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Abstract
Emerging reinforcement learning algorithms that utilize human traits as part of their conceptual architecture have
been demonstrated to encourage cooperation in social dilemmas when compared to their unaltered origins. In par-
ticular, the addition of a mood mechanism facilitates more cooperative behaviour in multi-agent iterated prisoner
dilemma (IPD) games, for both static and dynamic network contexts. Mood-altered agents also exhibit humanlike
behavioural trends when environmental aspects of the dilemma are altered, such as the structure of the payoff matrix
used. It is possible that other environmental effects from both human and agent-based research will interact with
moody structures in previously unstudied ways. As the literature on these interactions is currently small, we seek to
expand on previous research by introducing two more environmental dimensions; voluntary interaction in dynamic
networks, and stability of interaction through varied network restructuring. From an initial Erdos–Renyi random
network, we manipulate the structure of a network IPD according to existing methodology in human-based research,
to investigate possible replication of their findings. We also facilitated strategic selection of opponents through the
introduction of two partner evaluation mechanisms and tested two selection thresholds for each. We found that even
minimally strategic play termination in dynamic networks is enough to enhance cooperation above a static level,
though the thresholds for these strategic decisions are critical to desired outcomes. More forgiving thresholds lead
to better maintenance of cooperation between kinder strategies than stricter ones, despite overall cooperation levels
being relatively low. Additionally, moody reinforcement learning combined with certain play termination decision
strategies can mimic trends in human cooperation affected by structural changes to the IPD played on dynamic
networks—as can kind and simplistic strategies such as Tit-For-Tat. Implications of this in comparison with human
data is discussed, and suggestions for diversification of further testing are made.

1. Introduction
Social games in humans and agents provide insight into underpinnings of networked behaviours, where
interactions from one partner can influence subsequent experiences with others. By augmenting game-
playing algorithms, such as reinforcement learners with abstracted models of human processes, we can
attempt to both orchestrate specific outcomes for our functional networks (such as encouraging more
cooperative, higher-scoring play when partners do not appear to be exploitative) and emulate systems of
people, that our models might be made more robust. We have seen that in some contexts, adding human-
iform traits to task-oriented learners can produce benefits—such as increasing their proficiency through
goal-directed search (Belkaid et al., 2017)—making their usage also valuable to those concerned with
measures of efficiency. Additionally, researching human traits in this manner facilitates more rigorous
and replicable testing of domains within psychology that have practical limitations and roadblocks to
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replication. Experimental studies into networked interactions such as Rand et al. (2011) and Melamed
et al. (2018) for example, are classed as ‘large-scale’ empirical behaviour analyses that leverage online
technologies to connect players, and yet the networks they examine have a mean node degree of ∼ 20
players. This contrasts heavily with artificial models, in which even smaller-scale play networks can
maintain node degrees of over 100 (Collenette et al., 2018b). With the assistance of computational
modelling, we can attempt to extend this research at much greater scale and speed whilst combining it
with alternative methodologies.

In social dilemmas such as the iterated prisoner dilemma (IPD), we see increased proportions of
cooperative behaviours when using altered algorithms over their base counterparts (Collenette et al.,
2017b, 2018b; Feehan & Fatima, 2022). This increased proportion is commonly observed in human
players also; in fact, it is a widely touted trait in literature that people are generously cooperative in single-
round and short-term IPD games (Rand et al., 2011; Melamed et al., 2018)—despite the mathematical
irrationality of such choices. Whilst there is evidence that this generosity either decays (Gallo, 2022;
Hauk & Nagel, 2001), or certainly fluctuates (Wilson & Wu, 2017), over time in longer repeated games,
its presence as a proportion of play behaviours is often 50% or greater. This human cooperation can then,
in its own right, be manipulated further; as one example, the underlying structure of game elements can
cause changes in player choices when altered beyond intuitive perception (Wrightsman et al., 1972;
Colmanet al., 2018). This finding in particular has been replicated in such augmented agents (Feehan &
Fatima, 2022), even given the seemingly simplistic nature of their representations of human mechanisms.
This leaves open the scope for more research into the extent of the replicability of human trends with
such models, and if this is an isolated comparable context, or a key framework that easily shifts agent
modelling that little more humanwards.

Can we take human research conclusions and reverse-engineer embedded human factors into our
agents using these simple mechanisms, or are more complex frameworks required? From what breadth
of psychological research do we select data to build our theoretical architectures on? Naturally, the
facet this research presents is a small alteration in the grand scale of augmenting learners to behave
more humanlike; incorporating the mood states of others into agent observations, altering perceptions
of payoffs and driving behavioural selection from a moody standpoint. These avenues of investigation
may provide the groundwork, however, for more detailed advancement in future explorations of such
systems; such as combining the mood model with a personality model, for example. If the reliability of
the more simplistic, core processes can be established, development of complex mechanisms (integrated
with greater systems of emotion, in one instance) will be more easily facilitated.

We wish to deepen the literature available on the behavioural reactivity of such algorithms by using
multi-agent simulations to provide a greater breadth of data on their nature. We also seek conditions in
which these algorithms may replicate human trends of behaviour.

In this piece of research, we expand on this by introducing the ability to terminate ongoing partner-
ships to a dynamic network containing moody agents, in comparison with both unaltered reinforcement
learner counterparts and an even broader selection of strategies for playing the Iterated Prisoner’s
Dilemma. By introducing this aspect, we take the first step towards testing more complex partner evalu-
ation decisions, whilst expanding on the dynamic network testing that has already revealed these moody
agents’ contributions to changing graph behaviour (Collenette et al., 2018b). Link termination, a form
of unilateral partner judgement (Hauk & Nagel, 2001), is just one element of potentially complex and
nuanced network judgements1. Both network dynamism and mutable interaction relationships have been
examined previously in depth in evolutionary networks (Perc & Szolnoki, 2010), but never with this
choice of algorithm. By building in this initial probe atop existing literature, we can begin to make
comparisons to human-based social research such as Rand et al. (2011) and Gallo (2022) in this unique
context.

Additionally, we can compare and contrast how far simplistic deployments of human constructs go
in modelling human trends and also evaluate any pragmatic applications of the resultant behaviours.

1Such as bilateral partnership negotiations, as discussed in Wang et al. (2012).
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Table 1. Traditional payoff matrix for the two-player Prisoner’s Dilemma game
(Wooldridge, 2013).

Partner B

Cooperate Defect
Partner A Cooperate 3, 3 0, 5

Defect 5, 0 1, 1

The primary contribution this paper seeks to establish is an elucidation on whether link termination
techniques and varied levels of dynamic networks interact with the moody algorithm—either to aid or
to hinder cooperative behaviour. Secondarily, it seeks to provide reinforcement of previous conclusions
with the moody algorithm through some degree of replication of past work. Where previous research has
evaluated dynamic networks (Rand et al., 2011; Melamed et al., 2018) and decision-based link termina-
tion (Hauk & Nagel, 2001; Wang et al., 2012) separately to moody reinforcement learning (Collenette
et al., 2017b, 2018b; Feehan & Fatima, 2022), our paper brings these together for the first time.

Interestingly, we discovered that there is only one decision mechanism (out of the four tested) that
facilitates consistent increased cooperation and connectivity for more human learners over their tradi-
tional counterparts—mimicking the trends seen in human players in Rand et al. (2011) and to some
extent Gallo (2022). The best condition for encouraging this behaviour selected partners based on an
agent’s own score against said partner, with a threshold generous enough to allow for mistake-making. In
other conditions, we found these moody agents performed just as poorly as other reinforcement learners
in terms of cooperation2, and regardless of condition, simple strategies such as Tit-for-Tat (TFT) out-
performed others in metrics of cooperation and connectivity. This last finding agrees with past research
(Collenette et al., 2018b). We also found that, in novel ground for the research literature, mood interacts
in a complex, inconsistent nature with partner decision processes that warrants more detailed further
study.

Initially, in Section 2, we outline the key theoretical and practical background knowledge necessary
for understanding how manipulation of the structure and nature of interaction within dynamic networks
may lead to different behavioural outcomes. We describe the dilemma itself, how reinforcement learning
has been used previously in this problem space, the past research utilizing these behavioural augmen-
tations and how voluntary interaction and dynamic networks have been studied in relation to the IPD
until this point. In Section 3, we present the experimental design of our simulations, structured to eval-
uate two key previously untested independent variables for this context, with these algorithms. Section
4 details the data gathered from such experiments, with Section 5 being the analysis and evaluation of
each experimental condition’s results. Finally, we propose some connecting conclusions between human
and agent-based research and suggest some avenues of further work.

2. Background
2.1. Iterated prisoner’s dilemma
The iterated prisoner’s dilemma is a well-examined behavioural paradigm within artificial and human
contexts alike, being a social risk-taking game in which players typically select their behaviours without
nuanced communication. In the basic version of the dilemma, two players choose either a cooperative
or a non-cooperative behaviour and submit it to their opponent, without conversing or forming prior
agreement. This selection of behaviours results in a variety of rewards (or lack thereof) for either player,
depending on the combination (see Table 1 for the classic payoff matrix, as used in our own research).
Overall, there are four primary outcomes; Temptation (betraying your opponent by defecting when

2Contrasting with previous performance in Feehan and Fatima (2022) and Collenette et al. (2017b).
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they cooperate), Reward (mutual cooperation between parties), Punishment (mutual defection between
parties) and Sucker (when an agent finds themselves betrayed by a partner).

In the single-round version of the dilemma, the Nash Equilibrium is to defect (Wooldridge, 2013),
thus protecting oneself from exploitation and possibly exploiting the opponent should they be so
generous as to cooperate. The lack of sustained interaction means establishing trustworthiness, com-
municating implicit desires for mutual behaviour and long-term social punishments are not factors
prioritized in behavioural selection. However, when play is iterated over many rounds, these become
greater priorities for players. Here, the dilemma presents more of an interest in maximal gain for
both partners as opposed to simply mitigating risks; there is the potential for mutual optimization of
rewards over mere self-protection, and the necessity of establishing oneself as a generous player if this
cooperative outcome is to be maintained.

