ON THE DAVISON CONVOLUTION OF ARITHMETICAL FUNCTIONS

BY
PENTTI HAUKKANEN

Abstract

The Davison convolution of arithmetical functions f and g is defined by $(f \circ g)(n)=\sum_{d \mid n} f(d) g(n / d) K(n, d)$, where K is a complexvalued function on the set of all ordered pairs (n, d) such that n is a positive integer and d is a positive divisor of n. In this paper we shall consider the arithmetical equations $f^{(r)}=g, f^{(r)}=f g, f \circ g=h$ in f and the congruence $(f \circ g)(n) \equiv 0(\bmod n)$, where $f^{(r)}$ is the iterate of f with respect to the Davison convolution.

1. Introduction. Let K be a complex-valued function on the set of all ordered pairs (n, d) such that n is a positive integer and d is a positive divisor of n. Then the K-convolution of arithmetical functions f and g is defined by

$$
(f \circ g)(n)=\sum_{d \mid n} f(d) g(n / d) K(n, d) .
$$

The concept of the K-convolution originates to Davison [3]. In the case in which $K(n, d)$ depends only on the g.c.d. $(d, n / d)$ the concept is due to Gioia and Subbarao ([9], see also [8]). For further study of K-convolutions we refer to [4], [5], [7] and [14].

An arithmetical function f is said to be quasi-multiplicative [12] if $f(1) \neq 0$ and

$$
f(1) f(m n)=f(m) f(n) \text { whenever }(m, n)=1 .
$$

A quasi-multiplicative function is said to be multiplicative if $f(1)=1$. It is easy to see that an arithmetical function f with $f(1) \neq 0$ is quasi-multiplicative if, and only if, $f / f(1)$ is multiplicative. Rearick [16] defined an arithmetical function f to be semimultiplicative if there exist a non-zero complex-number c_{f}, a positive integer a_{f} and a multiplicative function f^{\prime} such that

$$
f(n)=c_{f} f^{\prime}\left(n / a_{f}\right) .
$$

Clearly semi-multiplicative functions with $a_{f}=1$ are quasi-multiplicative.

[^0]It is known ([3], [7], [14]) that the set of multiplicative functions forms an Abelian group with identity with respect to the K-convolution if, and only if,
(a) $K(n, n)=K(n, 1)=1$ for all n,
(b) $K(m n, d e)=K(m, d) K(n, e)$ for all m, n, d, e such that $d|m, e| n,(m, n)=1$,
(c) $K(n, d) K(d, e)=K(n, e) K(n / e, d / e)$ for all n, d, e such that $d|n, e| d$,
(d) $K(n, d)=K(n, n / d)$ for all n, d with $d \mid n$.

For example, a regular convolution due to Narkiewicz [15] satisfies $(a)-(d)$. If $K \equiv 1$, we obtain the well-known Dirichlet convolution, which is regular and satisfies $(a)-(d)$. Further, if $K=U$, defined by $U(n, d)=1$ for $d \mid n$ with $(d, n / d)=1$, and 0 otherwise, then we obtain the unitary convolution [2], which is also regular and satisfies $(a)-(d)$.

Throughout this paper K is an arbitrary but fixed convolution satisfying (a)-(d).
The r th K-iterate of an arithmetical function f is defined by

$$
f^{(r)}=f \circ \cdots \circ f(r \text { factors }) .
$$

Clearly

$$
f^{(r)}(n)=\sum_{a_{1} a_{2} \ldots a_{r}=n} f\left(a_{1}\right) f\left(a_{2}\right) \ldots f\left(a_{r}\right) K\left(n, a_{1}\right) K\left(a_{2} \ldots a_{r}, a_{2}\right) \ldots K\left(a_{r-1} a_{r}, a_{r-1}\right) .
$$

The inverse of an arithmetical function f with respect to the K-convolution is defined by

$$
f \circ f^{(-1)}=f^{(-1)} \circ f=E_{0}
$$

where $E_{0}(1)=1, E_{0}(n)=0$ for $n>1$. The inverse exists and is unique if, and only if, $f(1) \neq 0$ (see [3]).

