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Abstract

denotes the near-ring of all continuous selfmaps of the topological group G (under com-
position and the pointwise induced operation) and./K0(G) is the subnear-ring of ^~(G) con-
sisting of all functions having the identity element of G fixed. It is known that if G is discrete
then (a) ^o(G) is simple and (b) Jf(G) is simple if and only if G is not of order 2. We begin a
study of the ideal structure of these near-rings when G is a disconnected group.
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1. Introduction

Let G be a topological group. JV(G) denotes the collection of all continuous self-
maps of G, and Jfo{G) denotes that subset of J^(G) which consists of all maps
which have the identity of G as a fixed point. Under the pointwise operation on
^T(G) which is induced by the binary operation on G, and under the usual com-
position of functions, ^(G) is a near-ring and «V0{G) is a subnear-ring of «¥(G).
In Berman and Silverman (1959) and Nobauer and Philipp (1962) it was shown
that if G has the discrete topology then ^ ( G ) is simple (that is, contains no non-
trivial near-ring ideals, see Pilz (1975), p. 15) and *V(G) is simple provided G is
not of order 2. It is then natural to ask whether ~W{G) or ^0(G) is simple when
G is endowed with some topology other than the discrete topology. In this paper
we answer the question when G is disconnected, and obtain the results of Berman
and Silverman (1959) as special cases. We show that if G is disconnected then

is simple if and only if G is discrete. Moreover, if G is disconnected and
is simple then G is totally disconnected.
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434 Robert D. Hofer [2]

We also begin the study of the ideal structure of these near-rings. We find a class
of disconnected groups with the property that if G is a totally disconnected group
in this class then Jf^ (G) contains a unique minimal ideal. And if G is in this class
but is not totally disconnected then Jf(G) contains a unique maximal ideal. This
class of groups properly contains those infinite groups that have proper, open,
disconnected subgroups as well as those groups that are O-dimensional subgroups
of locally compact, Hausdorff groups. We call this class the class of/-locally pre-
compact groups. We do not know whether every infinite totally disconnected
group is /-locally precompact.

In Section 2 we consider near-rings on groups with quite general properties. In
Section 3 we introduce the notion of a compatible decomposition as a tool to
obtain our most important theorems. In Section 4 we examine some properties
of/-locally precompact groups and prove that every infinite, totally disconnected,
/-locally precompact group has a compatible decomposition. We finish the paper
with a number of examples. We will assume throughout that all groups are
Hausdorff and that our near-rings are right near-rings.

2. General properties

The following lemma will be used to shorten upcoming proofs.

LEMMA (2.1). Let (N, +,•) be a near-ring with identity 1. A subset I of N is an
ideal of N if and only if

a) (7, +) is a subgroup of(N, +),
(b) I-Nzl,and
(c) for each ieland each m,neN, m(n+i)—mneI.

PROOF. Any ideal in a near-ring satisfies conditions (a) through (c). Conversely
suppose / satisfies these three conditions. We need only prove that (/, +) is a
normal subgroup of (N, +). Since n+i—n = 1 •(«+/)— 1 -n, it follows that / is an
ideal.

If X is any set and xeX we will let <;c> denote the constant function which
carries all of X onto x and we will let id denote the identity function. We will
let + denote the (not necessarily commutative) binary operation of each group.

LEMMA (2.2). Let G be a topological group, let M{G) be a near-ring of selfmaps
of G under pointwise addition and composition, and let "U be afilterbase of sets on
G with the property that h.-\lf)e% for each Ve^l and each heJ?(G).

(a) The set I = {feJ((G): U ^f-\0)for some Ue%} is an ideal in M{G).
(b) 7/Oeint Ufor each Ue<% and i de / then G is discrete.

https://doi.org/10.1017/S1446788700012581 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012581


[3] Near-rings of continuous functions 435

PROOF. We first prove (a). Suppose f,gel. Then there exist UUU2&<1U such
that Ui S/ 'HO) and U2 £ g-\0). Since % is a filterbase there exists U3e<% such
that {/3Sf/,n£/2. Then

U3 s t/x n tf2 s Z - ' ^ n ^ - H O ) s (/-5)-x(0).

Therefore f-gel. Next suppose / e / and 0 | heJ((G). Then Ucf-\0) for
some t/e<T Since / r ^ e * and h'^U)^ h-\f-l(O)) =(f>h)-\O), fohel.
Finally, suppose/e/and gug2sJ({G). Since

/"'(O) S (01°(02+/)-0i°02)-1(O),

it follows from Lemma (2.1) that / is an ideal in M{G).
Suppose now that i d s / and Oeint U for each Ue<%. Since ide/, {0}e<Bf and

Oeint {0}. Therefore {0} is an open set in G, and since any topological group is
homogeneous, G is discrete.

In Magill (1967) a topological space X is defined to be an 5*-space if X is Tt

and if for each closed subset F of X and each p$F there exists yeX and a con-
tinuous selfmap fofX such that f(x) = y if xe F and /(/>) ^ j . We will say that
a topological group G is an 5*-group if the topology on G is that of an S*-space.
Since any 7\ group is Hausdorff, each S*-group is Hausdorff.

THEOREM (2.3). If G is an S*'-group and Jfo{G) is simple then G is discrete.

PROOF. Let W be the filterbase of all open sets about 0 and let

/ = { / 6 ^ (G) : Usf-\0) for some Ue<%}.