Axelrod (1984), a seminal text on cooperation in the Prisoner’s Dilemma, outlines a host of simplistic
strategies for playing the game, alongside demonstrating the capacity of TFT to perform well in PD
round-robin tournaments. It functions on the basic principle of Cooperate first, and then in each round
thereafter repeat the previous-round behaviour of the partner player—thereby returning unfair plays of
defection, but forgiving quickly, and retaining the ability to establish mutual cooperation when it is
offered. This strategy is used frequently as a comparator in modern research and still performs well
despite lack of complexity—even against machine learning techniques (Collenette et al., 2018b). Over
the years, one alternative named Win-Stay Lose-Shift (WSLS) has also become a prominent simple
strategy, and has frequently been pitted in competition with TFT. Sometimes framed as a rudimentary
form of reinforcement learning, WSLS operates on the principle of maintaining the current behavioural
choice if it is satisfied in the outcome (i.e. ‘winning outcomes’ such as T or R) and changes behavioural
choice if it is dissatisfied (i.e. receiving P or S). Both of these strategies exhibit traits of Axelrod’s key
tenets for strategic success in the IPD: the capacity to be nice, or in plain terms, to never defect first.
Naturally, this is more true of TFT than it is for WSLS—though certain literature would suggest that
this provides WSLS with an advantage (Nowak & Sigmund, 1993; Imhof & Nowak, 2007). These are
just two of innumerable IPD schema used in research since Axelrod’s day and are two that will be used
as comparators for our own purposes.

Critically for a modern analysis, Axelrod discusses the dilemma primarily in its fundamental form,
not inclusive of factors such as the ability to walk away from an interaction—which is the subject of
this very paper, and of dozens like it (Stanley et al., 1993; Hauk, 2001; Hauk & Nagel, 2001; Rand
et al., 2011; Wilson & Wu, 2017). Before we delve into this extension of the IPD, however, we will first
elaborate on the main strategies under evaluation in this work; a reinforcement learning strategy and its
recently augmented counterpart equipped with a model of mood.

2.2. SARSA
State-action-reward-state-action, or SARSA, is an on-policy reinforcement learning algorithm that esti-
mates the value of the policy being followed whilst exploring. It is named such as, on any given learning
time step, it takes the current state (in our instance, the bounded move history of each partner, of length
7), in which it takes an action (in our instance, either C or D), to a new state, in which it observes its
reward (see Table 1). It updates its state-action value function through the choice of its next action fol-
lowing the same current policy. Actions are selected in SARSA (and the variant of SARSA introduced
in Section 2.3) using ε-greedy behavioural selection.

More thorough detail for SARSA can be found in Sutton and Barto (2018). In this paper, the experi-
mental setup for SARSA is identical to in Feehan and Fatima (2022). The equation for updating Q (the
learned value) for each state-action combination is given below as it is pertinent for comparison with
the mood-augmented version detailed later in the paper. Let s represent the state, t denote the current
time step of a learning epoch, a the action taken in that state, where α is the learning rate (typically
0.1), γ is the discount factor (typically 0.95), and r is the reward received:

Q(st, at) = Q(st, at) + α[rt+1 + γ Q(st+1, at+1) − Q(st, at)] (1)
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Reinforcement learning has previously been used to explain human conditional cooperation
behaviours in the context of the repeated Prisoner’s Dilemma (Horita et al., 2017) and other games (Erev
& Roth, 1998). SARSA was chosen for this particular research as it forms the basis of the augmented
learning algorithm Moody SARSA (Collenette et al., 2017b, 2018b), which has shown promise in social
dilemma contexts for a variety of reasons that are discussed in the following section. Outside of this,
SARSA has been used across both IPD literature (Gao, 2012; Lin et al., 2019) and human behavioural
modelling (Shteingart & Loewenstein, 2014)—with our ongoing research serving to expand knowledge
in both of these domains.

2.3. Moody SARSA
In recent years, alterations to SARSA have been implemented with the aim of improving its coopera-
tiveness in a variety of multi-agent scenarios. One simplistic and yet effective augmentation has been
the addition of an influential mood parameter, with a single-variable model embedded at different points
in processing that alters the behaviour of the foundational architecture. This new algorithm has shown
to not only to have greater cooperation rates over SARSA naturally (Collenette et al., 2017b), but to
also react similarly to humans when the structure of the IPD is experimentally manipulated (Feehan &
Fatima, 2022) and increase cooperation in networks of mixed players also (Collenette et al., 2018b).
Crucially, the extension of the learning process in this instance utilizes a conceptualization of mood
as opposed to emotions, as in previous work with the IPD such as Bazzan and Bordini (2001), where
models such as the Ortony, Clore and Collins framework (Ortony et al., 1988; Clore & Ortony, 2013)
are used instead. Mood as a simpler mechanism stands both on its own, as previously discussed, but
can work in combination with these more complex frameworks also (Collenette et al., 2017a, 2018a).
For these reason, it holds promise in being a viable candidate for an initial test of two further layers to
the IPD—one, a different structural manipulation that has also shown to influence human play, and the
other being basic, intuitive models of partner evaluation with supporting literary evidence.

First, however, we list the relevant equations and details for the implementation and analysis of a
moody agent’s responses. Then, we elaborate on recent data involving the algorithm in literature before
situating in the current behavioural experiment.

Moody SARSA (henceforth referred to as mSARSA) embodies mood as a real number between
1 and 100, with values above 70 characterized as high mood and below 30 as low mood (Collenette
et al., 2017b). High moods are codified by the authors as more risky and cooperative, and lower moods as
more rational and defective. This then interacts with SARSA processing at multiple junctures; primarily,
in action selection (including action re-selection at low/high mood states), reward estimation (through
constraint of the memory space averaged in calculations) and state space (with the inclusion of others’
perceived moods into state-action pairs). Mood is updated based on how an agent perceives its current
payoff relative to the average payoff previously attained, adjusted using the Homo Egualis model, valuing
both agent and partner equally (Fehr & Schmidt, 1999). If an agent perceives itself to be doing poorly
currently in comparison with its past, its mood should decrease. This process was updated in Collenette
et al. (2018b) from a previous iteration, adjusted to facilitate higher moods decreasing more readily.
The mood-altered equation for updating Q for each state-action pair is provided below, reproduced from
Collenette et al. (2017b).

Q(st, at) = Q(st, at) + α[rt+1 + γ� − Q(st, at)] (2)

The rule for the estimation of future rewards (�) is encapsulated in Equations (3) through (5), repro-
duced from Collenette et al. (2017b), where mt

i is the mood of a given agent i at time step t (a R between
0 and 100). Mema

i is the vector of the set of rewards previously obtained by that agent when using action
a, and |Mema

i | is at maximum 20. Mema
i (0) returns the most recent reward.

αt
i = (100 − mt

i)/100 (3)
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β t
i = ceil(|Mema

i (n)|/αt
i ) (4)

� = (n
β∑

0

Mema
i (n))/β t

i (5)

Mood constrains the depth (denoted with n) of memory consulted to calculate average past reward,
but also controls the value ε in ε-greedy exploration. When an agent’s mood is below 30 and they
cooperate, or above 70 and they defect, ε increases to 0.9 for that turn and a move is re-selected. Mood
is updated and maintained through Equations (6) through (8), reproduced from Collenette et al. (2017b)
and Collenette et al. (2018b). Let t denote the current time step of a learning epoch, pt

i return the payoff
of agent i in that time step, μt

i denote their average payoff over the elements in Mema
i , and mt

i denote
their mood. Let j denote agent i’s opponent, and let α = β, as in the original model):

αt
i = (100 − mt

i
−1)/100 (6)

�i ,j
t = μi

t − αi
t · max(μj

t − μi
t, 0) − βi

t · max(μi
t − μj

t, 0) (7)

mi
t = mi

t−1 + (pi
t−1 − �i ,j

t−1) (8)

Algorithm 1: mSARSA Pseudocode, taken from Feehan &
Fatima (2022) and originally adopted from Collenette et al.
(2018b).
initialise all Q(states, actions) arbitrarily;
for each episode do

initialise all states;
Choose an action using the policy derived from Q (ε-Greedy);
for each episode step do

Take the chosen action, observe the reward and the new state reached;
if mood ≥ 70 and action = ‘D’ OR mood ≤ 30 and action = ‘C’ then

re-select an action under a higher value (0.9)

Choose next action using the policy derived from Q (ε-Greedy);
Estimate future reward using Equations 3 through 5;
Update Q(s, a) using Equation 2;
Update mood using Equations 6 to 8 ;

Until terminal step;

The result of these alterations is an algorithm that, in comparison with SARSA, cooperates much
more frequently in multi-agent network IPD games (Collenette et al., 2017b; Feehan & Fatima, 2022).
Earlier versions of the algorithm cooperated too frequently, in fact; in Feehan and Fatima (2022) where
the strategy was deployed in static networks, the high frequency of interaction combined with the earlier
version of the mood update function led mSARSA to be heavily exploited when in direct competi-
tion with highly uncooperative SARSA agents. It did, however, exhibit key traits that SARSA did not.
When the values of the payoff matrix were varied (whilst maintaining the hierarchy necessary for the
dilemma) so as to alter a summary of the matrix3, mSARSA exhibited a trend seen in human research.

3Known as the cooperation index, which is discussed thoroughly in Wrightsman et al. (1972) and Colman et al. (2018).
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As Wrightsman et al. (1972) summarizes, when the value of the index increases, humans cooperate
more, despite the payoffs they receive maintaining the structure of the dilemma; this was also observed
in mSARSA, but not SARSA.

In the past, where the mood model has been combined with computational frameworks of emotion,
the addition of mood increases cooperation rates over all but one condition of the emotive model alone—
in addition, moody agents’ cooperation increases with number of interactions, as opposed to persistent
levels observed without it (Collenette et al., 2017a). Though it is important to delineate that this example
is of mood atop emotional agents, rather than learning ones, moody conditions all attained rates of over
80% mutual cooperation. In other studies, Moody SARSA at play in mixed environments of agents aids
networks to sustain mutual cooperation rates of approximately 49%, though there is no direct data to
suggest how mSARSA agents as individuals play (Collenette et al., 2018b).

