
Ergod. Th. & Dynam. Sys. (1988), 8, 621-632
Printed in Great Britain

il-Stability is not dense in Axiom A
S. E. PATTERSON*

Northwestern University, Evanston, Illinois, USA

(Received 8 October 1986 and revised 15 July 1987)

Abstract. An example of a diffeomorphism / on a three dimensional manifold M3

is constructed so that / satisfies Axiom A, has a cycle and / has a neighborhood N
in Diffr (M3) so that each g in N is not ft-stable. Existing techniques allow one to
extend this example to any compact manifold of dimension greater than two.

1. Introduction
We are concerned here with the following question: can every Axiom A diffeomorph-
ism of a compact n -dimensional manifold M" be approximated by an ft-stable
one? Palis's work on ft-explosions [5] and Smale's ft-stability theorem [9] reduce
this question to: if/ satisfies Axiom A and has a cycle, can / be approximated by
an ft-stable diffeomorphism? The answer turns out to depend upon the dimension
n of M". For n = 1 a diffeomorphism satisfies Axiom A if and only if it is ft-stable
(using Peixoto [7]). For n = 2 Newhouse and Palis [2] show that the question has
an affirmative answer. In fact they prove a stronger result.

THEOREM [Newhouse and Palis]: iffis an Axiom A diffeomorphism of a compact
two dimensional manifold with non-wandering set ft(/) then f may be approximated
by an Q,-stable g such that ft(g) = ft(/).

This theorem is proved by showing that to every two dimensional Axiom A system
with a cycle there may be applied a prescribed perturbation which leaves the
non-wandering set unchanged while 'breaking' the cycle connections. After finitely
many such perturbations the new system is Axiom A (ft is unchanged) and has no
cycles so it is ft stable. The fact that ft(g) = ft(/) in this case is more than a corollary
to the proof that our question has a positive answer in dimension two. It is an
essential feature of the prescribed perturbation. That this type of perturbation does
not extend to higher dimensions is demonstrated by a pair of examples due to Pugh,
Walker, and Wilson [8] and Dankner [1]. These are examples of Axiom A systems
(a flow and a diffeomorphism respectively) in dimension three with finite non-
wandering sets and cycles such that any attempt to 'break' the cycle creates homo-
clinic points and ft-havoc. Consequently, these systems cannot be approximated by
ft-stable systems with the same nonwandering set as the original system. This still
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does not answer our original question, however. A generalization of [6] shows that
Dankner's system does indeed have fl-stable approximations albeit with much
enlarged nonwandering sets. It would seem plausible, therefore, that our question
has an affirmative answer for every dimension.

It is the purpose of this paper to prove the following

THEOREM. In every isotopy class of Din"(M"), n>3 there is a diffeomorphism
satisfying Axiom A which cannot be C2 approximated by an Cl-stable diffeomorphism.

This is a strengthening of a theorem of Dankner [1] which indicates that the
diffeomorphism cannot be approxiated by an ft-stable diffeomorphism with the
same nonwandering set as the original. We will modify Dankner's example to
produce a diffeomorphism F with the following properties:
(1) F satisfies Axiom A
(2) F has cycles
(3) Every diffeomorphism, G, C2 near F either has

(a) cycles
or

(b) a wild hyperbolic set,
so G is not ft-stable.

2.
We now construct a two dimensional prototype of the example. We will construct
an Axiom A diffeomorphism / of the 2-sphere which has a cycle and consider
perturbations of/ with certain restrictions on the type of perturbation to be made.

FIGURE 1
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In higher dimensions, the example may be constructed so that these restrictions are
unnecessary. Given these restrictions we will see that any system 'near' / either has
a cycle or a wild hyperbolic set. Thus any perturbation of/ (modulo the restrictions)
is not O-stable.

Let V be a closed rectangle and define /0 : V -> V so that V contains two horseshoes
and one sink as shown in figure 1. Let V, and V2 be the subrectangles shown and
define Ai = C]neZfVi for i = l,2. Let p, be the fixed point in Vj with positive
eigenvalues for i = 1,2. Aj and A2 are non-trivial, zero-dimensional, hyperbolic basic
sets. These basic sets may be constructed with arbitrarily large stable and unstable
thicknesses. In particular we may assume T"(A2) • T S ( A , ) > 1. See [4] for definitions
and discussion.

