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Abstract

In the present in vitro study, the effects of pH and ionic strength on the release of iron from pectin and the ability of pectin to reduce ferric

iron to ferrous iron were examined. The bioavailability of Fe bound to pectin was evaluated in rats. The amount of Fe released from pectin

was at a maximum at pH 2·0 and decreased as the pH value increased. At pH 2·0, the amount of Fe released from pectin increased as the

ion length increased; at pH 5·0, ion length had no effect on pectin release. Pectin effectively reduced Fe from the ferric form to the ferrous

form. In rats fed a pectin diet, where Fe bound to pectin was the only Fe source, the final Hb concentration using diets containing 4·4–5·7,

7·2 or 11·5 mg Fe/kg diet was equal to the concentration in rats fed diets containing 4·5, 7·6 or 13·5 mg ferrous iron/kg diet, respectively.

Hb regeneration efficiencies in rats fed pectin diets were significantly different from rats fed a diet containing 13·5 mg ferrous iron/kg diet.

In rats fed a diet with or without pectin, where ferric iron was the only Fe source, pectin increased the final Hb concentration. These results

suggest that Fe bound to pectin is utilised by rats.
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Fe deficiency is the most common human nutritional

deficiency in the world. It is caused not only by low intake

but more often by poor bioavailability from the diet, due to

Fe interaction with other dietary components(1). Dietary

fibres have been shown to impair the absorption of minerals

in the small intestine because of their binding and/or seques-

tering effect(2,3).

Pectin is primarily a polymer of a-(1 ! 4)-glycosidic-linked

D-galacturonic acid residues that are usually esterified to

various degrees with methanol(4). Dietary fibres with a high

content of carboxyl groups, such as pectin, have increased

cation-binding ability, because the carboxyl group is

deprotonated when pH is close to neutrality and can interact

electrostatically with mineral cations. At the pH of the small

intestine, about 6·5–7·0, carboxyl groups are deprotonated. In

solution, the carboxyl groups of the unesterified units of

pectin can bind cations such as Ca, Mg and Fe(5–7), supporting

the assumption that pectin in the diet would reduce mineral

bioavailability. However, if the binding of mineral cations by

pectin depends on the carboxyl groups, this binding appears

to be reversible and would be affected by pH, ionic strength

and temperature. Very few studies have reported on the

bioavailability of Fe bound to pectin.

In the present study, we have investigated the availability of

Fe bound to pectin.

Materials and methods

Pectin

Commercial citrus pectin (Classic AM201) was purchased from

Herbstreith & Fox GmbH (Neuenburg, Germany). The degree

of esterification of pectin and the Fe content in pectin are 72 %

and 7·2mg/g, respectively. The Fe content in pectin was

measured by flame atomic absorption spectrophotometry

(AA 6400F; Shimadzu, Kyoto, Japan) after wet ashing in

HNO3–HClO4 (3:1). To determine Fe levels, the standard

addition method was used.

In vitro study

Determination of iron released from pectin by ultrafiltration.

The influence of pH and ion length on the release of Fe

bound to pectin was examined by ultrafiltration.

Briefly, 10 ml of pectin solution (1 g/100 ml) were intro-

duced into the chamber of a batch-type stirred ultrafiltration

cell (Model 8010; Amicon, Beverly, MA, USA) fitted with a

disc membrane (YC01; Amicon) with a molecular weight

cut-off of 500. The pectin solution was filtered under pressure

(about 3·5 kg/m3) of N2 gas until about 20 % of the original

volume remained in the cell. The filtrate was collected. The

chamber was covered with a polyethylene tube (IGM, outer
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diameter £ inner diameter, 4 mm £ 2 mm; HAGITEC Company

Limited, Yotsukaido, Chiba, Japan), and the pectin solution in

the chamber was maintained at 378C by circulating hot water

(378C) in the tube.