With the potential for these modifications to provide greater realism in reinforcement learning models
of human social behaviour, then, we seek to gain a more thorough understanding of its limitations and
possible avenues of improvement. This moody augmentation of SARSA has previously been deployed
in networks of mobile agents, simulated in Stage (Vaughan, 2008), and equivalent non-spatial graph
networks. These methodologies provide the networks therein with capacity for change, but each have
their own limitations. By building on this past work, we seek to add more dynamism—the ability to
remove and add partners after initializing as a random network—and begin to experiment with more
layers of artificial cognition through selective play strategies.

2.4. Dynamic networks and selective play
Though Collenette et al. (2018b) establishes that multi-agent play involving mSARSA in a variety
of network structures can experience increased cooperation with the manipulation of their composi-
tion, the dynamics of the systems used are still bounded; node degree is fixed for each network, and
mobile agent conditions have limited interaction rates. The networks also preclude all notions of real-
istic human social networks—as discussed in Hauk (2001), mutability of relationships and partner
selectivity is a key aspect of real-world interactions with interconnectivity. There is a wealth of crit-
ical data regarding both human and computational cooperation when play is voluntary, as this element
emphasizes the key difference between the single-round and iterated versions of the dilemma; persis-
tent poor behaviour may lead to cessation of engagement in real life contexts, as opposed to one-off
games.

One initial clarification regards the term Conditional Dissociation as discussed in Qu et al. (2016),
with the concept both being of interest to the research at hand but experimentally clearly delineated from
our particular methods. As so in this paper, conditional dissociation involves the denial of play continu-
ation post-interaction, facilitating the removal of relationships a player is unhappy in as opposed to the
selection of a partner prior to any interaction taking place. The critical difference between conditional
dissociation and the play termination we use in this paper is that Qu et al. (2016) clarify the former as
‘requiring little cognitive capability’ and ‘akin to irritability. . .[like a] basic instinct’. Conceptually, this
has an interesting interaction with the mood architecture under evaluation here; increased irritability is
one of a broad spectrum of symptoms of clinical depression (NHS, 2019), a condition touched upon
briefly in justification of mSARSA’s design (Collenette et al., 2017b). However, the evaluation of a
partner taking place in the current work is intended to represent an intentional use of cognitive resource.
Human players are often asked definitively to consider a partner’s previous play—over a single round
(Rand et al., 2011) or over many, through summary metrics (Melamed et al., 2018)—and to consider
whether they would like to continue that relationship. Of course, the depth of processing involved in
this decision is beyond our current scope to unpick—but we might reasonably assume that this action,
in this experimental context, involves more than a gut feeling on which to base rejection, as considera-
tion is specifically instructed. Where the decision to continue play in Qu et al. (2016) is modelled by a
single probabilistic variable, lacking in image score metrics and no record of previous play, our model
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tests a selection of decision rules with summary variables (such as average score) on which judgement
depends.

Still, their conclusions are valuable to us; probabilistic conditional dissociation in an evolutionary
model promoted cooperation in networks of both mixed and single strategy agents. The paper reduces
down the termination of play (in the form of punishment through a waiting mechanism that precludes
agents from earning payoffs) to purely an investigation of self-removal. The structure of connection
mutability is essential to dynamic networks and must be discussed within context of the wide variety of
methodologies that have been used throughout research.

There is a dichotomy across this domain between bilateral (mutual) and unilateral (one-sided) rela-
tionship formation and cessation. Wang et al. (2012); Stanley et al. (1993) rightly suggest that increased
negotiation (in the form of bilateral agreements made through proposal and acceptance) appears closer to
naturalistic social contexts. We have opted for unilateral link formation primarily for technical simplicity
in this work, as bilaterality at either point (link formation or cessation) would require an additional layer
of computation regarding the staging and evaluation of proposed link changes. This, however, should
duly be noted as a limitation of both the scope of our work and the applicability of our results—agents
contained therein are isolated decision-makers on whom the model imposes changes whenever they are
suggested by partners. The pure exception to this is within the bounds of our periodic forgiveness mech-
anism (as explained in Section 3). Agents in our simulation retain information on partners they have
previously rejected under their evaluation strategies until a forgiveness event clears this memory, mean-
ing that agents automatically refuse new connections from partners they have previously dismissed as
unworthy, unless they have no memory of doing so. Though this is not close to approximating bilater-
ality in relationship decisions, it demonstrates a grudge-based premise that prevents unworthy partners
from re-invading an agent’s connections.

Interestingly, Hauk and Nagel (2001) suggests that in multiple PD supergames, not only was coopera-
tion greater when the choice to leave was available, it was also higher in unilateral choice conditions than
with bilateral agreement. Human participants played 10 supergames, each lasting 10 periods, with each
game period consisting of play with 6 separate opponents. The comparability is limited for our current
context as this work only concerns itself with exit options of a greater value than mutual defection, but
it provides validation that addresses this weakness of the chosen methodology. Additionally, it is impor-
tant to note that cooperation within play for this paper only reached a maximum of ∼ 60%—even with
the exclusion of data in which play did not go ahead due to a bilateral agreement not being reached. This
is much greater than the control baseline they opt to compare against4, but is not as high a proportion
as some computational networks achieve5. In other human research, proportions of cooperation (mutual
or otherwise—there is a great variation in reported metrics from paper to paper) can vary between a
maximum of 40% (Gallo, 2022) up to 100% (Melamed et al., 2018).

The relative frequency of cooperative behaviour decays over consecutive supergames in Hauk and
Nagel (2001), a trend observed in other human-based research, including those with differing method-
ologies. In Wang et al. (2012), dynamic human networks of 24 players played the IPD with bilateral
formation and unilateral cessation of links, varying the frequency of link updates (designated r) and the
number of link updates that could be voluntarily made by a player (designated k). In this paper, authors
found that cooperation was enhanced with the availability of link updating overall (over a static network)
and that more frequent link updating provided a significantly greater increase in proportion of coopera-
tive actions over the static baseline. Payoffs, too, increased similarly. Cooperators gravitated towards
other cooperators in the network (positive assortativity)—with negative consequences for sustained
cooperation. As games proceeded, cooperation proportions that had reached approximately 90-95%,
diminished to nothingness within the final few rounds, a finding that follows theory regarding the finite
horizon (as players were indeed informed that there would only be 12 rounds). Alternative payoffs were

4A value of 37.71%, taken from Andreoni and Miller (1993).
5Such as >80%, in Izquierdo et al. (2010).
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able to sustain cooperation slightly later into the game, mitigating the horizon effect, but cooperation
still dissolved towards the final round.

One paper that observes a different trend for sustained cooperation to Wang et al. (2012), whilst
maintaining their conclusions that strategic link alteration promotes cooperation in humans, is Rand
et al. (2011). In this work, as opposed to the previous, a stochastic horizon was used, where participants
were informed the likelihood of another round occurring was 0.8 (thereby mitigating confounding finite
horizon influences). Social networks of approximately 20 humans played the repeated game with three
experimental conditions; fixed links, random link updates and strategic link updates (through player
choice). In the lattermost, a percentage of total player pairs were selected (10% or 30%, depending
on the experimental condition) for link restructuring. If a link already exists, the evaluation regards
disconnection, with the inverse if no current link exists, and players are only informed about a partner’s
single previous play behaviour. The authors confirmed conclusions of prior evolutionary game theoretic
work with this methodology, demonstrating that when a greater proportion of subject pairs are selected
for link evaluation (30% of total), robust cooperation was sustained through the entire experimental
period. Granted, these experimental periods are not overly long (an average of 11 periods of game-
playing)—it is possible that with lengthier experimental sessions, this could still decay. However, authors
also found that cooperators were better connected than defectors, with cooperators much more likely to
have new links established with themselves than defectors. Finally, this paper adds some validity to our
choice of focusing most partner selection computation on the termination of links, with the addition of
a periodic forgiveness mechanism, through its suggestion that human players are more discerning when
they rescind consent to play with partners and are ‘more willing to give new players the benefit of the
doubt. . .reminiscent of a form of forgiveness or leniency’.

Recent work that follows on from Rand et al. (2011) both offers support and brings questions that
elicit the need for further research. Whilst Gallo (2022) offers weak corroborating support for Rand
et al. (2011), it demonstrates that a value of R%=50 elicits only slightly more cooperation than R%=10
in a network size of 12, whilst still noting horizon-based decay of this cooperation in both condi-
tions (despite participants being informed of a probabilistic likelihood of a next final round occurring).
A potential reason for the weak reinforcement of the previous evidence in this case could be suggested
by Melamed et al. (2018), in which the ‘standard methodology’ employed in Gallo (2022) is critiqued.
In the latter, players are forced to choose one behaviour for all networked partners they interact with,
something the former suggests could have a suppressive effect on behavioural cooperation. Melamed
et al. (2018) also utilizes a similar restructuring method (albeit keeping node degree the same, through
a one-in, one-out process), concluding that whilst reputation information is used in the process of partner
selection, it is not used in the process of behavioural decision-making (and has little influence on resul-
tant cooperation rates). Interestingly, in difference to the other two studies mentioned here, Melamed et
al. (2018) observes that when link evaluation and replacement is voluntary it occurs only 6.3% of the
time.

To our knowledge, there is sparse computational research furthering investigation of the observations
of human behaviour made within these collected works, and none combining it with humanlike rein-
forcement learning models for evaluation of said algorithms. Given recent discussion of psychology and
behavioural economics’ replication crises (Jusup et al., 2022) in relation to these exact topics, further
study is evidently necessary to aid a thorough understanding of underlying principles at work here.