In this paper we consider the arithmetical equations $f^{(r)}=g, f^{(r)}=f g, f \circ g=h$ in f and the congruence $(f \circ g)(n) \equiv 0(\bmod n)$. For the arithmetical equations we need the concepts given in the following preliminaries.
2. Preliminaries. We define an arithmetical function f to be quasi- K-multiplicative if $f(1) \neq 0$ and

$$
f(d) f(n / d) K(n, d)=f(1) f(n) K(n, d) \text { for all } d \mid n
$$

If, in particular, $f(1)=1$, we say f to be K-multiplicative. It is easy to see that an arithmetical function f with $f(1) \neq 0$ is quasi- K-multiplicative if, and only if, $f / f(1)$ is K-multiplicative. If K is the Dirichlet convolution, then K-multiplicative functions are completely multiplicative functions. Moreover, if K is a regular convolution due to Narkiewicz [15], we obtain the concept of multiplicativity due to Yocom [19].

For an arithmetical function f with $f(1)=1$ we define (cf. [6]) a logarithm operator by

$$
(\log f)(n)=\left(\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r}\left(f-E_{0}\right)^{(r)}\right)(n) .
$$

Further, for an arithmetical function f with $f(1)=0$ we define (cf. [6]) an exponential operator by

$$
(\exp f)(n)=\left(E_{0}+\sum_{r=1}^{\infty} \frac{1}{r!} f^{(r)}\right)(n)
$$

Note that for each n the above sums are finite.
It can be proved (cf. [6]) that

$$
\begin{equation*}
\log (f \circ g)=\log f+\log g \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\log f=g \text { if, and only if, } f=\exp g . \tag{2}
\end{equation*}
$$

It can also be proved that

$$
\begin{equation*}
\log (f g)=g(\log f) \tag{3}
\end{equation*}
$$

for all K-multiplicative functions g. In fact, $(\log (f g))(1)=g(1)(\log f)(1)=0$ and for $n>1$

$$
\begin{aligned}
\log (f g)(n)= & \sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r} \sum_{\substack{d_{1} \ldots d_{r}=n \\
d_{1}, \ldots, d_{r} \neq 1}}(f g)\left(d_{1}\right) \ldots(f g)\left(d_{r}\right) \\
& \times K\left(n, d_{1}\right) K\left(d_{2} \ldots d_{r}, d_{2}\right) \ldots K\left(d_{r-1} d_{r}, d_{r-1}\right) \\
= & \sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r} \sum_{\substack{d_{1} \ldots d_{1}=n \\
d_{1}, \ldots, d_{r} \neq 1}} f\left(d_{1}\right) \ldots f\left(d_{r}\right) \\
& \times K\left(n, d_{1}\right) K\left(d_{2} \ldots d_{r}, d_{2}\right) \ldots K\left(d_{r-1} d_{r}, d_{r-1}\right) g\left(d_{1} \ldots d_{r}\right) \\
= & g(n)(\log f)(n) .
\end{aligned}
$$

3. Arithmetical equations.

Theorem 1. Suppose f is an arithmetical function such that $f(1)=1$. Then $f^{(r)}$ is multiplicative if, and only if, f is multiplicative.

Proof. If f is multiplicative, then $f^{(r)}$ is multiplicative by (b). Conversely, suppose $f^{(r)}$ is multiplicative. Then we proceed by induction on $m n$ to prove that $f(m n)=$ $f(m) f(n)$ whenever $(m, n)=1$. If $m n=1$, the statement holds. Assume it holds for a, b with $a<m, b<n,(a, b)=1$. We may omit the trivial case $m=1$ or $n=1$.

Thus

$$
\begin{aligned}
f^{(r)}(m n)= & \sum_{a_{1} \ldots a_{r}=m} \sum_{b_{1} \ldots b_{r}=n} f\left(a_{1} b_{1}\right) \ldots f\left(a_{r} b_{r}\right) K\left(m n, a_{1} b_{1}\right) K\left(a_{2} b_{2} \ldots a_{r} b_{r}, a_{2} b_{2}\right) \\
& \times \ldots K\left(a_{r-1} b_{r-1} a_{r} b_{r}, a_{r-1} b_{r-1}\right) \\
= & \sum_{a_{1} \ldots a_{r}=m} f\left(a_{1}\right) \ldots f\left(a_{r}\right) K\left(m, a_{1}\right) K\left(a_{2} \ldots a_{r}, a_{2}\right) \ldots K\left(a_{r-1} a_{r}, a_{r-1}\right) \\
& \times \sum_{b_{1} \ldots b_{r}=n} f\left(b_{1}\right) \ldots f\left(b_{r}\right) K\left(n, b_{1}\right) K\left(b_{2} \ldots b_{r}, b_{2}\right) \ldots K\left(b_{r-1} b_{r}, b_{r-1}\right) \\
& -r(f(1))^{2 r-2} f(m) f(n)+r f(1)^{r-1} f(m n) \\
= & f^{(r)}(m) f^{(r)}(n)+r(f(m n)-f(m) f(n)) .
\end{aligned}
$$

