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Abstract

Let P1, . . . , Pk : Z → Z be polynomials of degree at most d for some d > 1, with the degree d
coefficients all distinct, and admissible in the sense that for every prime p, there exists integers
n,m such that n + P1(m), . . . , n + Pk(m) are all not divisible by p. We show that there exist
infinitely many natural numbers n,m such that n + P1(m), . . . , n + Pk(m) are simultaneously
prime, generalizing a previous result of the authors, which was restricted to the special case
P1(0) = · · · = Pk(0) = 0 (though it allowed for the top degree coefficients to coincide).
Furthermore, we obtain an asymptotic for the number of such prime pairs n,m with n 6 N
and m 6 M with M slightly less than N 1/d . This asymptotic is already new in general in the
homogeneous case P1(0) = · · · = Pk(0) = 0. Our arguments rely on four ingredients. The first
is a (slightly modified) generalized von Neumann theorem of the authors, reducing matters to
controlling certain averaged local Gowers norms of (suitable normalizations of) the von Mangoldt
function. The second is a more recent concatenation theorem of the authors, controlling these
averaged local Gowers norms by global Gowers norms. The third ingredient is the work of Green
and the authors on linear equations in primes, allowing one to compute these global Gowers norms
for the normalized von Mangoldt functions. Finally, we use the Conlon–Fox–Zhao densification
approach to the transference principle to combine the preceding three ingredients together. In the
special case P1(0) = · · · = Pk(0) = 0, our methods also give infinitely many n,m with n+ P1(m),
. . . , n+Pk(m) in a specified set primes of positive relative density δ, with m bounded by logL n for
some L independent of the density δ. This improves slightly on a result from our previous paper,
in which L was allowed to depend on δ.
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1. Introduction

In [12] Green and the first author established that the primes contain arbitrarily
long arithmetic progressions. Equivalently, one has

THEOREM 1. Let k be a natural number (that is an element of N= {1, 2, 3, . . . }).
Then there exist infinitely many natural numbers n,m such that n, n + m, . . . ,
n + (k − 1)m are all prime.

Among the ingredients of the proof of [12] was the deployment of the (global)
Gowers uniformity norms introduced in [8, 9], the development of a generalized
von Neumann theorem controlling certain multiple averages by these norms, and
Szemerédi’s theorem [26] on arithmetic progressions.

Theorem 1 was generalized by the authors [27] (see also [21] for a subsequent
refinement):

THEOREM 2. Let P1, . . . , Pk ∈ Z[m] be polynomials in one indeterminate m
such that P1(0) = · · · = Pk(0) = 0. Then there exist infinitely many natural
numbers n,m such that n + P1(m), n + P2(m), . . . , n + Pk(m) are all prime.

The proof of Theorem 2 broadly followed the arguments used to prove
Theorem 1; for instance, a generalized von Neumann theorem continued to play a
crucial role. However, there are some key differences between the two arguments.
Most notably, the global Gowers uniformity norms used in [12] were replaced by
more complicated averaged local Gowers uniformity norms, and the Szemerédi
theorem was replaced with the multidimensional polynomial recurrence theorem
of Bergelson and Leibman [2]. It was necessary to deploy the multidimensional
version of this theorem (despite the one-dimensional nature of Theorem 2)
in order to obtain some uniformity in the recurrence theorem with respect to
a certain technical parameter W that arose in the proof. In [27], the natural
numbers n,m could be chosen so that m = O(no(1)) as n→∞; in [28] this was
improved to m = O(logO(1) n) (with the implied constants depending on P1, . . . ,

Pk). In [21] it was also shown that m could be taken to be one less than a prime.
In a series of papers [13, 14, 16], a different generalization of Theorem 1 was

obtained, namely that the arithmetic progression n, n + r, . . . , n + (k − 1)r was
replaced by a more general pattern, and a more quantitative count of the prime
patterns was established. We give a special case of the main results of that paper
as follows. If A is a finite nonempty set, we use |A| to denote its cardinality,
and for any function f : A→ C, we write Ea∈A f (a) for (1/|A|)

∑
a∈A f (a). For

any N , we let [N ] denote the discrete interval

[N ] := {n ∈ N : n 6 N },
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and let Λ : Z → R denote the von Mangoldt function (thus Λ(p j) := log p
for all primes p and natural numbers j , with Λ(n) = 0 otherwise). All sums
and products over p are understood to be restricted to the primes unless
otherwise specified. We are using O() and o() asymptotic notation; we review
our conventions for this in Section 1.1 below.

THEOREM 3. Let P1, . . . , Pk ∈ Z[m] be linear polynomials (thus Pi(m) =
ai m+bi for some integers ai , bi , for each i = 1, . . . , k). Assume that the leading
coefficients a1, . . . , ak of the polynomials P1, . . . , Pk are distinct. Let N be an
asymptotic parameter going to infinity, and let M = M(N ) be a quantity such
that M = oN→∞(N ) and M � N log−A N for some fixed constant A. Then

En∈[N ]Em∈[M]Λ(n + P1(m)) . . . Λ(n + Pk(m)) =
∏

p

βp + oN→∞(1)

where for each prime p, βp is the local factor

βp := En∈Z/pZEm∈Z/pZΛp(n + P1(m)) . . . Λp(n + Pk(m))

and Λp : Z/pZ→ R is the function Λp(n) := (p/(p − 1))1n 6=0 mod p.

We remark that it is easy to establish the absolute convergence of the product∏
p βp; see [13].

Proof. If N/M is a sufficiently slowly growing function of N , this follows
immediately from the main theorem of [13] (specialized to the finite complexity
tuple n + P1(m), . . . , n + Pk(m) of linear forms), together with the results
of [14, 16] proving the two conjectures assumed in [13]. The extension to the
case where N/M is allowed to grow as fast as a power of log N follows from the
same arguments, as discussed in [6, Appendix A].

Specializing this theorem to the case Pi(m) := (k − 1)m, one can compute
that

∏
p βp is nonzero, and then it is an easy matter to see that Theorem 3

implies Theorem 1. The Hardy–Littlewood prime tuples conjecture [17] predicts
that the condition that the leading coefficients of the P1, . . . , Pk are distinct
can be relaxed to the condition that the P1, . . . , Pk themselves are distinct,
which would imply (among other things) the twin prime conjecture, but this
is unfortunately well beyond the known techniques used to prove this theorem.
The arguments in [13] also treat the case when M/N is comparable to one, as
long as an Archimedean local factor β∞ is inserted on the right-hand side, but to
simplify the arguments slightly we work in the local setting M = oN→∞(N ) to
avoid having to consider the Archimedean factor. The prime tuples conjecture
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also predicts that the condition M � N log−A N can be replaced with the
much weaker condition that M goes to infinity, but again this is beyond the
reach of current methods. Even the special case En∈[N ]Em∈[M]Λ(n)Λ(n + m) =
1 + oN→∞(1), which essentially measures the error term for the prime number
theorem in short intervals on the average, is only known for M > N 1/6+ε

(using the zero-density estimates of Huxley [18]), or for M > N ε assuming the
Riemann hypothesis, while to the best of our knowledge the expected asymptotic
for En∈[N ]Em∈[M]Λ(n)Λ(n + m)Λ(n + 2m) is only known for M > N 5/8+ε

(using the exponential sum estimates of Zhan [30]). (If one replaces the von
Mangoldt function with the Möbius function, then there is recent work [22, 23]
obtaining such asymptotics for H growing arbitrarily slowly with N . However,
the techniques used rely heavily on small prime divisors, and so do not seem to
be directly applicable to problems involving the von Mangoldt function. )

The proof of Theorem 3 used the same global Gowers uniformity norms
that appeared in the proof of Theorem 1, as well as a very similar generalized
von Neumann theorem. However, Szemerédi’s theorem was no longer used,
as this result does not hold for arbitrary linear polynomials P1, . . . , Pk and
in any event only provides lower bounds for multiple averages, as opposed
to asymptotics. Instead, by using the results of [14, 16] together with some
transference arguments, it was shown that a suitable normalization Λ′b,W − 1
of the von Mangoldt function Λ was small with respect to the global Gowers
uniformity norm, which is sufficient to establish the stated result thanks to the
generalized von Neumann theorem.