Since hr 1(U) e% for every Ue% and every h e Jf0(G), it follows from Lemma (2.2)
that / is an ideal in J^(G). Let xeG and x ¥> 0. Since G is Hausdorff there exist
disjoint open sets U, V such that Oe U and xeV. Since G is an S*-group there
exists yeG and a continuous selfmap f of G such that f[G— F] ={;'} and
/(x) ^ j ; . Since U E (/"— O'»~ 1(0), /— <y> e/, and / is a nonzero ideal. From this
it follows that since ^ ( G ) is simple, ide / and by Lemma (2.2)(b), G is discrete.

THEOREM (2.4). If G is the additive group of a topological division ring then
is simple.

PROOF. Suppose / is a nonzero ideal in Jf(G). Then there exists / e / and
x,yeG such that/(x) =y and y ^ 0. Then <;>> =/« <x>e/. Since_y has an inverse
and each multiplicative left translation is continuous, <l>e/. We seek a function
g such that 0°(id+<l»—#°id = id. That is, we seek a function g such that
g(x+l)-g(x) = x for each xeG. In the language of finite differences (see Wylie
(1975), for instance) we seek a solution for the difference equation Ago(x) = x.
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The antidifference of the right-hand side is the desired solution and is given by
g{pc) =%x(x— 1). Since id = go(id + < l » — g°\del it follows immediately that

is simple.

The following Lemma has a direct proof which will not be given.

LEMMA (2.5). If N is any near-ring, M is a subnear-ring of N, and I is an ideal in
N then M nl is an ideal in M.

Let G be a disconnected group. Henceforth we will let C denote the connected
component of G which contains 0. Let P(C) denote the set {fe«V(G): R(f) £ C}
and P0(C) =P(C) n JV0{G), where R(f) denotes the range of/.

THEOREM (2.6). ilf G is a disconnected group then P(C) and P0(C) are ideals in
and J/~0(G) respectively.

PROOF. It is well known that C is a normal subgroup of G (see Hewitt and Ross
(1963), p. 60), and that the connected components of G are precisely the cosets of
C in G. One may use a direct proof to show that P(C) satisfies (a) and (b) of
Lemma (2.1). To prove that (c) is satisfied let heP(C) and / , g e ̂ (G). Then for
each xeG, g(x)+h(x)-g(x)eC and g(x)+h(x)sg(x)+C. Since/is continuous it
maps connected sets to connected sets. Therefore f(g(x)+h(x)) and/(#(*)) are in
the same connected component of G. Hence f(g(x)+h(x))—f(g(x))eC and P(C)
is an ideal in ^¥(G). It follows directly from Lemma (2.5) that P0(C) is an ideal
in

COROLLARY (2.7). If G is a disconnected group and ^V(G) is simple then G is
totally disconnected.

PROOF. Since P(C) is an ideal in rf{G) and id <f:P(C) it follows that if JV(G) is
simple then P(C) = {<0>}. This implies that C = {0} and hence that G is totally
disconnected.

We will let Mo denote the se t / e Jr
0(G):f~iifi) contains a clopen set about 0},

where a clopen set is one which is both open and closed.

THEOREM (2.8). If G is a disconnected group then Mo is an ideal in J^(G) such

thatMo-Po{C)¥=0.

PROOF. Let $11 denote the collection of all clopen sets about 0. Then <% is a
filterbase and h-\U)e<% for every Ue% and every he Jfo{G). Since

Mo = {/e ^0(G): U s / " 1 ^ ) for some Veil),
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it follows from Lemma (2.2) that Mo is an ideal in
To prove that Mo—P0(C) ^ 0 let a e G — C and let U and V be disj oint clopen

sets such that OeU, aeV and UKJV — G. Let g be given by g{x) = 0 if jce U and
g(x) = a if xe V. It then follows that. #eM0-P0(C).

By making use of Theorem (2.3) we obtain the following.

COROLLARY (2.9). If G is an S*'-group or is disconnected and if ^V0{G) is simple
then G is discrete.

PROOF. The case when G is an S*-group has been dealt with in Theorem (2.3).
Suppose that G is disconnected. Then by Theorem (2.8) Mo is a nonzero ideal in
Jo(G). Therefore if Jfo{G) is simple then M0=Jr

0(G) and ideM0. It then
follows from Lemma (2.2) that G is discrete.

LEMMA (2.10). Let G be a disconnected group. If U is a clopen set about 0 and
aeU-C, there exists a clopen set V about 0 such that Vc.ll, V+a £ U and
VnV+a = 0.

PROOF. Since afC there exist disjoint clopen sets Ut and U2 such that Oe Uu

aeU2 and [ / ,u i / 2 = G. Let

V = U n (U- a) n U1 n (U2 - a).

It then follows directly that V s U, V+a £ U and Vr\ V+a = 0 .

LEMMA (2.11). If G is a disconnected group and I is an ideal in JV(G) such that
I-P(C) # 0 , then

(a) I contains all constant functions, and
(b) if\ G/C\>2 then (/n Jfo(G))-Po(C) ± 0 .

PROOF. Since I-P(C) =£ 0 there exists fel and a,beG such that b$C and
f(a)=b. Then <2>> =/°<c>e/ . Let 0 ̂  zeG be arbitrary, let U and U' be dis-
joint clopen sets such that OeU, beU' and UKJU' = G. Let fx be given by
/i(jc)=0 if xe C/ and/iOc) = z if *e U'. Then/! e JT0{G) and

Therefore / contains all constant functions.
To prove (b) we first consider the case when C is open. Let beG—C and

deG—(Cv C+b), and let g be given by

g(x) = -dif xeC+d and g[x) =0 if x$C+d.