2.5. Summary and current work
The IPD can be used to study the emergence of cooperation under difficult circumstances; selfishness,
social judgement, risk-taking and mutuality without communication. Particular reinforcement learn-
ers have been demonstrated to be uncooperative within the dilemma, following traditionally rational
behavioural patterns despite opportunities to reach altruistic self-benefit, but can be augmented with
models of human processes to increase their proportions of generous behaviour (Collenette et al., 2017b,
2018b; Feehan & Fatima, 2022). Mood summarizes and encapsulates the principle that experiencing
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social behaviour brings about altered internal states and demonstrates fluctuations in behaviour that
humans also exhibit (Feehan & Fatima, 2022), giving it promise for further development. Though it has
been tested in dynamic networks (Collenette et al., 2018b), it has not been tested in conditions where
node degree can fluctuate, potentially creating outcasts and other such anomalies. It has also not been
tested in collocation with decision strategies within such structures, where agents can choose for them-
selves if they wish to keep playing against any given partner; a factor that has been well established as
influential on cooperation rates. Alongside manipulations of network restructuring parameters, which
also alters human cooperation behaviours in the IPD (Rand et al., 2011; Melamed et al., 2018; Gallo,
2022), these are all avenues of possible investigation with the aim of improving cooperation further.

The intention of the current study is to synthesize many elements of these previous works into a
novel simulation, in order to progress understanding of both the moody SARSA algorithm and agent
modelling of human data. Humans in dynamic network research are often treated as black-box decision-
makers, where elements of the network structure are altered for effect but the cognitive components of
their interaction are not conditionally tested. As a bottom-up complement to this, we wish to examine
a reported trend in IPD play across networked games in people (Rand et al., 2011; Gallo, 2022) that
confirms the predictions of evolutionary game theoretic models.

We do this via a handful of basic partner evaluation mechanisms, based in past research and theory,
that go some small way towards representing humanlike processing, built atop a base platform of an
algorithm demonstrably more humanlike than traditional learners (Feehan & Fatima, 2022). We cannot
test such agents under similar methodologies as those used with humans without expanding on their
architectures beyond that of the literature thus far; hence, the justification for the novel elements of this
paper. The simple suggestions for partner evaluation offered in our study serve as an initial probe into a
second level of decision-making atop the processing involved in learning to play the IPD.

3. Experimental design
The simulation for the following experiments consist of a multi-agent network with the capacity for
agents to remove randomly selected current partners at specific intervals (link termination), according
to some specified decision mechanism. Game-playing strategies used by agents are either commonly
used throughout the game theoretic literature (e.g. TFT), or have been taken from a combination of
Collenette et al. (2017b) and Collenette et al. (2018b) (specifically, mSARSA; details of which are
primarily in Section 2.3 and Section 3.2.1). Experimental values used in the restructuring of the network
have been taken directly from Rand et al. (2011) and Gallo (2022) (see Section 3.2.2). Decision strategies
for link termination were designed uniquely by the research team, with consideration to cited sources
of previous literature (see Section 3.2.4), as with other elements of the network restructuring design
(cited as appropriate). Whilst these components have all been previously independently investigated,
this combination of factors has not been experimentally tested in this manner until now.

This section describes first the physical structure of the network itself, its construction and the nature
of dynamic changes to agent connections throughout one iteration of an experimental run (defined in
Section 3.1). It then outlines the experimental parameters used in all relevant aspects of the simulation
and which sources they have been taken from (if relevant), before formally outlining the testing hypothe-
ses for the experiments following, categorized by the dependent variable primarily used to determine
that outcome.

3.1. Simulation structure
The network for all the following outlined experimentation is structured thus. Forty agents are generated
in a non-spatial Erdos–Renyi network with an initial link connective likelihood of 0.2, as in Rand et al.
(2011); an example visualization of the graph structure of the network used can be seen in Figure 1. In
this diagram, we see each agent in the network as a node (circular), with a bilateral partnership with
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Figure 1. An example visualization of the initial random network, and the final network at the end of
the experimental period, generated with the PyVis library (Perrone et al., 2020). Colours in the graph
to the right indicate differing agent game-playing strategies

another node represented by an edge, or link. Agents with links between them are considered partners
for the purposes of the game.

Each agent has a randomly selected game-playing strategy type from list of available strategies (all
of equal weighting) depending on the network diversity condition; in the Single Opponent condition
(with low strategy diversity), the dynamic network is constructed of only learning agents (mSARSA vs.
SARSA), whereas in the Multiple Opponent condition (with higher strategy diversity), the network is
made up of approximately equal distribution of four strategy types (mSARSA, SARSA, TFT and WSLS).
The network is constructed in Python, utilizing the Network X (Hagberg et al., 2008) and MESA (Mesa,
2021) libraries, with the code repository available on request.

At each time step of an experimental run, agents play a round of the IPD against each of their partners
in order of their natural placement in an agent’s partner list, with all agent relationships being bidi-
rectional mutual connections. Partners are defined as any other agent in the network connected to the
agent in question. There are no limitations on how many partners an agent can have within a network;
agent connectivity is purely a product of selection opportunity and selection decisions. Components
of this method are taken from Melamed et al. (2018), which discusses the importance of the more
natural network behaviour selections for the IPD, in contrast to established dynamic network experi-
mentation tradition of selecting a single IPD behaviour that is played against all partners unilaterally.
Though research continues to use this method (Gallo, 2022), we agree with this refutation of the standard
design.

This continues with these initialized partners until a restructuring event (Re) occurs, during which
a single round is taken to evaluate partner connections and no game-playing takes place—this follows
the methodology outlined in Rand et al. (2011). The IPD then continues as previous, until the next
restructuring event; the frequency of these we designate through Rf .

When an Re occurs, the network model generates a list of all possible agent pair combinations and
then randomly selects a percentage of these for evaluation in the current event; this percentage is desig-
nated as the R%. With this selected list of agent pairings, the model iterates through the list and queries
the first agent in each pairing as to if it wishes to alter their relationship with the second listed agent. This
alteration depends on the current status between the two agents. If they have a pre-existing connection,
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Table 2. Parameter identifiers, their meanings, and the tested values for the following experiments

Parameter Detail Values Tested
LTS The strategy by which agents decide

if they wish to continue playing with
a partner.

Random; Reputation-based
(RA& RB); Score-based

(SA& SB)
Rf The frequency of network

restructuring (every x gameplay time
steps).

10

R% The percentage of possible agent pair
combinations randomly selected by
the model for network restructuring.

10; 30; 50

Ff Frequency of global network
‘forgiveness’, where certain

behavioural metrics are reset (every
y restructuring events).

100

Network diversity How many different IPD strategies
are present in the environment.

Single Opponent (mSARSA,
SARSA); Multiple Opponent

(mSARSA, SARSA, TFT,
WSLS)

the primary agent is queried regarding severance of that connection (involving the value judgement of
the partner, as given by the Link Termination Strategy, or LTS). If there is no pre-established connection,
agents check if the potential partner has previously been rejected by themselves (via a value judgement),
and if not, they accept them as a new partner.

For example, if the pairing in question is (4, 32), and there is already an existing connection between
these two agents, the model queries agent 4 as to if it wishes to sever its relationship with agent 32;
agent 4 will evaluate this decision based on its LTS.

Every n occurrences of an Re, the network also has a forgiveness event (Fe), in which specific local
and global information on play behaviour are reset. Namely, this includes the number of betrayals an
agent has performed across all of their interactions, the average scores each agent has been maintaining
against their opponents, and each agents memories of the partners they have rejected since the last Fe.
The frequency of these forgiveness events is a static parameter, designated Ff . Each experiment consists
of 5 learning episodes, with each of those comprising 25,000 game-playing time steps, where inter-
nal variables within agents are maintained for the course of the episode. Data presented averages over
these learning episodes for each experimental condition. These values were selected as a combination
of resource availability and pre-experimental parameter testing. Behaviours stabilized in the majority
of experimentation after approximately 20,000 time steps, averaging at a mean runtime of 49.63 hours
(SD=26.95) for 25,000.

The default parameters for both Rf and Ff were also chosen through extensive parameter explo-
ration and tuning prior to this study; in detail, Rf was tested using values of [5,10,15] in combination
with values of [5, 100, 200, 1000] for Ff , tested over 2,000 hours of computation time. Behaviour was
generally consistent under different values of Rf , with slight differences in performance found under
changes to Ff . We go one step further than Rand et al. (2011) to test one additional larger value for
R%—taken from Gallo (2022)—due to the increased size and interactivity of a network of artificial
agents compared with human players. The proportion of player strategy types in the Multiple Opponent
condition is similar to that in Collenette et al. (2018b) to facilitate similar comparison whilst keeping
within resource bounds.

All of the values used for the parameters given above can be found in Table 2.
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3.2. Parameters
3.2.1. Moody parameters
The moody version of SARSA uses the parameters outlined as optimal for encouraging cooperation in
previous literature Collenette et al. (2017b, 2018b) and the second iteration of its mood update equa-
tion (Collenette et al., 2018b), designed to encourage larger mood updates from poor outcomes. These
parameters include; the incorporation of mood in learning states, a value of 0.8 for the MA parameter,
and a starting mood value of 50. For more details, see Collenette et al. (2017b).

3.2.2. Network parameters
Table 2 outlines the experimental conditions for this piece of research and the values tested for each
parameter involved in our dynamic networks.

3.2.3. Link acceptance strategy
All agents possess the default novel link acceptance behaviour of:

If a potential partner is one I have no record of rejecting previously, I will accept them as a new
opponent; otherwise I will reject them outright.

3.2.4. Link termination strategies
LTSs then are enacted when existing connections are reviewed, as in Rand et al. (2011) and were
designed based on intuitively human evaluation metrics. These are described as follows:

Random The initial LTS makes partner decisions randomly, generating a value satisfying 0 < n < 1,
that is compared to the threshold of .5. If it is above .5, partners are rejected, and so
forth. This is to test for any effect purely generated by network dynamics alone, similar
to Melamed et al. (2018).