The first main result of this paper is a higher degree generalization of
Theorem 3, which (except for a technical additional condition regarding the
lower bound on M) is to Theorem 2 as Theorem 3 is to Theorem 1. More
precisely, we show

THEOREM 4 (Main theorem). Let d, r be natural numbers, and let P1, . . . ,

Pk ∈ Z[m1, . . . ,mr ] be polynomials of integer coefficients of degree at most d.
Furthermore, assume that the degree d components of P1, . . . , Pk are all distinct
(or equivalently, that Pi − Pj has degree exactly d for all 1 6 i < j 6 k).
Let N be an asymptotic parameter going to infinity, and let M = M(N ) be a
quantity such that M/N 1/d goes to zero sufficiently slowly as N → ∞ (that is
to say, there is a quantity ω(N ) going to zero as N →∞ depending only on d,
r, k, P1, . . . , Pk , and we assume that M = oN→∞(N 1/d) and M > ω(N )N 1/d).
Then

En∈[N ]E Em∈[M]rΛ(n + P1( Em)) . . . Λ(n + Pk( Em)) =
∏

p

βp + oN→∞(1) (1)
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where βp is the local factor

βp := En∈Z/pZE Em∈(Z/pZ)rΛp(n + P1( Em)) . . . Λp(n + Pk( Em)) (2)

and Λp : Z/pZ→ R is the function Λp(n) := (p/(p − 1))1n 6=0 mod p.

Note from [27, Lemma 9.5] gives the asymptotic βp = 1 + OP1,...,Pk (1/p2)

for all sufficiently large p (noting that all such p are ‘good’ in the sense of [27,
Definition 9.4]), so the product

∏
p βp is convergent.

It is likely that the lower bound M > ω(N )N 1/d can be relaxed to M >
N 1/d log−A N as in Theorem 3, and the upper bound relaxed to M = O(N ) at the
cost of inserting an Archimedean factor β∞ on the right-hand side as in [13], but
we do not attempt to establish these extensions here to simplify the exposition.
As will be clear from the method of proof, one can allow for much smaller values
of M—in principle, as small as logL N for some large L—as soon as one is able
to establish some local Gowers uniformity for (a ‘W -tricked’ modification of)
the von Mangoldt function at scale Md .

As with Theorem 3, standard conjectures such as the Bateman–Horn
conjecture [1] predict that Theorem 4 continues to hold without the requirement
that the degree d components of Pi are distinct (so long as the Pi themselves
remain distinct), and with M growing arbitrarily slowly with N . Such
strengthenings of Theorem 4 remain beyond the methods here. We also remark
that a result similar to Theorem 4, involving more general polynomial patterns,
was established in [5] under an assumption of sufficiently large ‘Birch rank’ on
the polynomial pattern, which is a rather different regime to the one considered
here in as it tends to require a large number of variables compared to the number
and degree of polynomials. In the recent paper [3], some special cases of (4)
were established, in particular the case when r = 2 and Pi(m1,m2) = i(m2

1+m2
2)

for i = 1, . . . , k.
As in [13], we have a qualitative corollary of Theorem 4:

COROLLARY 1 (Qualitative main theorem). Let d, r be natural numbers,
P1, . . . , Pk ∈ Z[m1, . . . ,mr ] be polynomials of degree at most d. Assume that
the degree d components of P1, . . . , Pk are all distinct, and suppose that for
each prime p there exist n ∈ Z and Em ∈ Zr such that n+ P1( Em), . . . , n+ Pk( Em)
are all not divisible by p. Then there exist infinitely many natural numbers
n,m1, . . . ,mr such that n + P1(m1, . . . ,mr ), . . . , n + Pk(m1, . . . ,mr ) are
simultaneously prime.

Proof. (Sketch) From hypothesis, the local factors βp are all nonzero, and one
can establish the asymptotic βp = 1 + Ok,d,r (1/p2) for all sufficiently large
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primes p. We conclude that the Euler product
∏

p βp is nonzero, and the claim
then follows from Theorem 4 since the contribution when one of the n + Pi(m1,

. . . ,mr ) is a prime power, rather than a prime, can easily be shown to be
negligible.

The case r = 1, k = 2 of this corollary had been previously established in [20].
As a typical example of Corollary 1, we see that if P ∈ Z[m] is any intersective
polynomial (that is to say, a polynomial such as P(m)= (m2

−2)(m2
−3)(m2

−6)
that has a root in every modulus), then there exist arbitrarily long arithmetic
progressions of primes whose spacing is of the form P(m).

Corollary 1 is a partial generalization of Theorem 2, in that it implies
the special case of that theorem when r = 1 and the md coefficients of
the polynomials P1(m), . . . , Pk(m) are all distinct. As mentioned above, the
arguments here should eventually extend to allow the md coefficients of Pi to be
equal, so long as the Pi−Pj are nonconstant, once one can establish local Gowers
norm control on the von Mangoldt function. In fact, Schinzel’s hypothesis H [25]
predicts that Corollary 1 should hold even if some of the Pi−Pj are constant, but
this claim (which includes the twin prime conjecture as a special case) is well
beyond the methods of this paper.

We now briefly summarize the method of proof of Theorem 4. If one
directly applies the methods used to prove Theorem 3, replacing (a variant
of) the generalized von Neumann theorem from [12] with (a variant of) the
more complicated generalized von Neumann theorem from [27], one ends up
wishing to control various normalized versions Λ′b,W − 1 of the von Mangoldt
function in certain averaged local Gowers uniformity norms; furthermore, the
transference machinery in [12, 27] allows one to replace Λb,W − 1 by a bounded
function. At this point, one would like to apply an inverse theorem for the
averaged local Gowers uniformity norms, but a direct application of the known
inverse theorems does not lead to a particularly tractable condition to verify on
Λb,W − 1. To overcome this issue, we use the concatenation theorems recently
developed by us in [29] to control the averaged local Gowers uniform norms
arising from the generalized von Neumann theorem by a global Gowers uniform
norm. It is at this juncture that the hypothesis that the md coefficients of the
Pi(m) are all distinct, together with the choice of M as being close to N 1/d ,
becomes crucial.

In some cases, we are able to use our methods to partially remove the
requirement in Theorem 4 that the degree d components of P1, . . . , Pk are
distinct, although this requires one to understand the distribution (or Gowers
uniformity) of primes in short intervals, for which the known unconditional
results still fall well short of what is conjecturally true. As an example of this, we
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give the conjectural asymptotic for prime triplets of the form n, n+m, n+P(m),
with n ∈ [N ] and m slightly smaller than N 1/d , when P has degree exactly d:

THEOREM 5. Theorem 4 is true in the case r = 1, k = 3, P1 = 0, P2 = m, and
when P3 has degree exactly d for some 2 6 d 6 5. If one assumes the generalized
Riemann hypothesis (GRH), the condition d 6 5 may be removed.

This theorem will be proven at the end of Section 5. The main idea is to
use the machinery of proof of Theorem 4 to essentially eliminate the Λ(n +
P3(m)) factor, leaving only the task of controlling averages roughly of the form
En∈[N ]Em∈[M]Λ(n)Λ(n+m), which can be handled by existing results on primes
in short intervals, both with and without GRH. In Remark 2, we briefly discuss
some other cases that can in principle be handled by this method, such as r = 1,
k = 4, P1 = 0, P2 = mk , P2 = 2mk , P3 = md for certain choices of k, d .