We proved above that <6>e/. Since C is open, geJr
0(G) and the function

h = 0
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For each xeC, h(x) = g(b)-g(0)=0. Therefore heIr\JT0{G). Since b$C,

d+b$C+d and h(d) = 0-g{d) =

which implies that h$PQ(C). Therefore he(In JV0(G))-P0(C).

Now suppose that C is not open and that b$C. By Lemma (2.10) (with U = G)
there exists a clopen set V about 0 such that Vn V+b = 0. Since a connected
set cannot contain a proper clopen subset, V £ C and there is an element
ee V— C. Let f2 be given by f2(x) = 0 if xe V and f2(x) —e if x$ V. Moreover,
let / 3 be given by f3(x) = x-b if xeV+b and /3(;c)=0 if x$V+b. Then

- / 3 oid)o/2e

and the proof is complete.

In the proof of the following lemma we make use of the fact that an ideal / in
J^>(G) is closed under composition on the left by members of ^V0(G). Iff el and
ge Jf0(G) then gof= gro«0> +f)-g°<0>e/.

LEMMA (2.12). Let G be a disconnected group.
(a) If I is an ideal in d^,(G) such that I—P0(C) # 0 , then I contains all functions

whose range is finite.
(b) If | G/C \>2andlis an ideal in JV(G) for which I- P(C) ^ 0, then I contains

all functions whose range is finite.

PROOF. The proof of (a) is by induction. Since 1—PO(C) / 0 there exists / e /
and a,beG such that b$C and f(a) = b. Let U and U' be disjoint open sets such
that 0e£/, aeU' and C/ut/' = G. Then the function ft given by/j(x)==0 if
xe t / and / ! (* )= a if xeU' is in JV0{G). Let f2 =f°ft. Then f2el and/2(x) = 0
if xeU and/2(jc) = 6 if xe U'. Therefore / contains at least one function whose
range consists of exactly two elements. Let geJ^(G) be such that \R(g)\ =2
and let 0 # ceR(g). Then ^-1(0) and g~l(c) are nonempty, disjoint clopen sets
whose union is G. Let gt be given by gt(x) = 0 if xeg~l(0) and gt(x) =a if
xe^- 1(c). Moreover, let V and F' be disjoint clopen sets such that OeV, beV
and Ku V = G, and let g2 be given by ^C*) = 0 if xe K and g2(x) = c if xe V.
Then g^gjjS-^oOj) an<i 9 —92°fi°9\- Since ideals in Jfo{G) are closed under
composition on the left by members of J^{G), g el and / contains all functions
g such that | R{g) \ < 2.

Suppose / contains all functions g such that | R(g) | < n where n > 2, and let
/i e ^ ( G ) be such that R(h) = {0 = a0, au ..., an} where at / a} if i #y. Let /»! be
given by hx{x) = 0 if xeA-^O) and h^x) =at if X^/J -^O) . Then

=2, | *(*-/>,) I =«
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[7] Near-rings of continuous functions 439

and by the induction hypothesis, ht and h—hx are in /. It follows that he I. There-
fore all functions h such that | R(h) | < «+ l are in /, and by induction / contains
all functions whose range is finite.

For the proof of (b) suppose that / is an ideal in *¥{G) such that I—P(C) # 0.
It follows from Lemmas (2.5) and (2.11) that InjV~0(G) is an ideal in JVQ(G)
which is not a subset of P0{C). If gsjV(G) and R(g) = {ao,au ...,an}, where
g(0)=a0, then gr-<ao> is in Jfo(G) and by (a) above, 0 -<a o >e /n Jfo{G). By
Lemma (2.11) <ao>e/ and it follows that g = (<7 — <ao»+<ao>e/. Thus / con-
tains all functions whose range is finite.

3. Compatible decompositions

The collection of all left cosets of an open, disconnected subgroup of a topological
group G forms a partition of G whose members are clopen sets. Such a partition
enables us to obtain more information about the ideal structure of ^V{G) and
J^iG). The following Definition sets forth the essential properties which we will
require of these partitions. We leave it to the reader to verify that the collection
of left cosets of an open, disconnected subgroup satisfies this Definition.

DEFINITION (3.1). A partition 3F of a topological group G which consists of
clopen sets is called a compatible decomposition of G if there exists a subset X
of G which indexes the partition and aeG—C such that

(a) OeX,
(b) x, x+aeFx for each xeX,
(c) there exists a symmetric clopen subset Uo of Fo such that — z+xe Uo for

each zeFx and each 0 # xeX, and
(d) there exists beG such that Fo nb+F0 = 0.
We will say that a subset / of a near-ring (N, +, •) with identity is a left ideal

if / satisfies (a) and (c) of Lemma (2.1). Note that a left ideal in Jfo{G) is closed
under composition on the left by members of

LEMMA (3.2). Let G be a disconnected group having a compatible decomposition
and let I be a left ideal in JV0 (G) such that I-P0(C) # 0. Iffe I and Visa clopen
set about 0 then there exists gel such that g(z) = 0 if zef~\U) and g(z) —z if