As $f^{(r)}(m n)=f^{(r)}(m) f^{(r)}(n)$, we have $f(m n)=f(m) f(n)$. Thus f is multiplicative and the proof is complete.

Remark 1. Using Theorem 1 we can easily see that if f is an arithmetical function such that $f(1) \neq 0$, then $f^{(r)}$ is quasi-multiplicative if, and only if, f is quasimultiplicative.

It can be shown that if f is semi-multiplicative, then $f^{(r)}$ is semi-multiplicative or identically zero. Conversely, if $f^{(r)}$ is semi-multiplicative, then f is not necessarily semi-multiplicative. Take, for example, $K=U, r=2, f(1)=0, f(2)=f(3)=1$, $f(n)=0$ for $n \geqq 4$. Then $f^{(2)}(6)=2, f^{(2)}(n)=0$ for $n \neq 6$. Hence f is not semimultiplicative but $f^{(r)}$ is semi-multiplicative.

Theorem 2. Suppose g is a fixed arithmetical function such that $g(1) \neq 0$. Then the equation $f^{(r)}=g$ has exactly r solutions in f. If f_{0} is one solution, then all solutions are given by

$$
\begin{equation*}
f=\omega_{i} f_{0}, i=1,2, \ldots, r \tag{4}
\end{equation*}
$$

$\omega_{1}, \omega_{2}, \ldots, \omega_{r}$ being the rth roots of unity. One solution can be found by

$$
\begin{equation*}
f_{0}(n)=g(1)^{1 / r}\{\exp [(1 / r) \log (g / g(1))]\}(n) \tag{5}
\end{equation*}
$$

The equation has a multiplicative solution if, and only if, g is multiplicative, in which case only one solution is multiplicative.

Proof. Clearly

$$
f(1)=g(1)^{1 / r}
$$

that is,

$$
f(1)=\omega_{i} z \text { for some } i=1,2, \ldots, r
$$

z being an r th root of $g(1)$. Further, the values $f(n), n \geqq 2$, can be found inductively by

$$
\begin{aligned}
r(f(1))^{r-1} f(n)+ & \sum_{\substack{d_{1}, \ldots d_{r}=n \\
d_{1}, \ldots, d_{r} \neq n}} f\left(d_{1}\right) \ldots f\left(d_{r}\right) \\
& \times K\left(n, d_{1}\right) K\left(d_{2} \ldots d_{r}, d_{2}\right) \ldots K\left(d_{r-1} d_{r}, d_{r-1}\right)=g(n) .
\end{aligned}
$$

So we deduce (4).
In proving (5) assume firstly that $g(1)=1$. Then there is a solution f_{0} for which $f_{0}(1)=1$. By (1), $r\left(\log f_{0}\right)=\log g$. Thus, by (2),

$$
\begin{equation*}
f_{0}=\exp [(1 / r) \log g] \tag{6}
\end{equation*}
$$

Now, consider the general case $g(1) \neq 0$. Then $(g / g(1))(1)=1$ and hence applying (6) proves (5).

The results concerning multiplicative functions follow now easily by Theorem 1. This completes the proof.

Remark 2. Theorem 2 can easily be extended to quasi-multiplicative functions as follows: The equation $f^{(r)}=g$ has a quasi-multiplicative solution if, and only if, g is quasi-multiplicative, in which case all the r solutions are quasi-multiplicative. By Remark 1 this is not valid for semi-multiplicative functions.