Reputation Next, there are two Reputation-Based strategies. Both function by comparing a partner’s
betrayal count (the number of T outcomes they have received) against a particular threshold
of acceptance—this strategy is inspired by Image-Scoring literature. Image-scoring func-
tions by recording a single or multifaceted statistic of a player’s positive behaviour in a
certain context (Wedekind & Milinski, 2000; Fu et al., 2008); for the IPD, this could be
how cooperative they are, or conversely how much they choose to defect. We have opted
to select the T payoff specifically for our simulations as mutual defection can be perceived
as rational and self-protective in a hostile environment—an agent that defects greatly is not
necessarily a selfish player if they are utilizing that behaviour defensively. There is also
substantial evidence throughout psychological research of a perception bias towards neg-
ative social information (Abdai & Miklósi, 2016), including in reference to the spread of
reputation information (Kim & Shin, 2015). The two thresholds of comparison are thus:

RA In the first instance, it is compared against their own betrayal count—if the opponent
value is larger, they are rejected. This is intended to select based on a humanlike prin-
ciple of ‘at least as good as me, or better’—though it may mean that well-behaved
agents who experience very few T outcomes will have a much more limited long-term
partner pool.

RB The second threshold compares the partner’s count against the global network average
betrayal count. The partner is only retained if this is lower than this mean, promoting
the retention of partners who generally do not betray their opponents, but without
contextual distinction for agents that explore.

Score Finally, there are two Score-Based strategies. Both work on the principle that when a con-
nection is reviewed, the reviewing agent examines its own total mean payoff (since the
initialization of the simulation) against the current opponent under review, and if it is lower
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than the desired threshold, the partner is rejected. This method of evaluation is rooted more
in common sense regarding play—naturally, players may use some summary count, or even
intuitive average (as biased with error that may be) of their scoring against a partner to
judge their suitability as a co-player. Pure score averages with tolerance levels have also
been used in previous computational research (Hauk, 2001) with positive effects on coop-
eration in networks, and score or previous play information is often given to human players
to facilitate whatever decision-making they are using (Rand et al., 2011; Wang et al., 2012).
The two thresholds examined in this work are:

SA An average score of 3 (a self-promoting absolutist threshold that selects for either
partners that can be exploited or partners that mutually cooperate), and,

SB An average score of 2 (a softer, but still positive threshold that is also inclusive of
partners migrating behaviour towards mutual cooperation, deselecting them if they
move towards mutual defection).

3.3. Hypotheses
Hypotheses for the various experiments in this paper will be broadly separated into predictions regard-
ing the three primary comparable dependent variables we will measure for both moody SARSA and the
network at large; payoffs, cooperation levels and connectivity (measured via normalized actor degree
centrality). This lattermost measure summarizes the connectedness of agents with nondirected links;
values close to zero indicate isolated network members, whereas values closer to 1 indicate highly con-
nected players (Knoke & Yang, 2008). Each experimental parameter combination is repeated within the
Single Opponent and Multiple Opponent environment conditions.

Predictions for the influence of network diversity are conditional on how mSARSA reacts to exploita-
tion in this implementation, as no direct data is available to make a formal intuition. If the updated
version of the algorithm (Collenette et al., 2018b) facilitates better protection from exploitation, then
the limiting factor on mSARSA performance in the Single Opponent condition will be R%; the volume
of restructuring within the network. The ability to reject partners only functions to a degree under this
system where forgiveness is possible; agents who are selfish (namely, SARSA) will exploit until their
misdemeanours are forgotten, with this cycle repeating itself as Fe occur. This cycle could potentially be
more extreme under greater values of R% also, as greater network changeability allows the examination
and rejection of poor quality partners at a faster rate than when only small portions of the population
are permitted re-evaluation.

3.3.1. Payoffs

H1. In terms of specific strategies, we anticipate that score selection will lead to increased payoffs for
mSARSA agents in comparison to reputation selection, if partners are more prone to cooperation
also. Given that the former is more specific to agent–agent interactions, whereas the latter evaluates
a potential partner’s more general, network-wide behaviour, we expect that poor partners will be
cut off more frequently, leading to higher-scoring relationships between those open to sustained
cooperation.

3.3.2. Cooperation

H2. We anticipate that the addition of strategic, dynamic link termination will increase proportions of
cooperation for moody agents over instances of static connectivity (Feehan & Fatima, 2022), as
agents will have the opportunity to reject exploitative partners.
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H3. We also expect stricter thresholds6 will create decreased proportions of cooperation for agents
over softer counterparts. Under this expectation, we predict that the SB LTS will result in higher
proportions of cooperation than the SA LTS. There may be some mitigation of this effect due to
the forgiveness mechanic utilized, but that will not be examined in the current work.

H4. In the Multiple Opponent condition, we expect mSARSA to continue to exhibit more cooperation
than SARSA if it follows trends of previous research (Collenette et al., 2018b; Feehan & Fatima,
2022). These agents will create more frequent to establish patterns of cooperation with partners that
are more open to reciprocation (e.g. TFT). Due to this, we anticipate mixed strategy environments
to exhibit greater overall cooperation over the Single Opponent conditions.

H5. If we carry forward the conclusions from previous research utilizing this restructuring methodology
with human players (Rand et al., 2011; Gallo, 2022), we anticipate that moody agents will cooperate
more frequently with higher values of R%. It is entirely possible that this effect may not translate
to agent-based research for a broad number of reasons that we will evaluate further, but is worth
maintaining as an initial hypothesis given the response of mSARSA agents in past work to other
human-influencing IPD parameters (Feehan & Fatima, 2022).

H5.1. A third value for R%—50, which was not used in Rand et al. (2011) but has since been tested
more recently in Gallo (2022)—is included due to the observation of suppressed behavioural
trends seen in Feehan and Fatima (2022) and the consideration that greater parameter values
may be necessary to elicit behavioural differences in a high-volume interaction environment.
It is expected that if behaviour follows the pattern of increase shown in these human studies,
we anticipate that cooperation will only show a slight increase in the R% = 50 condition over
the R% = 10 condition. It is possible that this behaviour will not carry over from human to
agent-based research, however; agents may demonstrate a more linear relationship between
cooperation rates and network restructuring.

3.3.3. Connectivity

H6. The higher threshold for Score-based selection (Threshold SA) will result in lower connectivity
for agents overall in comparison with the alternative threshold and with random partner evalua-
tion. The reasoning behind this is that it holds partners to a high standard; any average score with
a value below that of sustained mutual cooperation is unacceptable and results in rejection. We
expect that a more lenient threshold will be more forgiving to agents who explore these behaviours
(such as reinforcement learners) in the initial stages of experimentation, leading to lower system-
atic declination of play and potentially allow for relationship growth. Agents utilizing this softer
threshold value (Threshold SB) will be more lenient on partners who prefer to defect, but only up to
the critical limit—if partnerships tend towards defection progressively over multiple rounds, they
will eventually be disconnected.

H7. We additionally anticipate that mSARSA agents will maintain a greater actor degree centrality than
SARSA agents, particularly in the Single Opponent condition. This is because mSARSA agents
have a greater natural propensity to cooperate, as seen in its previous literature (Collenette et al.,
2017b; Feehan & Fatima, 2022), meaning that in the less diverse environment, mSARSA agents
are more likely to select for themselves under all thresholds that select for cooperators, meaning
mSARSA agents will be more likely to play with partners of their own kind.

6That is, values for score thresholds that identify a distinct payoff and no less—such as a minimum of 5. Such a threshold would
require opponents to be exploited by judging agents, with no room for transitional behaviours such as payoffs above 3.
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3.3.4. General

H8. Overall, we expect that moody agents will maintain more homogeneous personal networks than
their SARSA counterparts in the Single Opponent condition, due to their greater preference and
propensity for cooperation and the natural predisposition of SARSA to defect in previous testing
(thereby promoting their deselection through LTS). We will examine this notion of homophily (the
sociological clustering of like-minded agents) within the network by measuring the proportion of
an agent’s partners with the same game-playing strategy to itself.

H9. Within the reputation-based system, we predict that using the self as a comparator (Threshold
RA) will result in greater network heterogeneity between the simplistic and learning strategies,
due to the subjectivity of the evaluator. Agents who betray very frequently (such as explorers)
will be more open to connection as opposed to agents who are kind, who will be more restrictive
(resulting in lower measures of centrality).

H10. Given that simpler strategies have also performed very well in similar research (Collenette et al.,
and with WSLS’ propensity to exploit where permitted, we anticipate that strategies such as TFT
and WSLS will attain greater payoffs, proportions of cooperation and connectivity than either of
the learning strategies, across all conditions.

4. Experimental evaluation and results
The results given below are summaries of average behaviour across the final ‘cycle’ of gameplay for
each experimental condition; that is, the period of game-playing between the final forgiveness event
and the end of the simulation time. Time series data is discussed throughout and is available to pro-
duce on request, but has been omitted here due to volume of data. We begin by providing graphs of
three of the central dependent variables (mean payoff, mean proportion of cooperations performed and
mean normalized actor degree centrality) for moody SARSA in both the Single Opponent and Multiple
Opponent conditions. We then also discuss other data from the experiments in-text (namely average
mood, the mean proportion of similar partners, and so on). Each parameter is presented as the grand
mean across all agents in that condition, across this final game cycle. Error bars are single standard
deviations from this mean; where large error bars are visible, this represents large behavioural learning
curves over the course of a cycle, where behaviour post-forgiveness initially starts much higher or lower
and converges on the mean value shown over time.

4.0.1. Payoffs
Payoffs in neither the Single nor Multiple Opponent conditions were able to approach that of overall
mutual cooperation, regardless of LTS, but were highest whilst utilizing the RB and SB strategy thresh-
olds. In both the Single Opponent (see Figure 2) and Multiple Opponent (see Figure 3) conditions, only
the RB and SB LTS thresholds were above the static baseline level, demonstrating an improvement of
the addition of selective play. Both Random and SA LTS thresholds exhibited declining mean payoff
levels as R% increased (regardless of network diversity), with no consistent trend across the other LTS.
Payoffs overall were slightly higher overall in the more diverse networks than in games purely against
SARSA.