PROOF. Iff~\U) = G there is nothing to prove. So suppose f~\U) £ G
is a compatible decomposition of G. Then there exists X ^ G and aeG—C such
that X indexes & and conditions (a)-(d) of Definition (3.1) are satisfied. Let/i be
given by /t(z) = 0 if ze U and /i(z) = a if z$ U. Since U is a clopen set about 0,

and fx°fel. Then / t ° / ( z ) = 0 if zef~\U) and /1o/(z) = fl if
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z$f~l(U). Let/2 be denned as follows. For each zeG there is a unique
which zeFx, and we let/2(z) = x. Then for each xeX,f2[Fx'] ={x}, and since
each Fx is a clopen set, f2eJr

0(G). Since a$C, x and x+a are in different con-
nected components of G for each xeX. Therefore there exist disjoint open sets Ax

and Bx of Fx such that xeAx, x+aeBx and 4 u 5 s = F , . Let

and 5 = U{5*: 0 # xeA1},

and let gt be given by ^(z) = 0 if zeA and <7i(z) = z—a if ze.fi. Since v4 and B
are nonempty, disjoint open sets whose union is G, gx is continuous. Since
ft °/e/, the function g2=9i°(f2+fi °f)~9i °fi is in /. If zef-\U) uf0 then
g2(z) = 0 . If z$f~l(U)\jF0 then zeF , for some 0 ^ j r e * and

02(z) = 9i(x+a)-g1(x) = •*•

Let t/0 £ Fo be a symmetric clopen set such that — z+xeU0 for each zeFx

and each O^XBX, and let ^ ( z ^ O if ZEFQKJ/-1^) and ht(z)=z if
z£/"0 Kjf-^U). Moreover, let /3(z) = 0 if ze [/0 and /3(z) = z if z$ Uo. Since
3 2 e / the function

03 =/3o((-i<1 + 02)-02)- /3o(- id + 02)

is in /. If ze Fo u / ~ '(tO then gr2(z) = 0 and therefore 03(z) = 0. But if

then zeFx-(F0<jf-1(U)) for some 0 # x e J f and (-id+#2)(z) = ~z+xeU0.
As a result,/3°(-id+02)(z) = 0 and ^3(z) =/3o(-id)(z) == - z since - z is not
a member of the symmetric set Uo. Therefore ht = —g3el.

If Fo £ / - 1 ( f / ) then /ij is the desired function g. Suppose then that

According to (d) of Definition (3.1) there exists beG such that Fonb+F0 = 0 .
Let the function / 4 be given by /4(z) = 0 if ze U and /4(z) = 6 if z£ £/. Then
/ 4 o /e /and/ 4 ° / (z) = 0 if z e / - 1 ^ ) and/4°/(z) = 6 if z$f-\U). Let/5 be given
by/5(z) = z if zeF0-f-\U) and/5(z) = 0 otherwise, let gA{z) = 0 if zef0 and
#4(z) = z - b if z £ /"o, and let

If zef~\U) then/4o/(z) = 0 and A2(z) = 0. If z$F0 \jf-l{U) then

since b$F0. Finally, if zei r
0 - /~1(f / ) then A2(z) =^4(z+i)-gf4(z) =z . Therefore

h2(z)=z if zeF0—/-1(t/) and / J 2 ( Z ) = 0 otherwise. By letting g=hl+h2 we
obtain the desired function. Since, h1h2el, gel and the proof is complete.

Recall that Mo = {/e.^KG):/"1^) contains a clopen set about 0}.
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THEOREM (3.3). If the disconnected group G has a compatible decomposition then
Mo £ I for every ideal I in ^V0(G)for which I-P0(C) # 0 .

PROOF. Let /e M0 be arbitrary, let / be an ideal in Jf0 (G) such that I—P0{C)¥^ 0,
let U be a clopen set about 0 such that U^f~ 1(0), let ae G—C and let / i be given
by /i(z) = 0 if ze U and ft(z) =a if z$ U. According to Lemma (2.12), ft el.
Since G is disconnected and aeG—C, U =fi\V) for some clopen set V in G,
and according to Lemma (3.2) the function g, which is given by g(z) = 0 if ze U
and g(z) =z if z$ U, is a member of/. Therefore /o # g /. One may readily verify
that /og = / . Thus feland Af0 £ /.

If G is a totally disconnected group then P0(C) = {<0>}. Therefore we have the
following.

COROLLARY (3.4). / / G is a totally disconnected group having a compatible
decomposition then Mo £ I for every nonzero ideal I in J/"0(G).

If G is a discrete group then {0} is a clopen set about 0 and ide Mo. Therefore
Mo — *4o(G). Any infinite discrete group has a proper open subgroup and there-
fore, by the remarks preceding Definition (3.1), has a compatible decomposition.
It then follows from Corollary (3.4) that if G is an infinite discrete group then
J^(G) is simple. If G is a finite discrete group it follows from Lemma (2.12) that
~W0(G) is simple. Thus we obtain one of the results given in Berman and Silverman
(1959).

COROLLARY (3.5). If G is a discrete group then J^(G) is simple.

Combining this result with Corollary (2.9) we have the following

COROLLARY (3.6). IfG is an S*'-group or is disconnected then J^(G) is simple if
and only ifGis discrete.

LEMMA (3.7). Let G be a disconnected group, let v: G -> G/C be the natural map
and let cp: Jf{G) -* Jf(GjC) be defined so that for each feJT{G), the following
diagram commutes:

f
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Then
(a) (p is a near-ring homomorphism with kernel P(C), and
(b) if C is open then <p is onto.