Theorem 3. Suppose g is a fixed quasi-K-multiplicative function such that $g(n) \neq$ $r g(1)$ for all n. Then the equation $f^{(r)}=f g$ has $r-1$ solutions f such that $f(1) \neq 0$. The solutions are given by

$$
f=(g(1))^{1 /(r-1)} E_{0}
$$

Proof. At first, assume $f(1)=g(1)=1$. Then, by (1) and (3), $r(\log f)=g(\log f)$ or $(\log f)(n)(g(n)-r)=0$ for all n. Thus $(\log f)(n)=0$ for all n and consequently, by (2), $f=E_{0}$.

Now, consider the general case: $f(1), g(1) \neq 0$. Then $(f / f(1))(1)=(g / g(1))(1)=$ 1 and hence we have $f / f(1)=E_{0}$. So we can deduce the result.

Theorem 4. Suppose g and h are fixed and $g(1) \neq 0$. Then the equation $f \circ g=h$ has a unique solution given by

$$
\begin{equation*}
f=h \circ g^{(-1)} . \tag{7}
\end{equation*}
$$

If g and h are quasi-multiplicative, then the solution f is quasi-multiplicative. If, in addition, $h(1) / g(1)=1$, then the solution f is multiplicative.

Proof. Each arithmetical function g with $g(1) \neq 0$ has a unique inverse with respect to the K-convolution. Hence we have (7). Further, suppose g and h are quasimultiplicative. We shall prove that f is quasi-multiplicative. As $(f \circ g)(1)=f(1) g(1)=$ $h(1) \neq 0$ and $g(1) \neq 0$, so $f(1) \neq 0$. We are to prove still that

$$
\begin{equation*}
f(1) f(m n)=f(m) f(n) \tag{8}
\end{equation*}
$$

whenever $(m, n)=1$. Suppose (8) holds for $d|m, e| n$ with $d e \neq m n$. Then

$$
\begin{aligned}
h(1) h(m n)= & (f \circ g)(1)(f \circ g)(m n)=f(1) g(1) \sum_{d \mid m} \sum_{e \mid n} f(d e) g(m n /(d e)) K(m n, d e) \\
= & \sum_{d \mid m} f(d) g(m / d) K(m, d) \sum_{e \mid n} f(e) g(n / e) K(n, e) \\
& -f(m) f(n) g(1)^{2}+f(1) f(m n) g(1)^{2} \\
= & h(m) h(n)-f(m) f(n) g(1)^{2}+f(1) f(m n) g(1)^{2} .
\end{aligned}
$$

As $h(1) h(m n)=h(m) h(n)$ and $g(1) \neq 0$, we obtain (8) and hence f is quasimultiplicative. If, in addition, $h(1) / g(1)=1$, then $f(1)=1$ and consequently f is multiplicative. This completes the proof.

Remark 3. If $f \circ g=h$ and g, h are semi-multiplicative, f is not necessarily semi-multiplicative. Take, for example, $K=U, f(2)=f(3)=1, f(n)=0$ for $n \neq 2,3, g(3)=1, g(n)=0$ for $n \neq 3, h(6)=1, h(n)=0$ for $n \neq 6$.

Remark 4. For material relating to arithmetical equations of the types of this paper we refer to [1], [11] and [18] which consider the Dirichlet convolution and the unitary convolution. In [10] the exponential convolution is considered.

4. A congruence.

Theorem 5. Suppose $f(n), g(n)$ and $K(n, d)$ are integral valued functions and $f(n)$ is multiplicative. Then the congruence

$$
\begin{equation*}
(f \circ g)(n) \equiv 0(\bmod n) \tag{9}
\end{equation*}
$$

holds for all positive integers n if, and only if,

$$
\begin{equation*}
\sum_{i=0}^{a} f\left(p^{i}\right) g\left(p^{a-i} m\right) K\left(p^{a}, p^{i}\right) \equiv 0\left(\bmod p^{a}\right) \tag{10}
\end{equation*}
$$

for all primes p and positive integers a, m with $(p, m)=1$.
Proof. Suppose (10) holds. To prove (9) we can clearly assume $n>1$. Then denote $n=p^{a} m$, where $a \geqq 1,(p, m)=1$. By (b) and the multiplicativity of f we obtain

$$
(f \circ g)(n)=\sum_{d \mid m} f(d) K(m, d) \sum_{i=0}^{a} f\left(p^{i}\right) g\left(p^{a-i} m / d\right) K\left(p^{a}, p^{i}\right) .
$$

By (10) the inner sum $\equiv 0\left(\bmod p^{a}\right)$. Thus using a similar argument for each prime divisor of n we have (9).