Before starting the in vitro study, we confirmed that

galacturonic acid was not detected in the solution filtered by

ultrafiltration. Total Fe content in the filtrate was measured

by flame atomic absorption spectrophotometry (AA 6400F;

Shimadzu) after wet ashing in HNO3–HClO4 (3:1). Ferrous

iron (FeII) content in the filtrate was determined by the

bathophenanthroline method. Ferrous iron þ ferric iron

(FeII þ FeIII) content in the filtrate was determined by the

bathophenanthroline method after reducing with hydroxyla-

mine hydrochloride solution (4 %, w/v). FeIII content was

determined using the difference between FeII and FeII þ FeIII

measurements. Non-ionic Fe was determined using the

difference between FeII þ FeIII and total Fe.

Effect of pH on the release of iron bound to pectin.

Briefly, 1 g of pectin was dissolved in 150 mM-NaCl solution

to give 10 ml and adjusted to pH 2·0, 3·0, 5·0, 7·0 and 9·0

with 0·1 M-HCl or 0·1 M-NaCl. The pectin solution was ultrafil-

trated, and 8 ml of the filtrate were collected.

Effect of ionic strength on the release of iron bound to

pectin. In brief, 1 g of pectin was dissolved in distilled

water to give 10 ml and adjusted to pH 2·0 or 5·0. The

pectin solution was ultrafiltrated, and 8 ml of the filtrate

were collected.

Effect of pectin as a reducing agent. Briefly, 0·5 g of pectin

were dissolved in 275 mM-NaCl solution to give 40 ml and

adjusted to pH 2·0 with 0·1 M-HCl. The pectin solution was

increased to 50 ml using distilled deionised water. The final

concentration of NaCl was 150 mM. Then, 10 ml of pectin sol-

ution were ultrafiltrated, and 8 ml were collected. After filtrat-

ing, 8 ml of 150 mM-NaCl solution containing ferric chloride

(Fe of 200 mg/l) were added to the residue and the solution

was ultrafiltrated. Then, 8 ml of the filtrate were collected. In

addition, 0·5 ml of ferric iron solution only (Fe of 200 mg/l)

was dissolved in 275 mM-NaCl solution to give 40 ml and

adjusted to pH 2·0 with 0·1 M-HCl. The ferric iron solution

was increased to 50 ml using distilled deionised water. Ferric

iron solution (10 ml) was ultrafiltrated, and 8 ml of the filtrate

were collected.

In vivo study (animal experiment)

The present study was approved by the Laboratory Animal

Care Committee of Ehime University. Rats were maintained

in accordance with the Guidelines for the Care and Use of

Laboratory Animals of Ehime University. The Fe content in

the experimental diets was determined by flame atomic

absorption spectrophotometry (AA 6400F; Shimadzu) after

wet ashing in HNO3–HClO4 (3:1).

Experiment 1

Animals and diets. Wistar male rats weighing about 80 g

(Japan SLC, Hamamatsu, Japan) were housed individually in

screen-bottomed, stainless-steel cages in a room maintained

at 23 ^ 18C with a 12 h light–12 h dark cycle (light on,

07.00–19.00 hours). The rats were acclimatised by feeding a

commercial solid diet (MF; Oriental Yeast, Osaka, Japan) for

3 d. After acclimatisation, rats were randomly divided into

five groups (n 6) and were allowed free access to distilled

deionised water and one of the following diets for 3 weeks:

Fe-deficient diet (FeD); diet containing ferrous iron at 3, 6 or

12 mg/kg diet (FeII-3, FeII-6 or FeII-12 diets); diet containing

pectin at 50 g/kg diet (Table 1) (8). For each rat, body weight

and food intake were recorded daily in the morning before

the food was replaced. Ferrous sulphate (FeSO4.7H2O) was

used as the source of ferrous iron. The amount of Fe/kg diet

of the FeD, FeII-3, FeII-6, FeII-12 and the pectin diet was

1·7, 4·5, 7·6, 13·4 and 5·1 mg, respectively.