We now modify/o| V by pushing some of W(A2) so that it meets some of WS(A,)
away from A! and A2 as shown in figure 2. Call the resulting map / , .

W(At)

W"(A2)

FIGURE 2

Since T"(A2) • T*(AI) > 1, this can be done so that C2 persistent tangencies between
W(A2) and W'(Ai) are created. It is clear that no new recurrence is created.

Now extend / , to / 2 e Diff (S2) defined by figure 3.
Further modify /2 to /3 by composing f2 with a diffeomorphism supported on the

rectangle R of figure 3 so that W(A1,f3)$W*(p)*0. Call the resulting
diffeomorphism /

It is important to observe that those points of tangency between W"(A2) and
W'(Ai) are still not in the limit set. They are not even non-wandering. This is a
result of the construction of the part of the cycle connecting-.p. to q. To see this,
consider any point in some neighborhood of a point of tangency. The only way this
point can return to this neighborhood is to pass along the cycle and reenter V but
any point which leaves V does so through R and is above Wu(p) so is in the stable
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FIGURE 3

manifold of either p or one of the sinks. We conclude that the points of tangency
are wandering and / has a hyperbolic limit set and a cycle, so / is not fi-stable.

Because this is an example in two dimensions we could break the cycle according
to Newhouse and Palis [2]. This would be accomplished by pushing a fundamental
domain of W(p) in the coincidence W"(p)n Ws(q) upward so that W{p)\{p}
is completely contained in the stable manifolds of the sinks. In order to construct
our two dimensional example, however, we make the following restriction on the
type of perturbation to be allowed. This restriction is unnecessary in higher
dimensions.

Restriction. Any perturbation which breaks the coincidence pushes some of W(p)
below Ws(q).

Now any system g near/ either leaves the coincidence intact and thus has a cycle
and is therefore fi-unstable or has transverse intersections between W (A2) and
W(Ai). This is because these sets accumulate below and above the coincidence
respectively and we are assuming that any perturbations of the coincidence pushes
some of W(p) below Ws(q). It follows from Lemma 8 of [3] that g has a wild
hyperbolic set.

We conclude that the diffeomorphism / is isolated from the fl-stable systems
since any perturbation (given the restrictions) of / either has a cycle or a wild
hyperbolic set. We point out, however, that while L(f) is hyperbolic, / does not
satisfy Axiom A. This is because W"(p) n Ws(q) <= fl but Wu(p) n Ws(q) nL = 0.
To construct an Axiom A example one merely needs to connect two p - q coinciden-
ces in tandem as shown in figure 4.
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FIGURE 4

We also extend the restrictions on breaking the coincidence p — q to include p' - q'.
It is straightforward to verify that the resulting system is Axiom A and is isolated
from the ft-stable systems given these restrictions.

3.
In this section we examine a local example due to Dankner [1] and in § 4 we show
how to modify it to produce a local example with the desired characteristics, namely,
an Axiom A system which cannot be approximated by an fl-stable system. The
theorem will follow immediately from the proof of Theorem 6.1 in [1] which shows
that therefore each isotopy class of Diff (M"), n > 3 contains such a system. Only
a sketch of Dankner's example appears here. The reader is encouraged to see [1]
for the details. We will follow the notation in that paper.

A two dimensional analogue of Dankner's three dimensional system is shown in
figure 5 where we assume the same coincidence breaking restrictions as in § 2.

FIGURE 5
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The essential feature of this system is that any perturbation of this system which
breaks the coincident cycle connections (given the restrictions) creates homoclinic
points and hence ft:explosions. Since the coincidences are the only breakable cycle
connections and since the original system has a finite non-wandering set one may
conclude that, given these restrictions, this Axiom A system cannot be approximated
by an ft-stable system with the same nonwandering set.

Dankner's three dimensional example, of course, does not require the restrictions
on breaking the coincidence to reach the same conclusion. His example begins with
two identical open subsets U and U' in R3 with Fo: C/u U'-*R3 defined similarly
on each and shown for U in figure 6.