The above results have (somewhat simpler) analogues when the von Mangoldt
functionΛ is replaced by the Möbius function µ (or the closely related Liouville
function λ). In these analogues, the local factors

∏
p βp should be deleted, thus

for instance we have

En∈[N ]Em∈[M]rµ(n + P1(m)) . . . µ(n + Pk(m)) = oN→∞(1)

under the hypotheses of Theorem 4. The proof of these variant results is in fact
significantly simpler, as all the pseudorandom measures ν that appear in the
arguments below can be simply replaced by 1; also, the ‘W -trick’ is not needed
in this case. We leave the modifications of the arguments below needed to obtain
these variants to the interested reader.

The methods used to establish Corollary 1 also give a variant involving sets
of primes of positive upper density, improving slightly on our previous results
in [28].

THEOREM 6 (Narrow polynomial patterns in subsets of the primes). Let d be a
natural number, and let P1, . . . , Pk ∈ Z[m] be polynomials of integer coefficients
of degree at most d, such that P1(0) = · · · = Pk(0) = 0. Let L be a sufficiently
large quantity depending on d. Let δ > 0, and let A be a subset of the primes P
such that

lim sup
N→∞

|A ∩ [1, N ]|
|P ∩ [1, N ]|

> δ

for some δ > 0. Then one can find infinitely many natural numbers n,m with
n+ P1(m), . . . , n+ Pk(m) in A and with m 6 logL n, where L depends only on
d, k.
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Comparing this result with Corollary 1, we see that the set of primes P has
been replaced by a positive density subset A, and that the condition that the
Pi − Pj have degree exactly d has been dropped, replaced instead by the
hypothesis P1(0) = · · · = Pk(0); we have also set r = 1 (as the r > 1 case
follows easily from the r = 1 case, for example by restricting to the diagonal
m1 = · · · = mr ). Another key point is the smallness condition on m. The
arguments in [27] essentially established this theorem with the bound m = no(1),
and the subsequent argument in [28] improved this to m 6 logL(δ) n where the
exponent L(δ) is permitted to depend on δ in addition to d and k. Thus the
new contribution of Theorem 6 is the removal of the dependence of L on δ.
This follows from the arguments in [28], after replacing [28, Theorem 9] with
Theorem 11 below; see Remark 1.

1.1. Notation. If x ∈ R/Z, we use ‖x‖R/Z to denote the distance from x to
the nearest integer, and e(x) := e2π i x .

Given two real numbers A, B with A 6 B, we use [A, B] to denote the discrete
interval {n ∈ Z : A 6 n 6 B}. We often need to identify this interval with a subset
of the cyclic group Z/NZ for some modulus N (larger than B − A), which can
of course be done by applying the reduction map n 7→ n (N ) from Z to Z/NZ.
Similarly for the interval [M] := {n ∈ N : n 6 M}.

Given any finite collection m1, . . . ,mr of indeterminates, we write
Z[m1, . . . ,mr ] for the ring of formal polynomials P in these variables with
integer coefficients, thus there is a natural number d for which one has

P =
∑

i1,...,ir>0:i1+···+ir6d

αi1,...,ir m
i1
1 . . .m

ir
r

for some integers αi1,...,ir . The least such d for which one has such a
representation is the degree of P . Of course, one can evaluate P(m1, . . . ,mr )

for any elements m1, . . . ,mr of a commutative ring (such as Z or Z/qZ)
simply by substituting the indeterminates mi with their evaluations m i . We write
indeterminate variables such as m, n in Roman font, to distinguish them from
elements m, n of a specific ring such as Z or Z/qZ.

It will be convenient to work with the notion of a finite multiset—an unordered
collection {a1, . . . , an} of a finite number of objects a1, . . . , an , in which
repetitions are allowed. This clearly generalizes the notion of a finite set, in
which every element occurs with multiplicity one. If A = {a1, . . . , an} is a
nonempty finite multiset, and f : A → C is a function on the elements of A,
we write

Ea∈A f (a) :=
1
n

n∑
i=1

f (ai),
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which of course generalizes the notion of an average Ea∈A f (a) over a finite
nonempty set A; thus for instance Ea∈{1,2,3,3}a = 1+2+3+3

4 . If A = {a1, . . . , an}

and B = {b1, . . . , bm} are finite multisets taking values in an additive group
G = (G,+), we write

A + B := {ai + b j : i = 1, . . . , n; j = 1, . . . ,m}

and
A − B := {ai − b j : i = 1, . . . , n; j = 1, . . . ,m}

for the sum and difference multisets. For any integer k, we also write

k A := {ka : a ∈ A}

(in particular, k A does not denote the k-fold iterated sumset of A).
Given a finite nonempty multiset A in a domain X , we define the density

function pA : X → [0, 1] to be the quantity

pA(x) :=
|{a ∈ A : a = x}|

|A|

where the numerator is the multiplicity of x in A; thus
∑

x∈X pA(x) = 1, and |A|
the cardinality of A counting multiplicity; more generally, we define

Ea∈A f (a) :=
∑
x∈X

f (x)pA(x)

for all f : X → R. We then define the total variation distance dTV(A, B)
between two finite nonempty multisets A, B in X to be

dT V (A, B) :=
∑
x∈X

|pA(x)− pB(x)|.

Thus we have

|Ea∈A f (a)− Eb∈B f (b)| 6 dT V (A, B) (3)

whenever f : X → R is bounded in magnitude by 1. Informally, if dTV(A, A+B)
is small, one can think of A as having an approximate translation invariance with
respect to shifts by B. We observe from the triangle inequality and translation
invariance that one has the contraction property

dTV(A + C, B + C) 6 Ec∈C dTV(A + c, B + c) = dTV(A, B) (4)
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for any finite nonempty multisets A, B,C . In particular, for finite nonempty
multisets A, B,C one has

dTV(A, A + C) 6 dTV(A, A + B)+ dTV(A + B, A + B + C)
+ dTV(A + B + C, A + C)

6 dTV(A, A + B)+ dTV(B, B + C)+ dTV(A + B, A)

and thus

dTV(A, A + C) 6 2dTV(A, A + B)+ dTV(B, B + C). (5)

Informally: if A is approximately B-invariant, and B is approximately
C-invariant, then A is approximately C-invariant.

Let G = (G,+) be a finite abelian group, and let Q1, . . . , Qd be nonempty
finite multisets in G with d > 1. Given a function f : G → R, we define the
Gowers box norm ‖ f ‖2d

Q1,...,Qd
(G) = ‖ f ‖2d

Q1,...,Qd
to be the nonnegative real defined

by the formula

‖ f ‖2d

2d
Q1,...,Qd

:= Ex∈GEh1∈Q1−Q1,...,hd∈Qd−Qd

∏
ω∈{0,1}d

f
(

x +
d∑

i=1

ωi hi

)
;

it is easy to see that the right-hand side is nonnegative, so that the 2d
Q1,...,Qd

norm
is well defined. More generally, given functions fω : G → R for ω ∈ {0, 1}d , we
define the Gowers inner product

〈( fω)ω∈{0,1}d 〉2d
Q1,...,Qd

:= Ex∈GEh1∈Q1−Q1,...,hd∈Qd−Qd

∏
ω∈{0,1}d

fω1,...,ωd

(
x+

d∑
i=1

ωi hi

)
.