Experiment 2

Animals and diets. Wistar male rats weighing about 80 g

(Tokushima Jikken-Dobutsu Kenkyusho, Tokushima, Japan)

were housed individually in screen-bottomed, stainless-steel

cages in a room maintained at 23 ^ 18C with a 12 h light–

12 h dark cycle (light on, 07.00–19.00 hours). The rats were

Table 1. Composition of the experimental diets

Expt 1 Expt 2

FeD FeII-3 FeII-6 FeII-12 Pectin FeD FeIII FeIII þ pectin

g/kg diet
Vitamin-free casein 200 200 200 200 200 200
Maize oil 50 50 50 50 50 50
Vitamin mixture*† 10 10 10 10 950 g of FeD diet 10 10 990 g of FeD diet
Fe-free mineral mixture* 40 40 40 40 40 40
Sucrose 700 700 700 700 700 700
Pectin 50 10

mg/kg diet
FeSO4.H2O – 14·9 29·9 59·7 – – – –
Fe2(SO4)3.H2O – – – – – – 12·0 11·3

Iron content 1·7 4·5 7·6 13·4 5·1 1·7 13·3 13·5

FeD, Fe-deficient diet; FeII-3, Fe at 3 mg/kg diet; FeII-6, Fe at 6 mg/kg diet; FeII-12, Fe at 12 mg/kg diet.
* Based on AIN-76(8).
† The vitamin mixture used in the present study contained 20 g choline chloride.
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acclimatised by feeding a commercial solid diet (MF; Oriental

Yeast) for 3 d. After acclimatisation, rats were randomly

divided into three groups (n 6) and were allowed free

access to distilled deionised water and one of the following

diets for 21 d: FeD; FeIII; FeIII þ pectin diet (Table 1).

FeSO4.7H2O and ferric sulphate (Fe2(SO4)3.n H2O) were

used as the sources of ferrous iron and ferric iron, respect-

ively. For each rat, body weight and food intake were

recorded daily in the morning before the food was replaced.

The amount of Fe/kg diet of the FeD, FeIII and FeIII þ pectin

diets was 1·7, 13·3 and 13·5 mg, respectively.

Chemical analysis. Hb concentration was measured by the

cyanmethaemoglobin method using a colorimetric haemo-

globin assay kit (Hemoglobin-Test; Wako Pure Chemical

Industries Limited, Osaka, Japan). Blood was obtained from

the tail tip. To calculate total Hb content in the blood, the

mass of blood was assumed to be 67 g/kg body mass, and

Hb was assumed to contain 3·35 mg Fe/g(9). Hb regeneration

efficiency was calculated according to the method of Mahoney

& Hendricks(10).

Statistical analysis. All values in the in vivo studies (animal

experiments) are given as means with their standard errors

(n 6), and a P value of less than 0·05 was considered

significant using the Tukey–Kramer honestly significant differ-

ence test using JMPw 6 (SAS Institute Japan, Tokyo, Japan).

Results

In vitro study

Effect of pH on the release of iron bound to pectin. The

release of Fe from pectin was at a maximum at pH 2·0; how-

ever, the amount of released Fe was about one-third of the

total Fe contained in pectin. The release of Fe from pectin

was linearly decreased as the pH value increased (r 20·991,

P,0·008 for ferrous iron and r 20·984, P,0·016 for ferric

iron; Fig. 1). Most of the Fe released from pectin at pH 2·0

was ferrous iron. Most of the Fe released from pectin at pH

9·0 was non-ionic Fe.

Effect of ionic strength on the release of iron bound to

pectin. At pH 2·0, most of the Fe released from pectin was

ferrous iron. The amount of Fe released from pectin at pH

2·0 increased about two- and fourfold in 150 and 500 mM-

NaCl solutions, respectively, when compared with the solution

without NaCl (Fig. 2). When the concentration of NaCl

solution was increased from 500 to 1000 mM, the amount of
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Fig. 1. Effects of pH on the release of iron bound to pectin: (a) percentage of the released ferrous ( ), ferric ( ) and non-ionic ( ) iron from pectin, with solutions at

indicated pH values; (b) relationship between released ferrous iron (Fe2þ; ) from pectin and pH (y ¼ 20·462x þ 2·34; r 20·991; P , 0·0079) and between released

ferric iron (Fe3þ; ) from pectin and pH (y ¼ 20·149x þ 0·302; r20·984; P , 0·0157). Values are means of five obervations.
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Fig. 2. Effects of ionic strength and pH on the release of iron bound to pectin: percentage of the released ferrous ( ), ferric ( ) and non-ionic ( ) iron from pectin,

with solutions at indicated ionic strengths, (a) at pH 2·0 and (b) at pH 5·0. Values are means of five observations.
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Fe isolated from pectin did not increase. At pH 5·0, the release

of Fe from pectin was hardly detectable.