4.0.2. Cooperation
The mean proportion of cooperative actions mSARSA agents took declines from initial levels across
all conditions over the course of the experimental period. In the Single Opponent environment (see
Figure 4), voluntary cooperation (i.e., any instance where the C action was chosen by an agent as the
played move against a single partner) was higher overall than in the Multiple Opponent environment—a
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Figure 2. Summary graphs for Mean Payoffs attained by mSARSA agents within the final cycle of
gameplay, Single Opponent condition. Data is presented as grand means across all agents within that
time period, averaged over five simulative episodes, and demonstrates a promotion of payoff earning for
mSARSA agents under the RB and SB strategies. Asterisks (∗) indicate starting values for that variable
in the initial three rounds of the whole simulative period, and the solid black horizontal line indicates
the baseline average, taken from simulation with no partner switching

Figure 3. Summary graphs for Mean Payoffs attainted by mSARSA agents within the final cycle of
gameplay, Multiple Opponent condition. Data is presented as grand means across all agents within that
time period, averaged over five simulative episodes, and demonstrates a promotion of payoff earning for
mSARSA agents under the RB and SB strategies. Asterisks (∗) indicate starting values for that variable
in the initial three rounds of the whole simulative period, and the solid black horizontal line indicates
the baseline average, taken from simulation with no partner switching
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Figure 4. Summary graphs for Mean Cooperations performed (as a proportion of all actions taken)
by mSARSA agents within the final cycle of gameplay, Single Opponent condition. Data is presented
as grand means across all agents within that time period, averaged over five simulative episodes, and
demonstrates an increase in cooperation for mSARSA agents under the RB and SB strategies. Asterisks
(∗) indicate starting values for that variable in the initial three rounds of the whole simulative period,
and the solid black horizontal line indicates the baseline average, taken from simulation with no partner
switching

result we did not anticipate, given the greater proportional presence of partner strategies that reward
cooperation (TFT and, in some instances, WSLS).

In the Multiple Opponent environment (see Figure 5), cooperative actions were greatest overall for
the RA and SB strategies at R%=30, and SA at R%=10. In the otherwise poorly cooperative SA
strategy, in which agents seek partners that they can attain a mutually cooperative payoff or greater
against, the lowest percentage of link restructuring (R%=10) appears to negate some of the strictness
of this threshold. For RA and SB, the slightly more generous thresholds, R%=30 facilitates over 30%
of mSARSA agent behaviours being choices of cooperation. If we exclude the strategy SA from the
Multiple Opponent dataset, the trend suggested by Rand et al. (2011) holds true for these simulations;
cooperation was greater in the R%=30 than the R%=10 condition. After that, R%=50 demonstrates
a decline in the proportion of cooperative actions, either similar to that of R%=10 or lower.

This is slightly different in the Single Opponent condition, where cooperation levels for RA and SB
are also above the static baseline when R%=10 and also R%=30 for the former of the two. Mean
proportions of mutual cooperations, not displayed here, were incredibly low throughout all conditions,
never reaching above 15%. In the Multiple Opponent environment, only RA at R%=30 and SB at all
three levels of R% were above baseline values, varying between ∼ 11% and ∼ 13%.

Mean proportions of mutual cooperation (not shown here) were low for mSARSA in every condi-
tion; at no point did it rise above 15% of outcomes received for moody agents. In the Multiple Opponent
environment, however, the average across all strategies is much more positive due to the inclusion of
other strategies. In the final cycle of game-playing, mean network proportions of mutual cooperation
peaked at 43% (SD=41.08, where the standard deviation indicates the variance between strategies play-
ing the game) under the SB LTS. This is not far from the levels observed in Collenette et al. (2018b),
in which whole-network mutual cooperation proportions peaked at approximately 49%. Levels under
other LTS were slightly lower; between 32.61% for RA (SD=30.19) and 37% for SA (SD=30.67),
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Figure 5. Summary graphs for Mean Cooperations performed (as a proportion of all actions taken)
by mSARSA agents within the final cycle of gameplay, Multiple Opponent condition. Data is presented
as grand means across all agents within that time period, averaged over five simulative episodes, and
depicts a sharp decrease in cooperation for mSARSA agents under the RB strategy. Asterisks (∗) indicate
starting values for that variable in the initial three rounds of the whole simulative period, and the solid
black horizontal line indicates the baseline average, taken from simulation with no partner switching

with RA being the only strategy not to facilitate greater whole-network mutual cooperation proportions
than our static baseline (M=32.67%, SD=29.51%). These overall proportions are much higher than for
either of the learners individually due to the much higher mutual cooperation rates of both WSLS and
TFT.

4.0.3. Connectivity
There were no greatly obvious differences between the normalized actor degree centrality values for
mSARSA agents when in the Single- or Multiple Opponent environments, with the exception of agents
being slightly more connected when utilizing the RB and SB LTS in the Single condition (see Figure 6)
as opposed to the Multiple (particularly when R% was lower—see Figure 7). The obvious exception
to this is when R%=10 in the Single Opponent context, RB exhibited much greater connectivity than
when R% was greater and than when the network was more diverse. All agents that did not use the
Random or SA LTS were more connected by the final cycle than they were in the initialized network
and therefore also more connected than the static network baseline also.

Overall, in both network diversity conditions, SB appears to facilitate the greatest amount of con-
nectivity for mSARSA agents—particularly at R%=30. The next most consistently connected strategy
after this was RA.

4.0.4. Further data
As for other mSARSA variables, mood was high for all experimental conditions; with the exception of
the RB strategy in the Multiple Opponent condition (see Figure 9), average mood in the final cycle was
always above 40%. When the network was more diverse, mood overall was lower than in the Single
Opponent conditions (see Figure 8), where it did not decrease below 60% and occasionally was higher
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Figure 6. Summary graphs for Mean Normalised Actor Degree Centrality values for mSARSA agents
within the final cycle of gameplay, Single Opponent condition. Data is presented as grand means across
all agents within that time period, averaged over five simulative episodes, and displays the much greater
normalized centrality of mSARSA agents under the SB condition over the alternative strategies. Asterisks
(∗) indicate starting values for that variable in the initial three rounds of the whole simulative period,
and the solid black horizontal line indicates the baseline average, taken from simulation with no partner
switching

Figure 7. Summary graphs for Mean Normalised Actor Degree Centrality values for mSARSA agents
within the final cycle of gameplay, Multiple Opponent condition. Data is presented as grand means
across all agents within that time period, averaged over five simulative episodes, and displays the much
greater normalized centrality of mSARSA agents under the SB condition over the alternative strategies.
Asterisks (∗) indicate starting values for that variable in the initial three rounds of the whole simulative
period, and the solid black horizontal line indicates the baseline average, taken from simulation with no
partner switching
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Figure 8. Summary graphs for Average Mood levels of mSARSA agents within the final cycle of
gameplay, Single Opponent condition. Data is presented as grand means across all agents within that
time period, averaged over five simulative episodes, and displays a high mSARSA agent mood value
throughout. Asterisks (∗) indicate starting values for that variable in the initial three rounds of the
whole simulative period, and the solid black horizontal line indicates the baseline average, taken from
simulation with no partner switching

at the end of the simulation period than at the beginning. This reaffirms the conclusions of Feehan
and Fatima (2022), suggesting that SARSA is consistently able to exploit the structure of mSARSA,
where mSARSA’s mood does not react sufficiently to the selfish behaviour of SARSA and act to protect
itself from defection. The hope that the more updated version of the algorithm with greater mood update
reactivity would be more competitive against SARSA alone has not been supported by this data—though
this vulnerability may have been exacerbated by periodic forgiveness. Generally, it is the author’s hope
to see a version of mSARSA tuned that has mood more sensitive to defection, even at such high volumes
of interaction as in this study.

Generally speaking, the mean proportions of similar partners mSARSA agents possessed were greater
in the Single Opponent condition over the Multiple Opponent condition, which is considerably likely
to be due to there being half as many mSARSA agents present in the environment in this condition
to match with. In the Single Opponent condition, the RB and SB LTS aid in selecting and retaining
partners of a similar strategy (at least 50%), with RA following a close third (∼ 40% across all values
of R%). In the Multiple Opponent environment, RA and SB provide the greatest mean proportions of
similar partners maintained, but even then this is only slightly above 30% of all links. mSARSA agents
successfully select away from defection-prone SARSA. The SB LTS facilitates this effect best, with
over 70% of mSARSA’s partners also using mSARSA as opposed to less than 10% for SARSA in the
R% = 50 condition.

Data regarding other game-playing strategies outside of mSARSA are complex and not consistent
across conditions, but do provide revealing context for the results summarized above. Across condi-
tions, WSLS and TFT often cooperate more, score better and are occasionally more central—but this is
heavily dependant on LTS. Throughout all of the following summation of the time-series results, SARSA
consistently defects regardless of condition.

Under RA, WSLS cooperates the most, then TFT, then mSARSA. However, payoffs are roughly
equally distributed across all strategies—mSARSA and WSLS earn slightly less than the other two
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Figure 9. Summary graphs for Average Mood levels of mSARSA agents within the final cycle of game-
play, Multiple Opponent condition. Data is presented as grand means across all agents within that time
period, averaged over five simulative episodes, and displays a high mSARSA agent mood value through-
out with the exception of the RB strategy. Asterisks (∗) indicate starting values for that variable in the
initial three rounds of the whole simulative period, and the solid black horizontal line indicates the
baseline average, taken from simulation with no partner switching

strategies, but they all fall approximately equidistant between the mutually cooperative and mutually
defective payoffs. Despite this, WSLS and TFT agents have slightly lower normalized actor degree
centralities than those of the two learners.

Then, under RB, we see a very similar pattern to RA for cooperation in terms of hierarchy, with the
exception that mSARSA tends much stronger and faster towards defection, only quickened to conversion
by the increase in R%. In terms of payoffs, WSLS and TFT largely outperform the learners, and we see
that these two have much higher normalized centralities than the learners, who are largely rejected under
this threshold.

With SA, we see the reflection of the data already presented for mSARSA previously; at R%=10,
WSLS and TFT cooperate more than the learners, but at any R% above this all four strategies coop-
erate very infrequently. TFT attains slightly greater payoffs in the lowest R% condition, but this again
becomes minimal at higher levels, with SARSA attaining slightly greater payoffs than the other three.
All four strategies experience high isolation under this LTS.