PROOF. For each xeG and each feJf(G), (p{f)(x+C) =f(x)+C. If

x+C=y+C

then x and y are in the same connected component of G. Since/is continuous, it
carries connected sets to connected sets and it follows that f{x) and f(y) are in
the same component of G. Therefore f(x)+C =f(y)+C and it follows that (p is
a well-defined map. Since

cp(f+g)(x+C) = (f+g)(x)+C ^f(x)+g(x)+C = (f(x) + C)+(g(x)+C)

and
cp(f°g)(x+C) =

cp is a near-ring homomorphism. It is easy to see that ker q> = P(C).
Now suppose that C is open. Let k: G/C -* G be such that v ° k is the identity

on G/C and let ge^iG/C) be arbitrary. For each xeG let /(*) =/fc(0(x+C)).
Since R(k) n (x+C) is a singleton for each xeG, the restriction of/to each coset
of C is a constant function. Since each coset of C is the (homeomorphic) image of
C by a translation of G, each coset of C is open in G. Therefore f~1(x) is open in
G for each x e G and / e J^(G). But

since A:(#(;c+C))e<7(;c+C). Thus <p(/) =g and <p is onto.

THEOREM (3.8). Let G be a disconnected group.
(a) If G/C is an infinite set and G has a compatible decomposition then P(C) is the

unique maximal ideal in Jf{G).
(b) If | G/C| =n>2for some natural number n then P(C) is the unique maximal

ideal in JT(G).

(c) //1 G/C | = 2 then K = {/e rf(G): R(f) is a subset of some coset of C} is the
unique maximal ideal in Jf(G).

PROOF. Suppose first that G/C is an infinite set and that G has a compatible
decomposition. Let aeG—C. According to Lemma (2.10), there exists a clopen
set V about 0 such that Vn V+a = 0 . Define ft(x) = x if xe V and ft(x) = 0 if
x$ V, and define f2(x) = x—a if xe V+a and /2(x) = 0 if x$ V+a. Since V is a
clopen set about 0, / t and / 2 are in ^V(G). Suppose / is a proper ideal in JV(G)
and that I—P(C) # 0. Then according to Lemma (2.11), <a>e/and the function
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is a member of /. If xe V then g(x) = x and if x$ V then g(x) = 0. Therefore
g =/iG/. By Lemmas (2.5) and (2.11) Ir\Jfo(G) is an ideal in J¥0(G) such that
(In Jfo(G) —P0{C)) ^ 0. Since G has a compatible decomposition it follows
from Theorem (3.3) that id-f^Mg c / n J/"0(G) c /. Therefore id—/j and/j
are in /, from which it follows that / = ^V(G). Since we assumed / was a proper
ideal this is a contradiction. Thus / £ P(C) and P(C) is the unique maximal ideal
in JV(G).

Now suppose that G/C is finite. Then C is the intersection of a finite number of
clopen sets and therefore is open. Since the natural map v: G -> G/C is continuous
and open, G/C is discrete and the map q>: «V(G) -* Jf(G\C) is a surjective near-
ring homomorphism. If G/C is not of order 2 it follows from Lemma (2.12) that
any nonzero ideal in JV(G/C) contains all functions having finite range. Since
GjC is finite, this implies that ^(G/C) is simple. Therefore P(C) = ker <p is the
unique maximal ideal in ~V(G), and (b) is proved. To prove (c) suppose GjC is
of order 2. One can show by checking all possible cases (see also Nobauer and
Philipp (1962)) that the set / of both constant functions is the only ideal in
-/T(G/C). Then K = <p~1(J) and is the unique maximal ideal in

If G is a totally disconnected group then P(C) = {<0>} and we obtain the
following partial converse of Corollary (2.7).

COROLLARY (3.9). If G is a totally disconnected group which is either finite and
not of order 2, or is infinite and has a compatible decomposition, then ~W(G) is
simple.

If G is an infinite discrete group then G has a proper open subgroup, and by
the remarks preceding Definition (3.1), G has a compatible decomposition. We
thus have another of the results presented in Berman and Silverman (1959).

COROLLARY (3.10). If G is a discrete group having more than two elements then
~V(G) is simple.

4. /-locally precontract groups

If <% is a uniformity on a set X(see Kelley (1975), Chapter 6) and TeQl, T[x] is
defined to be the set {y: (x,y)eT), and a topology on X is obtained from <% by
defining a set V to be open if for every xeV there exists Te % such that T[x] £ V.
Moreover, a subset A of X is said to be precompact (or totally bounded) with
respect to the uniformity tfl if for each TeW there exists a finite subset F of A
such that A s \){T[pc~\: xeF}.

Let G be a topological group. We will say that S is a neighbourhood of 0 if
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OeintS. For each neighbourhood S of 0 let L(S) = {(x,y): -x+yeS}. The
collection 3? of all such L(S) is a uniformity on G and is called the left uniformity
for G. If L(S)eif and xeG then

= {y: (x,y)eL(S)}={y: -x+yeS} =x+S,

the translation of S by x. The topology obtained from SC is the original topology
on G. Therefore a subset A of a topological group (7 is precompact (with respect
to HC) if for every neighbourhood S of 0 there exists a finite subset F of A such
that ,4 £ UJx+S': xeF}. In other words, A is precompact if for every neighbour-
hood S of 0, the cover {JC+5: xeA} has a finite subcover.

DEFINITION (4.1). A subset A of a topological group G is precompact with respect
to the neighbourhood S of 0 if the cover {x+S: xeA} has a finite subcover.