Effect of pectin as a reducing agent. Most of the Fe iso-

lated from the solution without pectin was ferric iron (Fig. 3).

However, most of the Fe isolated from the solution containing

pectin was ferrous iron.

In vivo study (animal experiment)

Experiment 1. Body-weight gain in rats fed the FeII-6 and

FeII-12 diets was significantly higher compared with rats fed

the FeD diet. Body-weight gain in rats fed the FeII-3 and

pectin diets was not significantly different from rats fed the

FeD diet (Table 2). Hb concentration in rats fed the FeII-6,

FeII-12 and pectin diets was significantly higher compared

with rats fed the FeD diet. Hb concentration in rats fed the

FeII-3 diets was not significantly different from rats fed the

FeD diet. Hb gain and Hb regeneration efficiencies in rats

fed the FeII-3, FeII-6, FeII-12 and pectin diets were signifi-

cantly higher compared with rats fed the FeD diet. Hb gain

and Hb regeneration efficiency increased as the Fe intake

increased (r 0·928, P , 0·0001 and r 0·556, P , 0·003).

Experiment 2. Body-weight gain in rats fed the FeIII and

FeIII þ pectin diets was significantly higher compared with

rats fed the FeD diet (Table 3). Fe intake was not significantly

different between rats fed the FeIII and FeIII þ pectin diets;

however, Hb concentration, Hb gain and Hb regeneration

efficiency in rats fed the FeIII þ pectin diet were significantly

higher compared with rats fed the FeIII diet.

Discussion

Pectin contains methylated carboxyl groups. When pectin is

dispersed in water, some of the carboxyl groups ionise.

Pectin is a polycarboxylic acid with a pKa value of about

3·5(11). The pKa value is known to depend on the temperature

of the solution. Therefore, in the present in vitro study, the

temperature of the pectin solution was kept at 378C. At pH

values higher than 3·5, pectin is a negatively charged polysac-

charide in its ionised form, which can interact with positively

charged Fe. The dissociation of pectin is reversible, depending

on pH conditions. The amount of Fe released from 1 % pectin

solution (w/v) at pH 2·0 was about three times higher than the

amount of Fe released at pH 5·0, 7·0 and 9·0. About 90 % of Fe

released from pectin at pH 2·0 was ionic Fe. Most of the Fe

released from 1 % pectin solution (w/v) at pH values higher

than 5 was non-ionic Fe. Our results suggest that Fe and

pectin would form an ionic-bound or electric-bound complex

with free carboxyl groups in the pectin molecules. Most of the

Fe released from 1 % pectin solution (w/v) at pH 2·0 was fer-

rous iron, suggesting that most of the Fe bound to pectin is

ferrous iron; ferric iron bound to pectin might be reduced to

ferrous iron by pectin.

Fe absorption occurs predominantly in the duodenum and

upper jejunum(12). Gastric acid lowers the pH in the proximal

duodenum, which enhances the solubility and uptake of Fe.

Gastric acid is an important luminal factor in the absorption

of non-haem Fe. Depending on the acidity of the stomach,

Fe bound to pectin might be partially released before passing

into the small intestine. However, ingestion of food causes a

transitory pH rise(13). The mean pH of the digesta in the

upper small intestine in rats fed a commercial pellet was
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Fig. 3. Reducing effect of pectin to ferric iron: amount of the released ferrous

( ), ferric ( ) and non-ionic ( ) iron in 150 mM-NaCl solution at pH 2·0 with

or without pectin. Values are means of five observations.