Lastly, under SB, we finally observe some trends consistent with the human model in Rand et al.
(2011). In terms of cooperation, TFT voluntarily cooperates in over 85% of its behaviours, closely
followed by WSLS; examining this alongside data regarding homophily, we suggest that it is likely
TFT and WSLS agents partnered together, alongside with themselves, as their proportions of sim-
ilar partners were approximately 47% and 25% respectively. Regarding payoffs, TFT and SARSA
attain better than WSLS and mSARSA, with the former pair very closely approaching mean payoffs
of approximately 2.8 (particularly when R% = 30). Lastly, all three of the more cooperative strate-
gies, TFT, WSLS and mSARSA, maintained much greater normalized agent degree centralities than
normal SARSA; replicating the trend where cooperators were more greatly connected. Indeed, WSLS
agents were the most central agents by this measure, attaining connectivity proportions of around
0.75.
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5. Analysis and discussion
To reiterate from previous discussion, in past research, it has been observed that increased restructuring
proportions in the links within human dynamic networks leads to increased—and more importantly,
sustained—cooperation within the IPD (Rand et al., 2011; Gallo, 2022). Image-scoring is one proposed
method that explains cooperation in risky social human paradigms (Wedekind & Milinski, 2000), as it
provides useful social metrics by which to evaluate altruism in others, and its benefits to the emergence
of cooperation have also been demonstrated in computational modelling (Fu et al., 2008).

Humanlike reinforcement learners that have been shown to be more cooperative when structural
changes are made to their learning environments (namely, the payoff structure of the IPD) are also,
at their baselines, more naturally cooperative than their default counterparts (Collenette et al., 2017b;
Feehan & Fatima, 2022). In further exploration of the reactivity of this algorithm and its usefulness in
modelling human behaviour, we have deployed it in behavioural simulation against a handful of other
strategies, whilst incorporating these other elements from human literature to see if they produce similar
effects at a multi-agent level.

Overall, there are a handful of primary conclusions we have drawn from the simulation data pre-
sented here, with consideration to the conclusions of previous research. With regards to our hypotheses,
some appear to be conditionally fulfilled, whereas others seem to have found opposing trends to that of
previous research. We outline each of these conclusions in the points below, with evaluation as to the
cause and significance of each outcome.

H1. There were no consistent patterns of cooperation or centrality between the Score and Reputation
LTS categories; for example, even when the RB and SB strategies earned similar payoffs in the
mixed environment (payoffs of ∼ 1.5, Figure 2), the RB strategy voluntarily cooperated a fifth as
frequently as agents utilizing SB did (Figure 3). This particular finding follows common sense;
Reputation LTS evaluate a partner’s global poor behaviour, whereas Score LTS are more focused
on an agent’s own performance. These will naturally lead to different selection patterns given the
focus of the underlying metric—though these differences do not follow a linear trend and seem
to depend more on thresholds used. mSARSA reacts behaviourally to differing network dynamics
when they are being altered by different rules and thresholds, where little to no such reactivity was
evident in our implementation of SARSA. This leaves vast scope for the designing and selection
of future LTS, and their thresholds, for the elicitation of certain behaviours from mSARSA in
modelling.

H2. Cooperation is greater than the static baseline under a LTS that discards partners randomly, as
network exploration is beneficial to finding cooperators even without strategic evaluation of those
connections (Figures 4 and 5). This concurs with discussion in Melamed et al. (2018). Beyond
this, cooperation in image-score-inspired LTS is only higher than the static baseline given spe-
cific conditions that differ when the network is less diverse. Network mutual cooperation, overall,
only reaches similar levels to those seen in Collenette et al. (2018b) (with a nearly comparable
network diversity) when the SB LTS was used, meaning mutual cooperation rates in our networks
were lower overall by comparison. The presence of SARSA, with its high propensity for defection,
is likely the cause of this. This emphasizes that termination strategies should be designed care-
fully when including reinforcement learners in the network if we aim to replicate human models;
those with softer thresholds that evaluate partners based on score, in this instance, exhibited more
humanlike trends than the other LTS tested.

H3. Stricter threshold values do appear to lead to greater social punishment for reinforcement
learners—even more generous ones such as mSARSA—as evidenced by the lower values of cen-
trality for mSARSA agents under the RB and SA conditions (Figure 7). This leads to reduced
cooperation in both instances, as moody agents are rejected when they explore through more
stochastic play. Interestingly, exploring in the diverse environment under RB specifically leads
to reduced cooperation rates (<= 5%) for mSARSA and therefore mitigated payoff reduction in
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comparison to the less diverse environment (Figure 6). This demonstrates that the addition of other
strategies for mSARSA to learn from, with the combination of RB, leads mSARSA to defect more
on the whole.

H4. In contrast to our expectations, there were certain conditions for the Multiple Opponent environ-
ment in which mSARSA cooperated at similar levels to SARSA; under the RB LTS entirely and
under the SA LTS when R% was greater than 10. The very low proportions of similar partners for
mSARSA under these conditions (< 10%) suggests that when exposed to TFT and WSLS and uti-
lizing these LTS, mSARSA chooses to defect more often (Figures 4 and 5), as opposed to the much
higher proportions of similar partners (and greater cooperation) in the Single Opponent condition
(Section 4.0.4., Paragraph 2). Because mSARSA also has low Normalised Centrality under these
conditions (Figure 7), we can assume moody agents are only interacting with SARSA agents in
these conditions. Typically, as the less diverse environment demonstrates, mSARSA is more pre-
disposed to cooperating (Figure 4) and is therefore more exploited by any partnered SARSA it
encounters, scoring less (Figure 2). However, when they learn in a more diverse environment,
this cooperation is reduced; therefore when they are rejected (via the harshness of these particular
LTS thresholds), they continue to defect more and are therefore better prepared against exploita-
tion. This means that when exposed to these simple strategies, under these LTS, the exposure of
mSARSA to a broader variety of strategies earlier in the learning process encourages defection
to the extent of consistent self-protection against exploitative selfish strategies when the network
experiences sparse connectivity.

H5. The most interesting conclusion regards the replication of observations from past research manip-
ulating R%. We observed similar trends to human behaviour from mSARSA in only one of the
LTS; SB, the score-based strategy with the softer selection threshold value of 2. At first glance,
both the RA and SB LTS both exhibit the increase in proportions of cooperation (Figure 4) when
R% is increased from 10 to 30 (as in the study with humans)—this cooperation is sustained, as it
was in humans, but this is less unusual as mSARSA does not typically exhibit any decay of coop-
eration in a similar manner to that of human play. However, only under SB do we see the other
related effects discussed by Rand et al. (2011) and Gallo (2022). Cooperators are much better
connected than defectors under SB, with higher levels of strategy homophily. Within the last quar-
ter of the experimental period, mean cooperation (and payoffs) for mSARSA exhibit a substantial
dip—the cause of which is not immediately clear—but the strategy is able to recover from this to
re-establish the previous level of cooperation with continued play. These dips are only observed
in conditions where R% �=30. This initial work exhibits the behavioural trends observed in Rand
et al. (2011) with human participants, though the disruption of behaviour in the later phase requires
more in-depth study to evaluate properly.

H5.1. In addition to the above, the increased R% value of 50 tends to have the effect of decreasing
cooperation levels in almost all LTS for mSARSA (particularly in Figure 5); perhaps a unique effect
to computational networks, though this could explain the only minimal increases in cooperation
in Gallo (2022) at R% = 50 over R% = 10. It is also worth highlighting that all game-playing
strategies are to some degree influenced by increased values of R%, though in different ways
(e.g. proportions of cooperation for TFT under SB increase linearly with R%, including at the
50 value). Given that the behaviour exhibited by mSARSA under the SB LTS is similar to that
of both Rand et al. (2011) and Gallo (2022), in that cooperation is increased in trend with both
(but greater under R% = 30, which was not tested in the latter of the two studies), we suggest that
the SB LTS in these circumstances has the greatest potential for aligning with human model data,
moving forward.

H6. A threshold of 3 for score-based link termination (Threshold SA) indeed resulted in lower connec-
tivity for mSARSA agents, across all conditions, leading to reduced payoffs (Figures 2 and 3), less
similar partners (Section 4.0.4., Paragraph 2) and lower voluntary cooperation (Figures 4 and 5).
The lowest value of R% appeared to mitigate this negative influence by virtue of reducing the num-
ber of opportunities for partner rejection, providing ∼ 10% greater similar partners, ∼ 18% more
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voluntary cooperation and an approximately 280% increase in payoff in the more diverse environ-
ment alone (Figure 3). Threshold SB, however, appeared to best facilitate late-stage increases in
cooperation and connectivity of all LTS, whilst allowing the learning agents with the increased
propensity to cooperate (mSARSA) the opportunity to explore in earlier cycles. Together, these
show that very rigid thresholds create difficult situations for learners to grow within; in fact, the
entire network suffers and declines as a result, as seen by the low proportions of overall connec-
tivity and mean payoffs across all strategies. However, the ease of changing network behaviour
through the reduction of this threshold by a single point (to 2, in SB) demonstrates how vastly dif-
ferent behavioural changes are with just small alterations to threshold. These thresholds should
be carefully navigated by future models as too restrictive on the growth of cooperation, with
thresholds that change over play potentially working well for adaptive strategies like mSARSA.

H7. In the Single Opponent condition, mSARSA agents were more central under RA, RB (slightly, with
peaks under R% = 30) and SB (see Figure 6). Under SB, R% = 30, mSARSA agents are able to
attain centrality values almost as high as 0.7 (in comparison to just under 0.25 for SARSA). As
SARSA agents cooperate much more infrequently, mSARSA agents in the Single Opponent condi-
tion are able to discard them as opponents with greater ease, whilst maintaining links to mSARSA
agents who require flexibility to explore but can maintain greater cooperation levels (behaviour
that is rewarded under the softer threshold). This conclusion is reaffirmed with the homophily
data, as discussed in H8. With this, we demonstrate that the mood structures that facilitate greater
cooperation in mSARSA interact with certain LTS to produce enhanced pro-sociability with both
like-minded agents and similarly generous agents when they are available (such as WSLS and
TFT). Better connectivity with more cooperative partners under the SB strategy over the default
learning parameters of SARSA shows promise for mSARSA in social contexts.