Therefore a subset A of (7 is precompact if it is precompact with respect to
each neighbourhood of 0. If U is an open set about 0, 2U denotes U+U, 3U
denotes U+ U+ U, etc.

DEFINITION (4.2). A disconnected group G is /-locally precompact if there exist
symmetric open sets WUW2,W3, WA about 0 such that

(a) 2Wi+1 £ Wt for each i = 1,2,3,
(b) PF2 and FF4 are clopen sets,
(c) W± is precompact with respect to W3, and
(d) G-2Wt # 0.

Note that if G has a proper open subgroup H, then by taking Wt = H for each
1 = 1,2,3,4 it follows that G is/-locally precompact.

THEOREM (4.3). If G/C is infinite and G is f-locally precompact then G has a
compatible decomposition.

PROOF. If G has a proper, disconnected, open subgroup then by the remarks
preceding Definition (3.1) G has a compatible decomposition. On the other hand,
if C is open then G/C is discrete and infinite. It then follows that G has a proper,
disconnected, open subgroup. We therefore assume that G has no proper open
subgroups. Let Wu W2, W3 and WA be open sets about 0 which satisfy conditions
(a)-(d) of Definition (4.2).

Since G has no proper open subgroups, 2Wt— Wt # 0 for each i = 1,2,3,4. Let
2 be the collection of all subsets A of G— Wl such that if x,yeA and x ^ y then
(x+W3)n(y+W3) = 0 . The collection 91 is nonempty. For if xeWt~W2 and
W3 n x+ W3T£0 then w = x+w' for some w, w' e FF3 and since W3 is symmetric,
x = w—w'e2W3 £ W2. Since x was assumed to lie in Wt — W2 this cannot happen.
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Since G is/-locally precompact there exists beG — 2Wt. By an argument similar
to the one just used to show W3 n x+ W3 = 0 for xe Wt — W2, one can show that
Wlnb+W1=0. Also, b$C. (If it is, then W2 n C is a nonempty clopen subset
of C and b$ W2 n C. Therefore C is disconnected, which is a contradiction.) Now
since W3nx+W3=0 for any xe\V1-W2, (b+W3)n(b+x+ W3) = 0. There-
fore, {b,b+x}e'H for any xeW1 — W2. Moreover, 91 is partially ordered by set
inclusion. Using Zorn's lemma one can prove that 21 contains a maximal element
Y. From the maximality of Y it follows that {x+ W2: xe Y} is an open cover of
G-Wi. (For if ze G- Wx then there exists xe Y such that (z+ W3) n (JC+ W3) / 0 .
Then there exist w, w' e W3 such that

z+w =;c+w' and z = x+w'-wex+2W3 ^ x+W2

since W3 is symmetric.) Therefore {W^ <u {x+W2: xe Y} is an open cover of G.
We now assert that this cover is neighbourhood finite (see Dugundji (1966),

p. 81). In order to prove this it is enough to show that for each zeG, the set
Az = {xeY:(z+W2)n(x+W2)^0} is finite. If Az = 0 we are done. So
suppose xeAz. Then there exist w, w'eW2 such that

z+w = x+w' and x = z+w-w'ez+2W2 £ z+W^

Therefore Az £ z+ Wx and —z+Az s Wx. If x,ye —z+Az and x # j then there
exist x',y'eAz such that x = —z+x' and y = —z+y'. Now yl2 s y and therefore
(x'+W3)n(y'+W3) = 0. Asa result,

n (y+W3) = (-z+x'+W3) n ( -

Using Zorn's lemma we find a maximal subset Y' of Wt such that —z+Az s y
and (x+W3) n(j+W3) = 0 whenever x and y are distinct members of Y'. Now
Wx is precompact with respect to W3. Therefore there is a finite subset K of W1

such that {x+W3: xeK) is a cover of Wx. We claim that for each xeK, x+W3

can contain at most one member of I". For suppose that y',y"e Y'n(x+W3)
for some xeK and / # / ' . Then there exist W, w"eW3 such that / = x+w' and
/ ' = x+w". Since FT3 is symmetric —w', —w"eW3 and

x=y-wf =y"-w"e(y'+W3)n(y"+W3).

This is a contradiction. It then follows that Y' is finite. Therefore -z+Az is
finite, Az is finite and the cover is neighbourhood finite.

Let X= Yu{0} and let Vo = Wx- [){x+ W2: xe Y}. It is well known that if
{Aa: aeT} is a neighbourhood finite family of sets in a topological space then
cl(U{4»: a e r } ) = U{cl^a: aeF}. Therefore (j{x+W2: xe Y} is a clopen set,
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from which it follows that Vo is a clopen set. For each xe Y let

Bx = {ye Y: {y+ WA) n (*+ W2) * 0}.

Since WA £ W2,

BxsAx = {ye Y: (x+ W2) n (y+ W2) * 0} .

Since we proved above that Ax is finite for each xe G, Bx is finite and

Vx = (JC+ W2)- \J{y+ W* :ye Bx- {x}}

is a clopen set for each xe F. We now assert that ~T = {Vx: xeX} is a. neighbour-
hood finite cover of G. For let ze G be arbitrary. If ze Vo, then since Fo is disjoint
from all other sets in ir, there is a neighbourhood of z, namely Vo, which intersects
only finitely many sets in •f. On the other hand, suppose z$ Vo. If zex+W^ for
some xe Y then x+ JF4 is an open set about z which intersects only one set in "V,
namely Vx. If z^x+W^ for every xeY then since z$V0 and {*+ W2: *e Y} is a
cover of G— Vo, there is some xeY such that ze*+ W2, and therefore

Z6x+W2- U{^+ W<: yeBx-{x}} = V,.