Table 2. Effect of iron source on body-weight gain, final Hb concentration, Hb gain and Hb regeneration efficiency in rats fed the experimental diet for 21 d

(Mean values with their standard errors)

Diet

FeD FeII-3 FeII-6 FeII-12 Pectin

Mean SE Mean SE Mean SE Mean SE Mean SE

Body-weight gain (g/21 d) 124a 4 148a,b 4 151b 7 153b 6 139a,b 4
Food intake (g/21 d) 353a 18 534b 20 465b 14 376a 18 322a 6
Fe intake (mg/21 d) 0·59a 0·02 2·40d,e 0·01 3·50b,c 0·10 5·04g 0·24 1·63e,f 0·03
Final Hb concentration (g/l) 54a 2·0 63a,b 1·0 76c 3·0 96d 3·0 72b,c 1·0
Hb gain (g/21 d) 0·00a 0·02 0·26b 0·01 0·49c 0·01 0·79d 0·05 0·29b 0·02
Hb regeneration efficiency (%) 20·3a 7·9 37·0b 2·2 46·7b 1·3 53·2b 3·4 60·1b 4·8

FeD, Fe-deficient diet; FeII-3, Fe at 3 mg/kg diet; FeII-6, Fe at 6 mg/kg diet; FeII-12, Fe at 12 mg/kg diet.
a,b,c,d,e,f,g Mean values within a row with unlike superscript letters were significantly different (P,0·05).
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about 6·0(14). At or above pH 4, Fe was not released from

dietary fibres such as maize bran and soya hull(15).

In addition to the effect of pH, ionic strength is also a critical

parameter in the release of Fe from pectin. The pKa value rises

as ionic strength increases.

The amount of Fe released from pectin at pH 2·0 increased

as the ionic strength of the pectin solution increased; however,

at pH 5·0, Fe release was not increased, suggesting that the

release of Fe from pectin is affected by pKa and pH. Solutions

with KCl concentrations as high as 150 mM released less than

10 % of Fe from maize bran and soya hull(15).

The fate of pectin in the large intestine is also extremely

important with regard to the bioavailability of Fe bound to

pectin. Pectin is almost completely fermented in the caecum

of rats, resulting in the release of Fe from pectin. In ileally

fistulated rats, ferrous and ferric iron infused in the caecum was

similarly utilised(16,17). Fe absorption from the large intestine

is less efficient compared with the duodenum, but it is signifi-

cant, especially, during Fe deficiency(18). Studies of gastrecto-

mised rats have shown that dietary fructo-oligosaccharides

prevented anaemia, but this effect was diminished by caecect-

omy(19), suggesting that Fe absorption takes place to some

extent in the colon. Acidic fermentation in the large intestine

stimulates absorption of Ca and Mg in the large intestine of

the rat(20). Therefore, increased Fe absorption in the presence

of pectin could depend on the decrease in pH due to fermen-

tation of pectin in the large intestine.

Ferrous iron is absorbed much more efficiently than ferric

iron. Under physiological conditions, it is thought that inor-

ganic forms of Fe need to be reduced to the ferrous form to

be effective. When ferric iron was added to the filtrate of

pectin solution, most of the Fe in the filtrate was ferrous

iron, suggesting that pectin has reducing potential. In Expt 2

of the present in vivo study, the final Hb concentration, Hb

gain and Hb regeneration efficiency in rats fed the FeIII þ

pectin diet were significantly higher compared with rats fed

the FeIII diet. Therefore, the higher bioavailability of ferric

iron in rats fed the FeIII þ pectin diet compared with those

fed the FeIII diet would partially depend on an increased Fe

absorption in the upper small intestine by the reduction of

ferric iron to ferrous iron by pectin.

In our other study, the amount of Fe released from pectin

was not proportional to the amount of Fe bound to pectin,

suggesting that the amount of Fe released from pectin

depends on the type and source of pectin. In comparison

with rats fed the FeD diets containing various pectin concen-

trations, the Hb gain increased as Fe intake from pectin

increased (r 0·962, P , 0·0001), but it did not increase as the

Fe bound to pectin increased (T Miyada and K Ebihara,

unpublished results). The degree of esterification, molecular

weight and/or mode of distribution of free carboxylic

groups along the polymer chain strongly affect the strength

of binding of minerals to pectin(6,21,22).

In conclusion, the release of Fe from pectin was increased at

lower pH and higher ionic strength. The Fe bound to pectin is

utilised by rats.
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