The Gowers norms can also be defined for complex-valued functions by
appropriate insertion of complex conjugation operations, but we will not need
to do so here. We recall the Cauchy–Schwarz–Gowers inequality∣∣〈( fω)ω∈{0,1}d 〉2d

Q1,...,Qd

∣∣ 6 ∏
ω∈{0,1}d

‖ fω‖2d
Q1,...,Qd

(6)

(see for example [13, Lemma B.2]). Among other things, this implies the
monotonicity property

‖ f ‖2d−1
Q1,...,Qd−1

6 ‖ f ‖2d
Q1,...,Qd

(7)

for d > 1, by setting the fω in (6) to be f or 1 in an appropriate fashion. It also
implies the triangle inequality for the 2d

Q1,...,Qd
norm.
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When Q1 = · · · = Qd = Q, we refer to the Gowers box norm ‖‖2d
Q,...,Q (G)

as the
Gowers uniformity norm and abbreviate it as ‖‖U d

Q (G)
or simply ‖‖U d

Q
. Similarly

for the Gowers inner product.
We observe the identity

‖ f ‖2d

2d
Q1,...,Qd

= Ex∈G f (x)Dd
Q1,...,Qd

( f )(x)

where the dual function Dd
Q1,...,Qd

( f ) : G → R is defined by

Dd
Q1,...,Qd

( f )(x) := Eh1∈Q1−Q1,...,hd∈Qd−Qd

∏
(ω1,...,ωd )∈{0,1}d\{0}d

f
(

x +
d∑

i=1

ωi hi

)
.

Again, when Q1 = · · · = Qd = Q, we abbreviate Dd
Q,...,Q as Dd

Q . Finally, we
recall the L p norms

‖ f ‖L p(G) = ‖ f ‖L p := (Ex∈G | f (x)|p)1/p

for 1 6 p <∞, with the usual convention

‖ f ‖L∞(G) = ‖ f ‖L∞ := sup
x∈G
| f (x)|.

We now set out the asymptotic notation we use. We write X = O(Y ), X � Y ,
or Y � X to denote the estimate |X | 6 CY for a constant C . Often, we need the
implied C to depend on some parameters, which we indicate with subscripts,
thus for instance X = Od,r (Y ) denotes the estimate |X | 6 Cd,r Y for some
quantity Cd,r depending only on d, r . We will often also be working with an
asymptotic parameter such as N going to infinity. In that setting, some quantities
will be held fixed (that is, they will be independent of N ), while others will be
allowed to depend on N . We write X = oN→∞(Y ), or X = o(Y ) for short, if
we have |X | 6 c(N )Y for some quantity c(N ) depending on N and possibly on
other fixed quantities that goes to zero as N → ∞ (holding all fixed quantities
constant).

2. Controlling averaged Gowers norms by global Gowers norms

A key step in our arguments is establishing that averaged Gowers norms, with
shifts depending polynomially on the averaging parameter in a nondegenerate
fashion, can be controlled by global Gowers norms. We begin with a polynomial
equidistribution lemma, which, roughly speaking, asserts that exponential sums
with polynomial phases can only be large if the polynomial is ‘major arc’.
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LEMMA 1 (Polynomial equidistribution). Let d, r > 1 be natural numbers, and
let P ∈ R[n1, . . . , nr ] be a polynomial of degree at most d, thus

P(n1, . . . , nr ) =
∑

i1,...,ir>0:i1+···+ir6d

αi1,...,ir n
i1
1 . . . n

ir
r

for some coefficients αi1,...,ir ∈ R. Let N1, . . . , Nr > 1 and 0 < ε 6 1 be such
that

|En1∈[N1],...,nr∈[Nr ]e(P(n1, . . . , nr ))| > ε. (8)

Then either one has N j �d,r ε
−Od,r (1) for some 1 6 j 6 r , or else there exists a

natural number q �d,r ε
−Od,r (1) such that

‖qαi1,...,ir‖R/Z �d,r
ε−Od,r (1)

N i1
1 . . . N ir

r

for all i1, . . . , ir > 0 with i1 + · · · + ir 6 d.

Proof. In the one-dimensional case r = 1, this follows from standard Weyl sum
estimates (see for example [15, Proposition 4.3]). Now suppose inductively that
r > 1, and that the claim has already been proven for r−1. For brevity, we allow
all implied constants in the asymptotic notation here to depend on r, d .

From (8) we have

|En1∈[N1],...,nr−1∈[Nr−1]e(P(n1, . . . , nr ))| � ε

for at least� εNr values of nr ∈ [Nr ]. On the other hand, we can write

P(n1, . . . , nr ) =
∑

i1,...,ir−1>0:i1+···+ir−16d

αi1,...,ir−1(nr )n
i1
1 . . . n

ir−1
r−1

where for each i1, . . . , ir−1, αi1,...,ir−1 ∈ Z[nr ] is the polynomial

αi1,...,ir−1(nr ) :=
∑

ir>0:i1+···+ir6d

αi1,...,ir n
ir
r .

Applying the induction hypothesis, we see that for� εNr values of nr , one can
find q � ε−O(1) such that

‖qαi1,...,ir−1(nr )‖R/Z �
ε−O(1)

N i1
1 . . . N ir−1

r−1

(9)

for all i1, . . . , ir−1. At present, q can depend on nr , but by the pigeonhole
principle we can pass to a set of� εO(1)Nr values of nr and make q independent
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of nr . Then, for each i1, . . . , ir−1, we have (9) for � εO(1)Nr values of nr .
Applying [15, Lemma 4.5], this implies that either Nr � ε−O(1), or else there
exists a natural number k � ε−O(1) (possibly depending on i1, . . . , ir−1) such
that

‖kqαi1,...,ir−1,ir‖R/Z �
ε−O(1)

N i1
1 . . . N ir−1

r−1 N ir
r

for all ir . At present k can depend on i1, . . . , ir−1, but by multiplying together
all the k associated to the O(1) possible choices of (i1, . . . , ir−1), we may take k
independent of i1, . . . , ir−1. Replacing q by kq , we obtain the claim.

Our next result asserts (roughly speaking) that on the average, a
multidimensional progression

Q(Eh) := P1(Eh1)[−M,M] + · · · + Pk(Ehk)[−M,M]

(with Eh of the order of M , and P1, . . . , Pk polynomials of degree exactly d − 1)
will have an approximate global translation symmetry, in the sense that Q(Eh) is
close on total variation to Q(Eh) + q[−A−2k Md, A−2k Md

] for some reasonably
small q and A, if k is large enough depending on d, r . The equidistribution result
from Lemma 1 will play a key role in the proof of this statement.

THEOREM 7 (Approximate global symmetry). Let d, r > 1 be natural numbers,
and suppose that k > 1 is a natural number that is sufficiently large depending
on d, r . Let A be a quantity that is sufficiently large depending on d, r, k, and for
each j = 1, . . . , k, let Pj ∈ Z[h1, . . . , hr ] be a polynomial of degree exactly d−1
with coefficients that are integers of magnitude at most A. Let M be a quantity
that is sufficiently large depending on d, r, k, A. For any Eh = (Eh1, . . . , Ehk) in
(Zr )k , let Q(Eh) be the generalized arithmetic progression

Q(Eh) := P1(Eh1)[−M,M] + · · · + Pk(Ehk)[−M,M]

(viewed as a multiset in Z) and let Q0 be the arithmetic progression

Q0 := [−A−2k Md, A−2k Md
]

(also viewed as a multiset in Z). Then one has

EEh∈([M]r )k inf
16q6Ak

dTV(Q(Eh), Q(Eh)+ q Q0)�d,r,k A−1. (10)

For future reference, we observe that the claim also holds when the arithmetic
progressions are viewed as subsets of a cyclic group Z/NZ rather than Z, since
applying reduction modulo N can only decrease the total variation norm.
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Proof. Let N := A2d Md , then for any Eh ∈ ([M]r )k and 1 6 q 6 Ak , the
projection of Z to Z/NZ is injective on Q(Eh) and Q(Eh) + q Q0. Thus, we
may interpret these progressions instead as lying in the cyclic group Z/NZ. By
Fourier expansion in Z/NZ, the density function pQ(Eh) of the multiset Q(Eh) can
be written as

pQ(Eh)(x) =
1
N

∑
ξ∈Z/NZ

e(ξ x/N )Ea∈Q(Eh)e(−aξ/N )

which factorizes as

pQ(Eh)(x) =
1
N

∑
ξ∈Z/NZ

e(ξ x/N )
k∏

j=1

D(Pj(Eh j)ξ)

where D : Z/NZ→ [−1, 1] is the Dirichlet kernel

D(ξ) := Em∈[−M,M]e(−mξ/N ).

