A Formula for the Solution of Algebraic or Tranacendental Equations.

By Professor E. T. Whittaker.

(Received 8th August 1918.)
§1. Statement of the formula and numerical examples of it.
The object of the present note is to communicate the following formula for the solution of algebraic or transcendental equations:

The root of the equation

$$
\begin{equation*}
0=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots \tag{1}
\end{equation*}
$$

which is the smallest in absolute value, is given by the series
$-\frac{a_{0}}{a_{1}}-\frac{a_{0}^{2} a_{2}}{a_{1}\left|\begin{array}{ll}a_{1} & a_{2} \\ a_{0} & a_{1}\end{array}\right|}-\frac{a_{0}{ }^{3}\left|\begin{array}{ll}a_{2} & a_{3} \\ a_{1} & a_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & a_{2} \\ a_{0} & a_{1}\end{array}\right|\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{0} & a_{1} & a_{2} \\ 0 & a_{0} & a_{1}\end{array}\right|}-\frac{a_{0}^{4}\left|\begin{array}{lll}a_{2} & a_{3} & a_{4} \\ a_{2} & a_{2} & a_{3} \\ a_{0} & a_{1} & a_{2}\end{array}\right|}{\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{0} & a_{1} & a_{2} \\ 0 & a_{0} & a_{1}\end{array}\right|\left|\begin{array}{cccc}a_{1} & a_{21} & a_{3} & a_{4} \\ a_{0} & a_{1} & a_{2} & a_{3} \\ 0 & a_{0} & a_{1} & a_{2} \\ 0 & 0 & a_{0} & a_{1}\end{array}\right|}$

As a numerical example, consider the equation

Here

$$
x^{3}-4 x^{2}-321 x+20=0
$$

$$
a_{0}=20, \quad a_{1}=-321, \quad a_{2}=-4, \quad a_{3}=1
$$

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{0} & a_{1}
\end{array}\right|=103,121 . \quad\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{0} & a_{1} & a_{2} \\
0 & a_{0} & a_{1}
\end{array}\right|=-33,127,121 . \quad\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{1} & a_{2}
\end{array}\right|=337 .
$$

The smallest root of the equation is therefore
or

$$
\frac{20}{321}-\frac{20^{2} \times 4}{321 \times 103,121}+\frac{20^{3} \times 337}{103,121 \times 33,127,121}+\ldots
$$

or

$$
0.062,305,3-0.000,048,3+0.000,000,7
$$

$0.062,257,7$ correctly to 7 decimal places.

The series converges rapidly when the ratio of the smallest root to every one of the other roots is small. In.calculating a root of a given equation by the formula, it is therefore advisable in many cases first to transform the given equation by two or three Lobatchevsky-Graeffe operations, each of which replaces the equation operated on by an equation whose roots are the squares of its roots: or else, in those cases where an approximate value of the root is already known, to transform the given equation by a substitution of the type

$$
\boldsymbol{x}=\boldsymbol{a}+y,
$$

where a is the known approximate value of the required root, so that the required root of the equation in y is small compared with any of the other roots.

§ 2. Proof of the formula.

Let the roots of the equation (1), supposed for the present to be of degree n, be $x_{1}, x_{2}, \ldots x_{n}$. Then if z be any number whose modulus is smaller than each of the moduli of the roots, we have

$$
\begin{aligned}
& \frac{a_{0}}{a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}}=\frac{1}{\left(1-\frac{z}{x_{1}}\right)\left(1-\frac{z}{x_{9}}\right) \ldots\left(1-\frac{z}{x_{n}}\right)} \\
& \quad=\left(1+\frac{z}{x_{1}}+\frac{z^{2}}{x_{1}^{2}}+\ldots\right)\left(1+\frac{z}{x_{2}}+\frac{z^{2}}{x_{2}^{2}}+\ldots\right) \ldots\left(1+\frac{z}{x_{n}}+\frac{z^{2}}{x_{n}^{2}}+\ldots\right) \\
& =1+P_{1} z+P_{2} z^{2}+P_{3} z^{3}+\ldots
\end{aligned}
$$

where P_{r} denotes the sum of the homogeneous powers and products of the reciprocals of the roots taken r at a time.

$$
\therefore \quad a_{0}=\left(a_{0}+a_{1} z+a_{2} z^{2}+\ldots\right)\left(1+P_{1} z+P_{2} z^{2}+P_{3} z^{3}+\ldots\right) .
$$