FIGURE 6

The figure shown is in the interior of U. The planes II,, Up, Yl2, U5 and the plane
II,,. through p and q parallel to n2 are all locally invariant under Fo. Furthermore
II# is a plane of symmetry. The points 1, 2, 3, 4, 5, 6, p, q and all sources and sinks
are hyperbolic fixed points. We note that there are other fixed points in U which
are not shown as we are not concerned with them here. The saddle points 1, 2, 3,
4, 5, 6 and q all have two dimensional unstable manifolds whereas p has a one
dimensional unstable manifold. Let fi, A, and A2 with 0 < n < K A , < A 2 be the
eigenvalues of TF0 at q. In this case AJ1, A71 and /i"1 are the eigenvalues of TF0

at p.
Let W = Wu(l)u W"(3)u W(4)u W"(6) u W(p). W - W"(p) is the union

of two dimensional unstable manifolds. Let <%= W" n Ws(p). Nearp, W consists
of vertical one dimensional fibers over 2E. We assume that Fo has sufficient symmetry
that near q, W n W{q) is the image under vertical projection of 26 into W(q).
Denote the corresponding structures in U' with primes. So the fixed points of Fo \ U'
are 1', 2', 3' etc. We assume that ([ /ufo(£/)) n (U'u Fo( U')) = 0 . F is an extension
of Fo to all of R3 and F is defined to be F composed with sixteen diffeomorphisms
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f\, • • • ,/i6 of R3 each of which is supported on a thin cylinder. The effect of these
fiS is to push a piece of W{q) (resp. Wu(q')) into transversal intersection with
one component of Ws(2')\{2'} or Ws(5')\{5'}(resp. Ws(2)\{2} or W"(5)\{5}). This
is done carefully in [1] so that one sees that no new recurrence is created. F is an
Axiom A diffeomorphism with a finite non-wandering set and has cycles. The cycles
in ft(F) may be represented by the following diagram.

,2'-—-y

k5' ^4 . .

FIGURE 7

Here 8 + p means W(8)n Ws(p)*0 and 8*/3 means ^ " ( 8 ) ^ Ws(/3) # 0 . In
A

any cycle of F there are only two breakable (non-transverse) types of cycle connec-
tions:
1. p^q (and p'
and
22. 2-»l (and2'-*l', 2-»3, 2'->3\ 5'-»4', 5'-»6', 5^-4 and 5^6).

We first consider type 2. It is easily seen that due to transversality of W(q') with
Ws(2) andhyperbolicity of 2 that,fordiffeomorphisms near F, if W"(2) n Ws(l) = 0
then W(q')nWs(l)*0.

In fact we simplify the above construction by dispensing with those eight cylinders
f2,hJ6, • • • ,/i6 which connect W(q) and W"{q') to the components of Ws(2'),

W"nW"(q
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Ws(5'), Ws(2) and W'(5) which are below IIp. and IIP and then perturbing W(2),
Wu(5), Wu(2') and W(5') downward. The resulting picture in U is shown in figure
8. (The 'fingers' of W"W) pushed along the cylinders are not shown to simplify
the figure.) This simplified system has the same essential properties of Dankner's
original. It has the same non-wandering set so it too is Axiom A and it has
unbreakable cycles as we will see.

The resulting diagram is then

FIGURE 9

and the only type of breakable cycle connection is p -» q. We will hereafter assume
that F is so defined.

Remark 3.6. One may further simplify the construction by dispensing with U' and
connecting W"(q) with Ws(2) and W(5) from above IIP. The resulting system
while not Axiom A (all of W(p) n Ws(q) is non-wandering) does have a hyperbolic
limit set and fully retains all of the essential perturbation behaviour of the original
example. This is an example of an L-hyperbolic system which cannot be approxi-
mated by an ft-stable (or L-stable) system with the same limit set.

We return to F and consideration of the only (pair of) breakable cycle connec-
tion^): p^* q (andp'-»g')- The essential feature of this coincident cycle connection
is the following.