Similarly we have

pQ(Eh)+q Q0
(x) =

1
N

∑
ξ∈Z/NZ

e(ξ x/N )D′(qξ)
k∏

j=1

D(Pj(Eh j)ξ)

where D′ is another Dirichlet kernel, defined by the formula

D′(ξ) := Em∈[−A−2k Md ,A−2k Md ]e(mξ/N ).

Subtracting and using the triangle inequality, we conclude that

dTV(Q(Eh), Q(Eh)+ q Q0) 6
∑

ξ∈Z/NZ

|D′(qξ)− 1|
k∏

j=1

|D(Pj(Eh j)ξ)|

and so it suffices to show that

EEh∈([M]r )k inf
16q6Ak

∑
ξ∈Z/NZ

|D′(qξ)− 1|
k∏

j=1

|D(Pj(Eh j)ξ)| �d,r,k A−1. (11)

Call ξ ∈ Z/NZ major arc if one has∥∥∥∥qξ
N

∥∥∥∥
R/Z

6 A
√

k/N
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for some 1 6 q 6 A
√

k , and minor arc otherwise. We first consider the
contribution to (11) of the minor arcs. Here we bound |D′(qξ) − 1| by 2, and
estimate this contribution by

2
∗∑
ξ

k∏
j=1

EEh j∈[M]r |D(Pj(Eh j)ξ)|

where
∑
∗

ξ denotes a summation over minor arc ξ . By several applications of
Hölder’s inequality, we may bound this by

2
k∏

j=1

(∑
ξ

(EEh j∈[M]r |D(Pj(Eh j)ξ)|
2)k/2

)1/k

.

We have the following distributional control on the expression
EEh j∈[M]r |D(Pj(Eh j)ξ)|

2 appearing above:

PROPOSITION 1 (Distributional bound). Let the notation and hypotheses be as
above, and let n be a natural number. Let 1 6 j 6 k. Then there are at most
Od,r ((A2n)Od,r (1)) values of minor arc ξ ∈ Z/NZ for which

EEh j∈[M]r |D(Pj(Eh j)ξ)|
2 > 2−n.

Furthermore, there are no such minor arc ξ unless

2−n 6 A−k1/4
. (12)

Proof. For brevity we allow all implied constants in the asymptotic notation to
depend on d and r . If we have N � (2n)O(1) then (12) is trivial (since N is
assumed large depending on d, r, k, A), and the first claim is also trivial since
there are clearly at most N possible choices for ξ . Thus we may assume that we
do not have an estimate of the form N � (2n)O(1).

Assume that EEh j∈[M]r |D(Pj(Eh j)ξ)|
2 > 2−n for some natural number n.

We can expand EEh j∈[M]r |D(Pj(Eh j)ξ)|
2 as

EEh j∈[M]r |D(Pj(Eh j)ξ)|
2
= EEh j∈[M]rEm,m′∈[−M,M]e

(
m ′Pj(Eh j)ξ

N
−

m Pj(Eh j)ξ

N

)
.

Applying Lemma 1, we conclude that there is a natural number q j � (A2n)O(1)

such that ∥∥∥∥q jξ

N
α j,i1,...,ir

∥∥∥∥
R/Z
�

(A2n)O(1)

M i1+···+ir+1

https://doi.org/10.1017/fmp.2017.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2017.3


T. Tao and T. Ziegler 16

for all the coefficients α j,i1,...,ir of Pj . In particular, since Pj has at least one
nonzero coefficient α j,i1,...,ir with i1 + · · · + ir = d − 1, we have∥∥∥∥q jξ

N
α j,i1,...,ir

∥∥∥∥
R/Z
�
(A2n)O(1)

N
(13)

for that coefficient. This is inconsistent with the minor arc hypothesis unless (12)
holds.

For fixed q j , the constraint (13) restricts ξ to at most O((A2n)O(1)) possible
values; summing over q j , we conclude the proposition.

Applying the above proposition for each n and summing, we conclude that

∗∑
ξ

(EEh j∈[M]r |D(Pj(Eh j)ξ)|
2)k/2 �k

∑
n:2−n6A−k1/4

(A2n)O(1)2−nk/2

�k A−1

if k is sufficiently large depending on d, r . Thus the contribution of the minor
arcs to (11) is acceptable.

It remains to control the contribution to (11) of the major arc ξ . Note that the
number of major arc ξ is O(AO(

√
k)). As a consequence, any choice of Eh and ξ

for which
|D(Pj(Eh j)ξ)| 6 A−k

for some 1 6 j 6 k gives a negligible contribution to (11). Thus we may restrict
attention to those Eh and ξ for which ξ is major arc and

|D(Pj(Eh j)ξ)| > A−k

for all j = 1, . . . , k. Computing the Dirichlet kernel D(Pj(Eh j)ξ), this implies
that ∥∥∥∥ Pj(Eh j)ξ

N

∥∥∥∥
R/Z
�

Ak

N

for all j = 1, . . . , k. On the other hand, as ξ is major arc, we have∥∥∥∥ ξN − aξ
qξ

∥∥∥∥
R/Z

6 A
√

k/N (14)

for some 1 6 qξ 6 A
√

k and aξ coprime to qξ . We also have Pj(Eh j) �

AO(1)Md−1. As M is large, these estimates are only compatible with each other
if qξ divides Pj(Eh j). In particular, qξ divides the greatest common divisor of
P1(Eh1), . . . , Pk(Ehk).
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Suppose that Eh is such that the greatest common divisor (P1(Eh1), . . . , Pk(Ehk))

of P1(Eh1), . . . , Pk(Ehk) is at most Ak . Denoting this greatest common divisor by q ,
we see from (14) that

|D′(qξ)− 1| � A−k+O(
√

k)

for all ξ that have not already been previously eliminated from consideration.
Thus the contribution of these Eh to (11) is acceptable. Thus we only need to
restrict attention to those Eh for which (P1(Eh1), . . . , Pk(Ehk)) > Ak . For this case,
we bound |D′(qξ)− 1| by 2 and D(Pj(Eh j)ξ) by 1, and use the fact that there are
only O(AO(

√
k)) major arc ξ , and bound this contribution to (11) by

� AO(
√

k)EEh∈([M]r )k 1(P1(Eh1),...,Pk (Ehk ))>Ak .

Recall that the Pj(Eh j) are of size O(AO(1)Md−1), and that M is larger than A2k .
This implies that if (P1(Eh1), . . . , Pk(Ehk)) > Ak , then either there is an integer q
with Ak < q 6 M that divides all of the Pi(Ehi), or else there is a prime p with
M < p � AO(1)Md−1 that divides all of the Pi(Ehi). Thus we may bound (11) by

�AO(
√

k)

( ∑
Ak6q6M

cq +
∑

M<p�AO(1)Md−1

cp

)
(15)

where
cq := EEh∈([M]r )k 1q|P1(Eh1),...,Pk (Ehk )

.

We may factor

cq :=

k∏
i=1

EEhi∈[M]r 1q|Pi (Ehi )
. (16)

To estimate the inner average we need the following Schwartz–Zippel type
estimate.

LEMMA 2 (Schwartz–Zippel type estimate). Let P ∈ Z[h1, . . . , hr ] be a
polynomial of degree at most d for some d > 1, let p be a prime, and let m > 0
and j > 0 be integers. If P is not divisible by pm+1, then the number of solutions
(h1, . . . , hr ) ∈ (Z/p jZ)r to the equation P(h1, . . . , hr ) = 0 mod p j is at most
r( j + 1)d−1 p jr−( j−m)/rd .