Since

{xe Y: (z+ » y n Vx * 0} s {xe F: (z+ PF2) n (x+ W2) # 0 } = ^z,

and y4z is finite, z+W2 is an open set about z which intersects only finitely many
sets in Y. Therefore "V is an open, neighbourhood finite cover of G.

Let ^ be a well-order for X having 0 as least element and let Fo = Vo. For each
xe Y let Fx = Vx- \J{Vy: y<x}. For each xe Y, \J{Vy: y<x] is a clopen set.
Therefore Fx is a clopen set for each xeX.We claim that {Fx: x e X} is a partition
of G. For suppose x,ze X and j ; / z . Without loss of generality we suppose that
z<x. Then

£ (Yx- \]{Vy: y<x})n([){Vy: y<x})=0.

And if zeG is arbitrary let x be the least element of X such that ze F,. Then
zeK, - U{P,: y<x) =FX. Thus {Fx: xeZ} is a partition of G by clopen sets, it
is indexed by X and Oe X.

We now assert that y+W4 £ Fy for every ye Y. Suppose to the contrary that
there is some yeY such that y+WA £ Fy. Since {Fx: xeX} is a partition of G
there exists zeX such that z ^ y and 0 + FF4) n Fz ^ 0. If z = 0 then

Fz n0-+ FF4) £ (Wx- [){x+ W2:xeY})n(y+ W2) = 0

which is impossible. Therefore ze rand,yeJ3z—{z}. Consequently

£ \){x+WA:xeB.-{z}}
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and

0 * (y+WA)nFz £ (y+WJn Vz

s{\J{x+WA:xeBt-{z}})n(z+W2-\J{x+WA:xeBt-{z}}) = 0.

This is a contradiction. Thus y+WA^Fy for every ye Y. Now if ye Y and
(y+W2)nW2 # 0 then it follows that ye2W2 £ Wt. But F £ G - Wj, and it
follows that 0>+ W2) nW2=0 for each j>e Y and

Since W4 £ W2 £ Fo, it follows that x+ WA £ Fx for every x e l
Since G has no proper open subgroups, G is not discrete. Since WA is clopen and

C is not open, W4 £ C, and hence there exists an element aeWA-C. Since
x+WA £ F, for each xeX, and since x, x+aex+Jf4 for every xeX, it follows
that x, x+aeFx for every xeX. Therefore, (b) of Definition (3.1) holds. To show
that (c) holds let Uo = W2, let jce Y and let zeFx. Since Fx £ x+W2, zex+W2

and — x+ze W2 = Uo. Recall from earlier in the proof that since G—1WX # 0
there exists beG-C such that Wt nb+W^ = 0 and since i7,, ̂  Wi»

f0 0 6+^0 = 0 .

Thus {Fx: xe X} is a compatible decomposition of (7.

LEMMA (4.4). If G is a subgroup of some locally compact group, then there is a
neighbourhood UofO such that if V is a neighbourhood ofO and V £ U then V is
precompact.

PROOF. Suppose G' is a locally compact group which has G as a subgroup
and Kis a compact neighbourhood of 0 in G'. Let U = KnG and let Vbe any
neighbourhood of 0 such that V <=, U. Let W be any symmetric neighbourhood
of 0 in G. Then there exists a symmetric neighbourhood W of 0 in G'
such that WnG=W. If zeclc- V then (z+int W)n V^ 0 and there exists
xe(z+int W')n V. Therefore - z+xe in t W. Since W is symmetric, int W is
symmetric, and — x+zeint W. Therefore zex+int W and {x+int W: xeV}
is an open cover of clG- V. Recall that we are assuming all our groups to be
Hausdorff. Since K is a compact subset of a Hausdorff space it is closed in G'
and VzK. Therefore clG. V £ K. Since any closed subset of a compact space is
compact, clG. Fis compact and there is a finite subcover {xt+int W',...,xn+int W'}
ofclc- K.IfzeFthen

zext+int W and -x^+zeint W £ W

for some k = 1,2,...,«. Then -xk+zeW'nG = W and zexk+W. Therefore
{xj + W,..., xn+ W) is a finite cover of V.
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A topological space X is said to be O-dimensional if there is a basis for the
topology of X which consists of clopen sets. A group G is O-dimensional if the
topology on G is O-dimensional.

THEOREM (4.5). / / G is an infinite, O-dimensional group which is a subgroup of
some locally compact group then G is f-locally precompact.

PROOF. Let 0 # beG. According to Lemma (2.10) there is an open set W about
0 such that W n b+ W — 0. According to Lemma (4.4) there is an open set U'
about 0 such that any subset of V which is a neighbourhood of 0 is precompact.
Let Wl be any symmetric open subset of U' n W which is a neighbourhood of 0.
Since G is O-dimensional there exist symmetric clopen sets W2, W3, W4 about 0
such that 2Wi+l £ Wt for each / = 1,2,3. Since Wt £ U', Wl is precompact, and
in particular Wt is precompact with respect to W3. And since Wt £ W,

W1nb+W1=0.

Thus G is/-locally precompact.

THEOREM (4.6). Suppose q> is a continuous homomorphism from a topological
group G onto a topological group H.IfH is f-locally precompact then G isf-locally
precompact.

