direction y G S(X) if and only if its dual X* satisfies the Vlasov
rotundity condition in the direction y.

PROOF. Using the primitive parallelogram law as in Theorem 2(i) it is
evident that when X* has the Vlasov rotundity condition in the direction y then
X has the uniform chord condition in the direction y.

Conversely, when X has the Vlasov smoothness condition in the direction y
we have from the proof (ii) => (iii) in Theorem 3, that given e > 0 there exists a
8(e, y )>0 such that for all x G S(X)

when 0 < A < 8.
For any fa,fb such that both

a - b \ , , I b - a) and n
we have

l\f.+fb\\ = sup{(f.+fh)(x):xeS(X)}

fsup {/. (x + Ay) + /„ (x) - /. (Ay): x G S (X)}
S min \

lsup{/a(x) + fb(x - Ay) + fb(\y): x G S(X)}

pup { |

Ls

p { | x + Ay || + || x || - kfa

g mins

Lsup { H x t| + || x - Ay || -

< 2 - e A .
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[15] Weak differentiability of the norm 407

Therefore,

( ^ | ) ( ^ f ) } 3 e when ||/. + /,|| > 2- eS.

We use this Vlasov rotundity for the dual space to provide a counter-
example to the converse of Theorem 4; that is, to show that a Banach space with
rotund dual does not necessarily have the Vlasov smoothness condition in every
direction.

EXAMPLE 2. Consider Hilbert space l2 with natural basis {en}. Brown
(1974; page 146) has shown that it is possible to give l2 an equivalent rotund
norm such that for each /c§2 the two dimensional subspaces Mk = ^{ex,ek}
have an lk norm; that is, for x = {a,, 0, • • •, ak, 0, • • •}

|| x || = (| a, I" + | ak | T .

Since U with this norm is reflexive we will treat it as a dual space and show that it
does not have the Vlasov rotundity condition in the direction ex. For each k g 2
consider fak, fbk G Mk where

-((*)"• H H
and

Now working in the subspaces Mk we have for f = (auak),

ak(J)= \T

and

So

( 1 \ l~1/<c

Working with the whole space we have

and
/ ak-bk \ n

U\\\ak-bk\\J \k
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and similarly

However,

This example also shows that there exist reflexive smooth Banach spaces
which do not satisfy the Vlasov smoothness condition in every direction. It also
verifies that Vlasov's 1970 result does cover more cases than his 1967 result.

It is possible to modify Example 2 to strengthen the evidence of Example 1
and show that even for a reflexive smooth Banach space, the Vlasov smoothness
condition in a direction is a weaker property than uniformly weak differentiabil-
ity of the norm in that direction.

EXAMPLE 3. Consider again Hilbert space l2 with natural basis {en}. Using
the method outlined by Brown (1974) it is possible to give l2 an equivalent rotund
norm such that for each k S 2 the dimensional subspaces Mk = sp{d, ek} have, in
the first and third quadrants an lk norm and in the second and fourth quadrants
the l2 norm; that is, for x = {ari,O, • • •, ak,0, • • •}

\\x\\ = (\a,\k+\ak\
k)m for a . a ^ O

= (|a,|2+|afc |2)"2 for a , a k g 0 .

Again since l2 with this norm is reflexive we will treat it as a dual space and show
that it is not weakly uniformly rotund in the direction e, but appears to satisfy
the Vlasov rotundity condition in the direction e,. For each k g 2 consider
/„„ fbk £ Mk where

Now working in the subspace Mk we have for / = (auak)

and
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So

Working with the whole space we have

—»1 as

and

Now
||/.t+AJ|->2 as

Therefore,

but

as
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