Proof. We first handle the r = d = 1 case. The claim here is that if a linear
polynomial P(h) = ah+ b is not divisible by pm+1, then it has at most pm roots
modulo p j . By shifting one of the roots (if they exist at all) to the origin, we may
assume without loss of generality that b = 0, and the claim then follows since
the set {h ∈ Z/p jZ : ah = 0} has cardinality at most pm if a is not divisible
by pm+1.
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Now suppose that r = 1, d > 1, and the claim has already been proven for
r = 1 and smaller values of d . Now we have a polynomial P(h) of degree at
most d and not divisible by pm+1, and we wish to show that there are at most
( j+1)d−1 p j−( j−m)/d roots in Z/p jZ. Clearly we may assume there is at least one
such root, and by translating to the origin we may factor P(h) = hQ(h) mod p j

for some polynomial Q of degree at most d − 1 and also not divisible by pm+1.
By factoring h = pah′ for some 0 6 a 6 j and h′ coprime to p, we see that the
number of roots of P in Z/p jZ is bounded by

∑ j
a=0 Na , where Na is the number

of roots of the equation Q(pah′) = 0 mod p j−a for h′ ∈ Z/p j−aZ. Observe that
Q is not divisible by pm+1+(d−1)a , so by induction hypothesis we have

Na 6 ( j + 1)d−2 p j−a−( j−a−m−(d−1)a)/(d−1)
= ( j + 1)d−2 p j−( j−m)/(d−1)+a/(d−1).

We also have the trivial bound Na 6 p j−a . Using the former bound when
a 6 ( j − m)/d and the latter when a > ( j − m)/d , we conclude that

Na 6 ( j + 1)d−2 p j−( j−m)/d

and the claim then follows by summing in a.
Now suppose that r > 1, and that the claim has already been proven for smaller

values of r . We can write P =
∑d

i=0 Pi(h1, . . . , hr−1)hi
r for some polynomials

Pi ∈ Z[h1, . . . , hr−1] of degree at most d . At least one of these polynomials, say
Pi0 , is not divisible by pm+1. Let m ′ denote the integer part of j − ( j − m)/r ,
thus

0 6 m ′ 6 j −
j − m

r
6 m ′ + 1 6 j

and in particular

j − m
r

6 j − m ′,
m ′ + 1− m

r − 1
. (17)

By induction hypothesis, for all but at most (r − 1)( j + 1)d−1

p(m
′
+1)(r−1)−(m′+1−m)/(r−1)d choices of (h1, . . . , hr−1) ∈ (Z/pm′+1Z)r−1, Pi0(h1,

. . . , hr−1) is not divisible by pm′+1. This implies that for all but at most
(r − 1)( j + 1)d−1 p j (r−1)−(m′+1−m)/(r−1)d choices of (h1, . . . , hr−1) ∈ (Z/p jZ)r−1,
Pi0(h1, . . . , hr−1) is not divisible by pm′+1. But if Pi0(h1, . . . , hr−1) is not
divisible by pm′+1, we see from the r = 1 case that for all but at most
( j + 1)d−1 p j−( j−m′)/d choices of hr ∈ Z/p jZ, P(h1, . . . , hr ) is not divisible
by p j . Putting this all together, we conclude that P(h1, . . . , hr ) is not divisible
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by p j for at most

(r − 1)( j + 1)d−1 p j (r−1)−(m′+1−m)/(r−1)d
× p j

+ p j (r−1)
× ( j + 1)d−1 p j−( j−m′)/d

tuples (h1, . . . , hr ) ∈ (Z/p jZ)r . By (17), this quantity is at most
r( j + 1)d−1 p j−( j−m)/rd , giving the claim.

COROLLARY 2. Let P ∈ Z[h1, . . . , hr ] be a nonzero polynomial of degree at
most d for some d > 1, and with all coefficients of magnitude at most A for
some A > 1. Let q > 1 be an integer, and let ε > 0. Then the number of
solutions (h1, . . . , hr ) ∈ (Z/qZ)r to the equation P(h1, . . . , hr ) = 0 mod q
is Oε(A1/rdqr−1/rd+ε), where we allow implied constants to depend on d, r .

Proof. From the fundamental theorem of arithmetic, we may factor

q =
L∏

l=1

p jl
l (18)

for some distinct primes p1, . . . , pL and some positive integers j1, . . . , jL . For
each l = 1, . . . , L , let ml be largest integer such that pml

l divides P . By the
previous lemma, the number of solutions to P(h1, . . . , hr ) = 0 mod p jl

l is at
most r( jl+1)d−1 p jlr−( jl−ml )/rd

l , so by the Chinese remainder theorem the number
of solutions to P(h1, . . . , hr ) = 0 mod q is at most

L∏
l=1

r( jl + 1)d−1 p jlr−( jl−ml )/rd
l .

Using the divisor bound, we have

L∏
l=1

r( jl + 1)d−1
�ε qε,

and from (18) we have
L∏

l=1

p jlr− jl/rd
l = qr−1/rd .

Finally, as the greatest common divisor of the coefficients of P is at most A, we
have

L∏
l=1

pml
l 6 A

and the claim follows.
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From the above corollary we see that for q 6 M , we have

EEhi∈[M]r 1q|Pi (Ehi )
� A1/rdq−1/2rd

and hence by (16) we have
cq 6 q−k/4rd

for Ak 6 q 6 M , if k is large. Meanwhile, from the classical Schwartz–Zippel
lemma we have

EEhi∈[M]r 1p|Pi (Ehi )
6

d
M

for any prime p > M , and thus

cq 6

(
d
M

)k

for M < p� AO(1)Md−1. The claim (15) then follows if k is chosen sufficiently
large depending on d, r , and M sufficiently large depending on d, r, k, A.

Next, we recall a key consequence of the concatenation theory developed
in [29].

THEOREM 8 (Qualitative Bessel inequality for box norms). Let d be a positive
integer. For each 1 6 j 6 d, let (Qi, j)i∈I be a finite family of progressions

Qi, j = ai, j,1[−Mi, j,1,Mi, j,1] + · · · + ai, j,ri, j [−Mi, j,ri, j ,Mi, j,ri, j ]

with ranks ri, j at most r , in a cyclic group Z/NZ. Let f lie in the unit ball of
L∞(Z/NZ), and suppose that

Ei, j∈I‖ f ‖
2d2
(εQi,k+εQ j,l )16k6d,16l6d

(Z/NZ) 6 ε

for some ε > 0. Then

Ei∈I‖ f ‖2d
Qi,1,...,Qi,d

(Z/NZ) 6 c(ε)

where c : (0,+∞) → (0,+∞) is a function such that c(ε) → 0 as ε → 0.
Furthermore, c depends only on r and d.

Proof. See [29, Theorem 1.23].

We combine this theorem with Theorem 7 to obtain our first result controlling
an averaged Gowers norm by global Gowers norms.
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THEOREM 9 (Global Gowers norms control averaged Gowers norms). Let d, r,
D > 1 be natural numbers, let d0 be an integer with 1 6 d0 6 d, and suppose
that D∗ > 1 is a natural number that is sufficiently large depending on d, r, D.
Let ε > 0, and let δ > 0 be a quantity that is sufficiently small depending on
d, r, D, ε. Let A be sufficiently large depending on d, r, D, D∗, ε, δ. For each
j = 1, . . . , D, let Pj ∈ Z[h1, . . . , hr ] be a polynomial of degree between d0 − 1
and d − 1 inclusive with coefficients that are integers of magnitude at most A.
Let M be sufficiently large depending on d, r, D, D∗, ε, δ, A. Let N be a quantity
larger than A−1 Md . Let f : Z/NZ→ R be a function bounded in magnitude by
1 such that

‖ f ‖U D∗
q[A−2D∗ Md0 ]

6 δ (19)

for all 1 6 q 6 AD∗ . Then

EEh∈[M]r‖ f ‖2D
(Pi (Eh)[−M,M])i∈[D]

6 ε. (20)

Here the arithmetic progressions are viewed as multisets in Z/NZ.

A key point here is that δ does not depend on A.