Conversely, suppose (9) holds. Taking $n=p^{a} m$, where (p, m) $=1$, we have by (b) and the multiplicativity of $f^{(-1)}$

$$
\begin{aligned}
g\left(p^{a} m\right) & =\sum_{d \mid n}(f \circ g)(d) f^{(-1)}(n / d) K(n, d) \\
& =\sum_{i=0}^{a} f^{(-1)}\left(p^{a-i}\right) K\left(p^{a}, p^{i}\right) \sum_{d \mid m}(f \circ g)\left(p^{i} d\right) f^{(-1)}(m / d) K(m, d) .
\end{aligned}
$$

Now, applying the above identity, items (c) and (d) and equation (9) we obtain

$$
\begin{aligned}
\sum_{i=0}^{a} f\left(p^{i}\right) g\left(p^{a-i} m\right) K\left(p^{a}, p^{i}\right) & =\sum_{d \mid m}(f \circ g)\left(p^{a} d\right) f^{(-1)}(m / d) K(m, d) \\
& \equiv 0\left(\bmod p^{a}\right)
\end{aligned}
$$

that is, we obtain (10). This completes the proof.
Remark 5. Subbarao [17] has proved Theorem 5 in the case of the Dirichlet convolution. He also briefly recounted the history of the present congruence type. Since Subbarao the present congruence type has been studied by Hanumanthachari [10] and McCarthy [13] in the cases of the exponential convolution and the unitary convolution, respectively.

References

1. L. Carlitz and M. V. Subbarao, Transformation of arithmetic functions, Duke Math J. 40 (1973), 949-958.
2. E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Z. 74 (1960), 66-80.
3. T. M. K. Davison, On arithmetic convolutions, Canad. Math. Bull. 9 (1966), 287-296.
4. M. Ferrero, On generalized convolution rings of arithmetic functions, Tsukuba J. Math. 4 (1980), 161-176.
5. I. P. Fotino, Generalized convolution ring of arithmetic functions, Pacific J. Math. 61 (1975), 103116.
6. M. L. Fredman, Arithmetical convolution products, Duke Math J. 37 (1970), 231-242.
7. M. D. Gessley, A generalized arithmetic convolution, Amer. Math. Monthly 74 (1967), 1216-1217.
8. A. A. Gioia, The K-product of arithmetic functions, Canad. J. Math. 17 (1965), 970-976.
9. A. A. Gioia and M. V. Subbarao, Generalized Dirichlet products of arithmetic functions (Abstract), Notices Amer. Math. Soc. 9 (1962), 305.
10. J. Hanumanthachari, On an arithmetic convolution, Canad. Math. Bull. 20 (1977), 301-305.
11. P. Haukkanen, Arithmetical equations involving semi-multiplicative functions and the Dirichlet product (To appear in Rend. Math.).
12. D. B. Lahiri, Hypo-multiplicative number-theoretic functions, Aequationes Math. 9 (1973), 184-192.
13. P. J. McCarthy, Note on some arithmetic sums, Boll. Un. Mat. Ital. 21 (1966), 239-242.
14. - Introduction to arithmetical functions, Springer, 1986.
15. W. Narkiewicz, On a class of arithmetical convolutions, Colloq. Math. 10 (1963), 81-94.
16. D. Rearick, Semi-multiplicative functions, Duke Math. J. 33 (1966), 49-53.
17. M. V. Subbarao, A congruence for a class of arithmetic functions, Canad. Math. Bull. 9 (1966), 571-574.
18. - A class of arithmetical equations, Nieuw Arch. Wisk. 15 (1967), 211-217.
19. K. L. Yocom, Totally multiplicative functions in regular convolution rings, Canad. Math. Bull. 16 (1973), 119-129.

Department of Mathematical Sciences
University of Tampere
Tampere, Finland

[^0]: Received by the editors June 23, 1988.
 1980 AMS Mathematics Subject Classification. 10A20.
 © Canadian Mathematical Society 1988.