Let /<= W"(p)n Ws(q) be a closed interval, then there is a neighborhood N of
/ such that (see figure 10)
1. N\(W n N) has four components /?,, R2, R3 and R4

2. W"(q') accumulates on WunN from R2 and RA

3. Ws(a') accumulates onWnN from K, and R3 for a'= 1', 3', 4', 6'
4. W(q')n Ws(a') = 0 for a' = 1', 3', 4', 6'.

A

We can now see that this part of the construction from F to F introduces no new
nonwandering points since such points would have nearby orbits which would pass
from U' through U and back to U' (or vice-versa). But this is impossible. Any such
orbit entering U must do so through one of the cylinders from V to U thus the
orbit passes through the neighborhood N in regions R2 or R4. These regions are
completely contained in the stable manifolds of sinks in U, however, so the orbit
cannot return to U'. Likewise, orbits which do travel from U to U' have points in
the regions Ri or R3 so W acts as a barrier preventing orbits which pass from V
to U from returning to U'. Thus we have property 4 and we may conclude that
O(F) is finite.

This barrier property of W" is delicate and depends on the coincidence of W(p)
and Ws(q). Properties 1-3 guarantee that if this coincidence and the corresponding
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-R4

FlGURE 10

coincidence in U' are broken for some g near F then g will have transverse
homoclinic points and thus ft(g) will be infinite.

4.
In this section we see how to modify the example of § 3 to create an Axiom A
system without fl-stable perturbations.

Let/]: V-* V be the two dimensional system described in § 2 and shown in figures
1 and 2. Recall that/, has persistent tangencies between W(A2) and Ws(Ai).

Let / = [ - l , l ] and define

where h(x) = \x with A>1 larger than the largest eigenvalue of Tft on V. Thus
/ : V-»R2is normally hyperbolically imbedded i n / : Vx/-»R3 and A, = A, x {0} and
A2 = A2 x {0} are basic sets for / with two dimensional unstable manifolds. Further-
more W"(A2) has persistent tangencies with W^CA,).

•+—

/

/I X

FIGURE 11
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FIGURE 12

Let J be a closed interval containing / in its interior, let V = V x J and extend f
A A A A

to / : V-» V by giving / a sink in each component of Vx(J\I). See figure 11.
We are now in a position to define our example. Let F be the system described

in §3. LetF,=[ agree with F outside the union of two small balls containing
the sinks 12 and 25 (see figure 12). Inside these balls modify F so that one copy
of/: V-* V is in each as shown in figure 13. Call these balls 12 V and 2s V and name
the structures in them accordingly - i.e. 12A2 and n^i are the non-trivial basic sets

A

in i2 V etc. We maintain the symmetry of F so that 12 V and its associated structures
are the mirror image of 25 V and its structures. As we describe those structures for
25 V below it is to be understood that the structures for 12 V are identical.

u

FIGURE 13
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Now modify the difieomorphisms fu and/15 which push pieces of W(q') along
thin cylinders so that W(q') meets Ws(2Sp2) transversely instead of Ws(5). Finally
push a piece of W(25Ai), along a thin cylinder, into transverse intersection with
Ws(5) as shown in figure 13. Call the resulting diffeomorphism F.

It is critical to our analysis that all of this be done so that

[ W"(25A,) u W(2SA2)] n Ws(25Pl) = 0 .

We rely upon this fact to conclude that those points of persistent tangency between
WG5A2) and W(2iAi) are wandering. One can see that F has the following
diagram:

FIGURE 14

where 25A2-»pr'25A, means that W"(25A2) has tangencies with WS(25A!) in a
persistent way.

Let G be any diffeomorphism C2 near F. There are three cases:
(1) G has both connections p-*q and p'-*q' intact, in which case G has cycles

and is not fl-stable.
(2) G has only one of the connections, say p-* q, intact so

In this case each xe W(p)n Ws(q) is non-wandering so G is not ft-stable.
(3) G has both connections broken in which case

Assume without loss of generality that

W"(25A1)$W

Since the coincidence p'^q' is broken,

W

We conclude that

while W"(25A2) has persistent tangencies with Ws(25Ai). From Lemma 8 of [3]
we conclude that G has wild hyperbolic set and thus is not ft-stable.

The methods of § 6 of [1] extend this example to every isotopy class of DifT (M")
for n>3 and the theorem is proved.

Remark 4.5. The preceding discussion shows that Q-stability is not a C2 dense
property in Axiom A. The corresponding question for C1 perturbations is un-
answered. In a recent conversation with S. Newhouse it was pointed out that standard
examples of systems which are fl-stable but not structurally stable have C1 persistent
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tangencies and that perhaps these tangencies could be embedded into the cycle
constructed above to yield an Axiom A system with no C1 perturbations possessing
the fl-stable property. '
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