H8. mSARSA agents do maintain a higher level of homophily in the Single Opponent environment
under the RB and SB LTS specifically, successfully selecting away from defection-prone SARSA
(as described in Section 4.0.4., Paragraph 2). Such small values are explained by the low con-
nectivity overall (SARSA having normalized centrality values of 0.2 for this same condition). As
discussed under the previous hypothesis, this maintains the prosocial advantages that mSARSA
maintains over basic SARSA with the addition of partner selection. In the more diverse environ-
ment, the learning strategies are more similar in terms of patterns of connectivity and homophily,
with SB and RA at R% = 10 being the exceptions. The conditions under which exploratory coop-
erators can flourish mean that mSARSA outperforms SARSA here, as SARSA agents are selected
against.

H9. As opposed to our prediction, a distinct homogeneity of outcomes was observed in strategies
utilizing RA; all game-playing strategies in the network experienced approximately the same lev-
els of payoff rewards and normalized centrality values (for an indication of value, see Figures 3
and 7 respectively). Cooperation levels (as discussed in Section 4.0.4., Paragraph 4) were also
more similar under this LTS than RB and SB, but still exhibited a hierarchy in which WSLS
cooperated the most, then TFT, then mSARSA (whose levels can be found in Figure 5) above
SARSA. Because partner rejection is based on how often a partner has betrayed, we see this
dynamic threshold—in comparison to how many betrayals the deciding agent has performed—
as less functional to game-players in terms of social partner evaluation. All agents in the diverse
network will have chosen to betray at some point; learners through their exploration, TFT through
copying a defection coincidentally against a partner who then cooperates (such as an explorer, or a
partner using TFT or WSLS who is switching), or a WSLS who does not experience resistance to
betrayals. Because these agents are comparing against their own personal levels of betrayal when
they judge others, they are much less discriminating than under other LTS and therefore have much
less consistent overall standards of acceptable partner play. The use of the pure cumulative count
of betrayals, too, was on reflection poorly chosen. In future work, more thorough pre-experiment
evaluation of the variance within this metric should be performed; it would likely benefit agents
to use an abstracted summary variable for betrayals instead of the actual value, also.
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H10. Following the trend of noted high performance of TFT in Collenette et al. (2018b), TFT and WSLS
both repeatedly outperformed the learning strategies across all conditions and metrics, with the
exception of under RA, where they cooperated more but scored similarly and were similarly as
central to the learners, and SA, in which all agents performed poorly due to restrictive partner
judgement thresholds (Section 4.0.4, Paragraphs 3 through 7). We suspect that the strengths of
the more simple strategies, particularly in an environment with reinforcement learners, are due
to the speed of their reactivity and in the formulation of their behavioural trends. Learners are
influenced by exploration rates, the types of opponents they are exposed to, and so forth; the more
blunt approach of both TFT and WSLS, regardless of partner type, appears to serve them well.
With the addition of LTS, they can also exclude partners who do not satisfy them, benefiting them
even more.

General explanations for the data come through the examination of the thresholds used for each
strategy. We see that some of the thresholds have a very restrictive influence on behaviour, limiting
cooperation and centrality. Agents with less complex behavioural structures, that are quicker to fall into
mutual cooperation (TFT and WSLS) are able to thrive better under these conditions, but learners—who
explore more randomly—are punished socially. In the more diverse network environments, mSARSA is
excluded from play by cooperators under the stricter thresholds (comparison with the network mean, in
RB, and score comparison with the goal of 3, in SA), leaving it to play the IPD against either itself, or
SARSA. In comparison with the data from Feehan and Fatima (2022), where a static grid network was
utilized with enforced play between SARSA and moody agents (utilizing an earlier version of mSARSA),
we see distinct differences in the proportions of outcomes. In the directly comparable Single Opponent
condition it is demonstrated that all variations of the RA condition and two of the three SB conditions
exhibited greater proportions of voluntary cooperation than this previous paper—this is likely due to the
fact that there are now homogeneous interactions occurring in this different network structure, in which
some cooperation will be more readily rewarded.

Values such as mood and cooperation decline under the Random and SA strategies when R%
increases. This can be explained through the observation of the proportion of similar partners for these
conditions. The Random strategy’s variance means that approximately half of all reviewed partners are
discarded—and this effect can be seen similarly in SA, where the threshold is so strict that most part-
ners who have not mutually cooperated (or permitted the occasional exploitation) will be removed. When
R% increases, this occurs to a greater degree as the amount of links under review in each Re is greater.
It is better (across measures of cooperation, centrality and payoff earned) to use a random strategy if the
network does not permit a large proportion of link alteration than it is to use the SA LTS. Some LTS
were no better than Random at a low R%—RA and SA, in either network diversity condition, received
lower mean payoffs in the final cycle than Random at R% = 10, despite cooperating similarly. Out of
these two, RA was more connected than Random, however—whereas those using SA were much more
isolated. This propensity for a Random strategy to still attain positive outcomes by comparison is noted
in previous research, also (Melamed et al., 2018).

The RB strategy’s low proportion of similar partners in the Multiple Opponent environment is likely
due to RB’s rejecting, selective nature. Strategy RB, in which agents compare betrayals against the
network mean, leave mSARSA agents connected with only a few select partners that they can then
interact with. Moody agents receive the second best payoff levels of all strategies under RB, but are more
sparsely connected, in the poorest moods, are at their most uncooperative, and interact with themselves
the least. This demonstrates the effect, then, that selecting partners who are in the top half of all in
the network when regarding how often they betray facilitates more logical, less cooperative network
game-playing.

In an overview of mood in this study with comparison to previous research, we find that mood remains
a somewhat consistent influence on cooperation, but interacts inconsistently with the introduction of the
LTS dynamics. In Collenette et al. (2017b), when the influence of mood on mSARSA learning increases,
mutual cooperation increases and mutual defections decrease; the cause of which is ascribed to mood
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increases in the general population, in which the mood mechanism is designed to increase the selection of
C behaviour. Agents receive payoffs, which increases mood, which leads to even greater raising of mood
as more R outcomes are attained. Then, we see this general trend reiterated in Feehan and Fatima (2022),
albeit at a more suppressed level. Although there is little explicit mood data reported from Collenette
et al. (2017b), in Feehan and Fatima (2022), mood rose quickly to ceiling and remained there—with
mutual defection being the greatest average reported outcome when mSARSA played against SARSA.
There, we see that despite mood being high, cooperation is not always a given—this is true in this study
also, with differences observed between LTS.

In this research, mood is again generally very high against SARSA. Lower moods (RB, R% > 10 and
SB, R% = 50) attained some of the highest payoffs against SARSA—this makes sense in this environ-
ment, as defecting in such a defection-prone opponent environment will lessen exploitation outcomes
(lower centrality and cooperation levels equate to higher payoffs here—SB, R%=50 is the best example
of this). With the exception of SA, which is an unusual case in that agent connectivity in general is very
low (see the low proportions of centrality in Figures 6 and 7), the trend of cooperation to mood is almost
exactly the same between the differing LTS conditions.

Mood can be inconsistent, however, as a general predictor of behaviour; in the Multiple Opponent
condition for example, agents are happiest when they are most isolated (even from themselves), cooper-
ating less and earning less under strategy SA. The influence of individual payoffs are large when an agent
has few partners, likely leading to inflated moods despite this context. Conversely, when agents are still
maintaining connections and cooperating very little (despite earning nearly the greatest payoffs levels
of all LTS), their moods are very low. The mood construct, at a very basic level, is designed to increase
cooperation at high levels and increase defection at low moods. These inconsistencies, particularly in
mixed strategy environments, are potentially an area for review in regards to the architectural functioning
of the algorithm—if they are brought about by interaction with decision-based partner changes within
a social network, then this interaction must be more clearly defined with further research.

6. Conclusions
This piece of research has tested a conjunction of human- and agent-influencing experimental parameters
in order to evaluate the moody SARSA algorithm in different dynamic network contexts. Overall, we still
consider it to be a very promising, more cooperative variation on the algorithm it was augmented from—
even more so that we continue to add to the list of parameters that seem to influence its behaviour in
ways that are reminiscent of human trends. Its robustness as a functional model in the face of exploitation
we still feel could be improved, as we still find inflated moods despite poor outcomes across numerous
contexts (despite the augmentations made in Collenette et al. (2018b)); this requires more research as
to avenues of diversification for the algorithm, perhaps returning to previous synthesis with emotion
simulation (Collenette et al., 2018a) or the alteration of how it evaluates its own performance (namely
the use of the Homo Egualis model).

We also add conditional support to the conclusions of Rand et al. (2011) and, to some extent, the
extension of this work through Gallo (2022). By combining a slightly more humanlike learning algo-
rithm with a selection of proposed humanlike partner judgement mechanisms, we attempted to test
agents that recreate the processing of humans in their research, evaluating this through the likeness
of the data to the human model. This was true under the SB strategy and though the actual levels of
cooperation exhibited do not even closely approach that of human players (Hauk & Nagel, 2001; Rand
et al., 2011; Wang et al., 2012), or non-learning agents (Fu et al., 2008; Qu et al., 2016), the trends
of behaviour shown suggest its potential usefulness in further research. In particular conjunction with
the R%=30 restructuring rate, the RB strategy facilitates the greatest centrality, voluntary cooperation,
mutual cooperation and payoffs within our environment, consistently.

Here, we only tested two very specific thresholds for each LTS, but there are a great variety of thresh-
olds that could have been chosen (including variable thresholds as opposed to static), and quantitative
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work exploring these thoroughly would be a strong selection for follow-up investigation at a larger scale.
More depth of understanding is also required regarding the interaction of other structural features of our
simulation, such as the effect of forgiveness events and restructuring frequency on the individual strate-
gies. In addition, recent similar work has highlighted the importance of the influence an agents’ depth
of evaluation on learned outcomes, contrasting local partners (as we examined in this work) with global
observations (Jia et al., 2021). Whilst the moody conditional cooperation under examination is more
a classification of emergent behaviour in this other work, and distinct from the mood defined here, it
would also be of interest to examine such effects within mSARSA in future.
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