Proof. Let k be a power of two that is sufficiently large depending on d, r, D;
we assume D∗ sufficiently large depending on k. Let σ > 0 be a quantity that
is sufficiently small depending on d, r, k, D, ε; we assume δ sufficiently small
depending on d, r, k, D, σ . We show that

EEh1,...,Ehk∈[M]r‖ f ‖
2Dk

(
∑k

j=1 Pi j
(Eh j )[−σM,σM])i1,...,ik∈[D]

� σ ; (21)

the claim will then follow from log2 k applications of Theorem 8.
We abbreviate Ei := (i1, . . . , ik), Eh := (Eh1, . . . , Ehk), and

QEi(Eh) :=
k∑

j=1

Pi j (
Eh j)[−σM, σM]. (22)

The left-hand side of (21) can then be written as

EEh∈[M]kr‖ f ‖
2Dk
(QEi (
Eh))
Ei∈[D]k

.

By Hölder’s inequality, we may upper bound this by(
EEh∈[M]kr‖ f ‖2Dk

2Dk
(QEi (
Eh))
Ei∈[D]k

)1/2Dk

.
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It will thus suffice to show that

‖ f ‖2Dk

2Dk
(QEi (
Eh))
Ei∈[D]k

� σ 2Dk

for all but O(σ 2Dk

Mkr ) of the Eh in [M]kr .
For each Ei ∈ [D]k , the multiset QEi(Eh) is constructed using the polynomials

Pi1, . . . , Pik . By the pigeonhole principle, there exists d0 6 d1 6 d (depending
on Ei) such that at least k/d of the polynomials Pi1, . . . , Pik have degree exactly
d1 − 1. Let Pi j1

, . . . , Pi jk′
denote these polynomials, then we can write

QEi(Eh) = Q ′
Ei(
Eh)+ Q ′′

Ei (
Eh)

where

Q ′
Ei(
Eh) :=

k′∑
l=1

Pi jl
(Eh jl )[−σM, σM]

and
Q ′′
Ei (
Eh) :=

∑
j∈{1,...,k}\{ j1,..., jk′ }

Pi j (
Eh j)[−σM, σM].

Applying Theorem 7 and Markov’s inequality with these polynomials
Pi j1
, . . . , Pi jk

(and d replaced by d1), we conclude that for all but O(σ 2Dk

Mkr )

of the Eh in [M]kr , there exists 1 6 qEi 6 Ak (depending on Eh) for each Ei ∈ [D]k

such that

dTV(Q ′Ei(Eh), Q ′
Ei(
Eh)+ qEi [−A−2k Md1, A−2k Md1])�d,r,k,D,σ A−1.

Applying (4), we conclude that

dTV(QEi(Eh), QEi(Eh)+ qEi [−A−2k Md1, A−2k Md1])�d,r,k,D,σ A−1.

If q is the product of all the qEi , then from direct computation

dTV(qEi [−A−2k Md1, A−2k Md1], qEi [−A−2k Md1, A−2k Md1] + q[A−2D∗Md0]) 6 A−1

and hence by (5)

dTV(QEi(Eh), QEi(Eh)+ q[A−2D∗Md0])�d,r,k,D,σ A−1.

From many applications of (3), we thus have

‖ f ‖2Dk

2Dk
(QEi (
Eh))
Ei∈[D]k

= ‖ f ‖2Dk

2Dk

(QEi (
Eh)+q[A−2D∗ Md0 ])

Ei∈[D]k

+ Od,r,k,D,σ (A−1)
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so it will suffice to show that

‖ f ‖2Dk

2Dk

(QEi (
Eh)+q[A−2D∗ Md0 ])

Ei∈[D]k

� σ 2Dk

.

The left-hand side expands as

Ea0,Ei ,a1,Ei∈QEi (Eh)∀Ei∈[D]
k

〈
T
∑
Ei∈[D]k a

ωEi ,
Ei f
〉
U Dk

(q[A−D∗Md0 ])

where T h f (x) := f (x + h) is the shift of f by h. By the Cauchy–Schwarz–
Gowers inequality (6) and the translation invariance of the Gowers norms, we
can bound this by

‖ f ‖U Dk
(q[A−2D∗Md0 ])

and the desired bound now follows from (19) and the monotonicity of the Gowers
norms.

Theorem 9 is not directly applicable to our applications involving primes,
because of the requirement that the function f is bounded in magnitude by 1.
In principle, the ‘transference principle’ introduced in [12] should be able to
relax this requirement to allow for unbounded f (so long as f is still bounded
pointwise by a suitably ‘pseudorandom’ majorant), but this turns out to require a
fair amount of additional argument. To begin this task, we present a ‘dual’ form
of Theorem 9, which roughly speaking asserts that dual functions associated to
averaged Gowers norms can be approximated by polynomial combinations of
dual functions associated with global Gowers norms.

THEOREM 10 (Dual function approximation). Let d, r, D > 1 be natural
numbers; let d0 be an integer with 1 6 d0 6 d. Suppose that D∗ > 1 is a
natural number that is sufficiently large depending on d, r, D. Let ε > 0, and
let K > 0 be a quantity that is sufficiently large depending on d, r, D, D∗, ε.
Let A be sufficiently large depending on d, r, D, D∗, ε, K . For each j = 1,
. . . , D, let Pj ∈ Z[h1, . . . , hr ] be a polynomial of degree between d0 − 1 and
d − 1 inclusive with coefficients that are integers of magnitude at most A. Let M
be sufficiently large depending on d, r, D, D∗, ε, K , A, and let M0, N be such
that A−1 M 6 M0 6 AM and N > A−1 Md . Let f : Z/NZ→ R be a function
bounded in magnitude by 1, and define the ‘averaged dual function’

F := EEh∈[M0]r
DD

P1(Eh)[−M,M],...,PD(Eh)[−M,M]( f ). (23)

Then one can find a function F̃ : Z/NZ→ [−2, 2] with

‖F − F̃‖L2(Z/NZ) 6 ε (24)
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such that F̃ is a linear combination

F̃ =
k∑

i=1

ci Fi (25)

with k 6 K , and for each i = 1, . . . , k, ci is a scalar with |ci | 6 1, and
Fi : Z/NZ→ C is a function of the form

Fi =

ki∏
j=1

DD∗
qi, j [A−2D∗Md0 ]

( fi, j)

with ki 6 K , and for each j = 1, . . . , k, qi, j is a natural number with qi, j 6 AD∗ ,
and fi, j : Z/NZ→ [−1, 1] is a function bounded in magnitude by 1. As before,
the progressions are viewed as multisets in Z/NZ.

Proof. Let d, r, d0, D, D∗, ε, K , A, Pj , N ,M0,M, f, F be as above. For any
given K ′, let FK ′ denote the collection of all the functions F̃ that have a
decomposition (25) with the indicated properties, but with K replaced by K ′

throughout. Our task is then to show that there exists F̃ ∈ FK such that
‖F − F̃‖L2(Z/NZ) 6 ε.

Let δ > 0 be a sufficiently small quantity depending on d, r, D, ε, and let
σ > 0 be sufficiently small depending on d, r, D, ε, δ. We prove the following
energy decrement claim: if K ′ > 0 is a natural number, and F̃ ∈ FK ′ is such that
either

|〈F̃, F − F̃〉L2(Z/NZ)| > δ (26)

or
‖F − F̃‖U D∗

q[A−2D∗ Md0 ]
> δ (27)

for some q 6 AD∗ , then whenever K ′′ is sufficiently large depending on δ, σ, K ′,
and A sufficiently large depending on D∗, δ, σ, K ′, K ′′, there exists F̃ ′ ∈ FK ′′

such that
‖F − F̃ ′‖2

L2(Z/NZ) 6 ‖F − F̃‖2
L2(Z/NZ) − σ.