PROOF. Suppose Wt, i = 1,2,3,4, are symmetric open sets about 0 in H which
satisfy conditions (a)-(d) of Definition (4.2). For each i = 1,2,3,4 let Vt = (p~ 1(Wi).
One may use a direct proof to show that the Vt satisfy conditions (a)-(d) of
Definition (4.2). Thus G is/-locally precompact.

For information on the free topological group generated by a topological space
see Hewitt and Ross (1963), p. 72.

COROLLARY (4.7). If X is any disconnected, completely regular space, then the
free topological group F(X) is f-locally precompact.

PROOF. Let U and V be nonempty, disjoint, open sets whose union is X, and
let Z denote the additive group of integers with the discrete topology. Let g: X -»Z
be given by g(x) = 0 if xe U and g(x) = 1 if xe V. Then g is continuous and its
extension G: F(X) ~*Z is a continuous, surjective homomorphism. Since Z has a
proper open subgroup, it is /-locally precompact and by Theorem (4.6) F(X) is
/-locally precompact.

The natural map viG-^G/C is a continuous homomorphism. Therefore
Theorem (4.5) can be strengthened as follows.
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COROLLARY (4.8). If G/C is an infinite, O-dimensional group which is a subgroup
of some locally compact group, then G is f-locally precompact.

If T denotes the topology on a group G and T' is a finer topology for which
(G, T') is a topological group, then (G, T') is /-locally precompact if (G, T) is,
because the identity map is a continuous homomorphism. Any direct product of
groups with the product topology is /-locally precompact if at least one of the
factors is, because each projection map is a continuous, surjective homomorphism.

THEOREM (4.9). Suppose His a disconnected subgroup ofG and that Wt, i = 1,2,3,4
are symmetric open sets about 0 in G such that

(a) 2Wi+1 £ Wt for each / = 1,2,3,
(b) W2 and WA are clopen sets,
(c) Wt is precompact with respect to W+, and
(d) H-2W, # 0 .

Then H is f-locally precompact.

PROOF. For each i = 1,2,3,4 let ^ = ^ 0 / 7 . It then follows directly that
2Vi+1 £ F, for each 1 = 1,2,3 and that V2 and VA are clopen sets. And since
2Vt £ 2WU H-2V1 # 0 . Since Wx is precompact with respect to W4, there is a
finite set K £ Wt such that {x+W4: xeK} is a cover of Wt. Let K' be the set of
all members x of K such that (x+W4)nH# 0 . For each #£.£' choose one
MOc+WJnff . We claim that {bx+V3: xeK'} is a cover of Ft. For let zeF t .
Then there exists xeK such that zex+W4. Since zeH, (x+W4) r\H^ 0 and
xe£ ' . Since bxex+W± there exist w,w'eW4 such that z = x+w and Z>x = x+w'.
Then z = bx-w'->rwebx+2WA. £ Z^+Wj. And since z,

Therefore zebx+V3. Thus /f is/-locally precompact.

5. Examples

There are infinite, O-dimensional groups which are/-locally precompact but are
not subgroups of any locally compact groups. Let Q denote the additive group of
rational numbers with its usual topology, and let QNo denote the additive group
of all rational sequences endowed with the product topology. QNo is not a sub-
group of any locally compact group. Suppose it is. Then according to Lemma (4.4)
there is some neighbourhood U of 0 with the property that any subset of U which
is a neighbourhood of 0 is precompact. However if U is any neighbourhood of 0
in QNo there exist n1,n2,--,nkeN and open intervals Ult U2,..., Uk about 0 in Q
15
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such that V = p~l\Uni)r\... np~k\Unic) is a subset of U, where each pni is a
projection map. Choose n${nu...,nk) and let Wbe any bounded interval about
0 in Q. Then V is not precompact with respect to p~l(W) and therefore is not
precompact. Thus gNo is not a subgroup of any locally compact group. Since Q
is a 0-dimensional subgroup of the additive group R of real numbers with its
usual topology and R is locally compact, Q is /-locally precompact. Since each
projection map is a continuous, surjective homomorphism, by Theorem (4.6) QKo

is/-locally precompact.
Not every totally disconnected group is an 5*-group. Let E denote the additive

group consisting of all rational sequences in /2, where th>. topology on E is the
subspace topology inherited from the topology on l2 induced by its usual norm.
In Hewitt and Ross (1963), p. 65, it is proved that E is totally disconnected and
that U — Ec\{xel2'- || JC | |<1} contains no closed and open neighbourhood of 0.
If £ were an S*-group there would exist a continuous selfmap/of isand 0 # yeE
such that /(0) = 0 and f(x) =y for every x$ U. Since E is totally disconnected
there is some clopen set V which contains 0 but not y. T h e n / ' ^ F ) is a clopen
subset of U, which is a contradiction. Thus E is not an S*-group and Corollary (2.9)
does indeed generalize Theorem (2.3).

Not every infinite disconnected group is /-locally precompact. Suppose G is an
infinite, disconnected group such that G/C is of order 2. Using the fact that C
cannot contain a proper subset which is clopen in C, it can be shown that G has
no proper open disconnected subgroups, and that if U is any open set about 0
such that Un b+ U = 0 for some beG—2U, then U cannot properly contain any
clopen sets about 0, and hence G cannot be /-locally precompact.

Unfortunately, we do not know whether every group G with the property that
G/C is infinite is/-locally precompact.
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