Equating coefficients of powers of z, we have

$$
\left\{\begin{array}{l}
0=a_{1}+a_{0} P_{1} \\
0=a_{2}+a_{1} P_{1}+a_{0} P_{2} \\
0=a_{3}+a_{2} P_{1}+a_{1} P_{2}+a_{0} P_{3} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots
\end{array}\right.
$$

whence*

[^0]$P_{1}=-\frac{a_{1}}{a_{0}}, \quad P_{2}=\frac{1}{a_{0}{ }^{2}}\left|\begin{array}{ll}a_{1} & a_{0} \\ a_{2} & a_{1}\end{array}\right|, \quad P_{3}=-\frac{1}{a_{0}{ }^{3}}\left|\begin{array}{ccc}a_{1} & a_{0} & 0 \\ a_{3} & a_{1} & a_{0} \\ a_{3} & a_{2} & a_{1}\end{array}\right|$, etc. $\quad \ldots . .(3)$
Now, since $\left|\begin{array}{ll}a_{1} & a_{2} \\ a_{0} & a_{1}\end{array}\right|=a_{1}{ }^{2}-a_{0} a_{2}$, we see that the first two terms of the series (2) are equivalent to the single term

$$
-\frac{a_{0} a_{1}}{\left|\begin{array}{ll}
a_{1} & a_{2} \tag{4}\\
a_{0} & a_{1}
\end{array}\right|} \text { or } \frac{P_{1}}{P_{2}} .
$$

Moreover, by Jacobi's theorem on the minors of the adjugate, we have

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{0} & a_{1}
\end{array}\right|^{2}-a_{0}^{2}\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{1} & a_{2}
\end{array}\right|=a_{1}\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{0} & a_{1} & a_{2} \\
0 & a_{0} & a_{1}
\end{array}\right| \text {, }
$$

and this shows that the term (1), together with the third term of the series (2), is equal to .

$$
\left.-a_{0} \frac{\left|\begin{array}{ll}
a_{1} & a_{2} \tag{5}\\
a_{0} & a_{1}
\end{array}\right|}{\left\lvert\, \begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{3} \\
a_{0} & a_{1} \\
0 & a_{3} \\
0 & a_{0}
\end{array} a_{1}\right.} \right\rvert\, \text {. }
$$

Again, by Jacobi's theorem we have

$$
\left.\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{0} & a_{1}
\end{array}\right|\left|\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{0} & a_{1} & a_{2} & a_{2} \\
0 & a_{0} & a_{1} & a_{2} \\
0 & 0 & a_{0} & a_{1}
\end{array}\right|=\left|\begin{array}{cccc}
a_{1} & a_{2} & a_{3} \\
a_{0} & a_{1} & a_{2} \\
0 & a_{0} & a_{1}
\end{array}\right|^{2} \right\rvert\, \begin{array}{lll}
a_{0}^{3} & \left.\begin{array}{ccc}
a_{2} & a_{3} & a_{4} \\
a_{1} & a_{2} & a_{3} \\
a_{0} & a_{1} & a_{2}
\end{array} \right\rvert\,,, \text {, } &
\end{array}
$$

and this shows that the term (5), together with the fourth term of the series (2) is equal to
which is therefore equal to the sum of the first four terms of the series (2).

Proceeding in this way, we see that the sum of the first s terms of the series (2) is equal to P_{s-1} / P_{s}.

If now for simplicity we consider the case when $n=2$, so that there are only two roots x_{1} and x_{2}, of which we shall suppose x_{1} to have the smaller modulus, we have

$$
\begin{aligned}
& =x_{1} \frac{1+\frac{x_{1}}{x_{2}}+\frac{x_{1}{ }^{2}}{x_{2}^{2}}+\ldots+\frac{x_{1}{ }^{\prime-1}}{x_{2}{ }^{s-1}}}{1+\frac{x_{1}}{x_{2}}+\frac{x_{1}{ }^{2}}{\overline{x_{2}}}+\ldots+\frac{x_{1}^{0-1}}{x_{2}^{s-1}}+\frac{x_{1}{ }^{s}}{x_{2}^{s}}},
\end{aligned}
$$

and since $\left|\frac{x_{1}}{x_{2}}\right|<1$, this gives at once

$$
L t_{s \rightarrow \infty} \frac{P_{s-1}}{P_{s}}=x_{1} .
$$

Similar reasoning leads to the same result when $n>2$.
Thus the sum of the first s terms of the series is equal to P_{s-1} / P_{s}, which, as s increases indefinitely, tends to the limit x_{1}, where x_{1} is that root of equation (1) which has the smallest modulus: which establishes the theorem.

[^0]: * The formulae of equation (3) were known to Wronski, Introd. a la ohilos. des math., Paris, 1811.