Applying this energy decrement claim iteratively starting from K ′ = 0 and F̃ = 0
(which implies in particular that ‖F − F̃‖2

L2(Z/NZ) 6 1), we obtain after at most
1/σ iterations that for K large enough, there exists F̃ ∈ FK such that

|〈F̃, F − F̃〉L2(Z/NZ)| 6 δ (28)

and
‖F − F̃‖U D∗

q[A−2D∗ Md0 ]
6 δ
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for all q 6 AD∗ . Applying Theorem 9 (with f set equal to 1
3 (F − F̃), and

adjusting ε and δ slightly), we conclude that

EEh∈[M0]r
‖F − F̃‖2D

P1(Eh)[−M,M],...,PD (Eh)[−M,M]
6 ε2/2. (29)

We can then use (23), the Cauchy–Schwarz–Gowers inequality (6), and (29) to
bound

〈F, F − F̃〉L2(Z/NZ) = EEh∈[M0]r
〈DD

P1(Eh)[−M,M],...,PD(Eh)[−M,M]( f ), F − F̃〉L2(Z/NZ)

6 EEh∈[M0]r
‖F − F̃‖2D

P1(Eh)[−M,M],...,PD (Eh)[−M,M]

6 ε2/2

and hence by (28) we conclude (24).
It remains to prove the energy decrement claim. Let K ′ > 0, and let F̃ ∈ FK ′

obey either (26) or (27). First suppose that (26) holds. From the Cauchy–Schwarz
inequality this implies that

‖F̃‖L2(Z/NZ) > δ/3 (30)

(since we can bound the L∞, and hence the L2, norm of F − F̃ by 3). If we let
cF̃ be the orthogonal projection of F to the one-dimensional space spanned by
F̃ , thus

c :=
〈F, F̃〉L2(Z/NZ)

‖F̃‖2
L2(Z/NZ)

.

From (30) we see in particular that

|c| 6
100
δ
. (31)

Also, since
〈F̃, F − F̃〉L2(Z/NZ) = 〈F̃, cF̃ − F̃〉L2(Z/NZ)

we see that
|c − 1| >

δ

10
.

By Pythagoras’ theorem, we conclude that

‖F − cF̃‖2
L2(Z/NZ) 6 ‖F − F̃‖2

L2(Z/NZ) −
δ3

100
.

We would like to take cF̃ to be the function F̃ ′, but there is the technical difficulty
that cF̃ need not take values in [−2, 2]. However, from (31) we see that cF̃ takes
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values in [−200/δ, 200/δ]. We now use the Weierstrass approximation theorem
to find a polynomial P of degree Oδ,σ (1) and coefficients Oδ,σ (1) such that

|P(t)−min(max(t,−1), 1)| 6 σ 2

for all t ∈ [−200/δ, 200/δ]. Then P(cF̃) takes values in [−2, 2] and lies in FK ′′

for K ′′ large enough depending on δ, σ, K ′, and

‖P(cF̃)−min(max(cF̃,−1), 1)‖L∞(Z/NZ) 6 σ 2

and thus by the triangle inequality

‖F − P(cF̃)‖2
L2(Z/NZ) 6 ‖F −min(max(F̃,−1), 1)‖2

L2(Z/NZ) − σ

6 ‖F − F̃‖2
L2(Z/NZ) − σ

where the last line comes from the fact that F takes values in [−1, 1] and the
map t 7→ min(max(t,−1), 1) is a contraction. This gives the required claim in
the case that (26) holds.

Now suppose that (27) holds for some q 6 AD∗ . If we write g := 1
3 (F − F̃),

then g takes values in [−1, 1], and

‖g‖U D∗
q[A−2D∗ Md0 ]

> δ/3.

This implies that

〈g,DD∗
q[A−2D∗Md0 ]

g〉L2(Z/NZ) > (δ/3)2
D∗

and thus
〈F − F̃,DD∗

q[A−2D∗Md0 ]
g〉L2(Z/NZ) > (δ/3)2

D∗
/3.

If we then set
F̃1 := F̃ − σ 2/3DD∗

q[A−2D∗Md0 ]
g

(say) then from the cosine rule we have

‖F − F̃1‖
2
L2(Z/NZ) 6 ‖F − F̃‖2

L2(Z/NZ) − 2σ

(say). We would like to take F̃1, but again there is the slight problem that F̃1 can
take values a little bit outside of [−2, 2]. However, if one sets F̃ := P(F̃1) where
P is the polynomial constructed previously, one obtains the desired claim.
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3. Averaged Gowers uniformity of a W -tricked von Mangoldt function

In this section we require the following parameters, chosen in the following
order.

• First, we let d, r, D > 1 be arbitrary natural numbers. Let d0 be an integer
with 1 6 d0 6 d .

• Then, we let D∗ be a natural number that is sufficiently large depending on
d, r, D.

• Then, we choose κ > 0 to be a real number that is sufficiently small depending
on d, r, D, D∗.

• We let N ′ be a large integer (going to infinity), and let w = w(N ′) be
a sufficiently slowly growing function of N ′ (the choice of w can depend
on d, r, D, D∗, κ). We use o(1) to denote any quantity that goes to zero as
N ′ → ∞ (keeping the previous parameters d, r, D, D∗, κ fixed). Thus for
instance 1/w = o(1).

• We set
W :=

∏
p6w

p (32)

and N := bN ′/Wc. We also let b ∈ [W ] be a natural number coprime to W .

• We set
A := W 1/κ

and
R := N κ . (33)

• We select a quantity M such that

log1/κ N 6 M 6 (AN )1/d .

• Finally, for each 1 6 j 6 J , we select a polynomial Pj ∈ Z[h1, . . . , hr ] of
degree between d0 − 1 and d − 1 inclusive with coefficients that are integers
of magnitude at most A.

The reader may wish to keep in mind the hierarchy

d, r, D � D∗ � 1/κ � W � A � R � N

and
A, log1/κ N � M � N
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where the quantities W, A, R,M, N go to infinity (at different rates) as N →∞,
while d, r, D, D∗, κ do not depend on N .

For each b ∈ [W ]which is coprime to W , define the normalized von Mangoldt
functions Λ′b,W : Z/NZ→ R by the formula

Λ′b,W (x) :=
φ(W )

W
Λ′(W x + b) (34)

for x ∈ [R, N ] (where we embed [R, N ] into Z/NZ), withΛ′b,W (x) equal to zero
for other choices of x . HereΛ′(n) is the restriction of the von Mangoldt function
to primes, thus Λ′(p) = log p for primes p, and Λ′(n) = 0 for nonprime n.

The objective of this section is to establish the following bound:

THEOREM 11 (Averaged Gowers uniformity of von Mangoldt). Let the notation
and hypotheses be as above. If f : Z/NZ→ R is any function with the pointwise
bound 0 6 f 6 Λ′b,W , then there exists a function f ′ : Z/NZ → R with the
pointwise bounds 0 6 f ′ � 1 such that

EEh∈[M]r‖ f − f ′‖2D
(Pi (Eh)[−M,M])i∈[D]

= o(1). (35)

Furthermore, in the special case where d0 = d, M > (A−1 N )1/d , and f = Λ′b,W ,
we may take f ′ = 1.

The approximating function f ′ is known as a dense model for f
in the literature. The above theorem can be compared with the bound
‖ f − f ′‖U D(Z/NZ) = o(1) established in [12], and the results in [13] which
imply that f ′ can be taken to equal 1 when f = Λ′b,W . Also, the arguments
in [27] give a version of the first part of this theorem in the case that M is a
very small power of N (in particular, much smaller than R), and the subsequent
arguments in [28] extend this to cover the regime where M grows slower than
any power of N but faster than any power of log N . These restrictions on M
arose from a certain ‘clearing denominators’ step encountered when dealing
with products of many dual functions associated to averaged local Gowers
norms; they are circumvented in this paper by application of the concatenation
machinery to replace these norms with more traditional Gowers norms that do
not require the ‘clearing denominators’ method in order to handle products of
dual functions.

REMARK 1. In [28, Theorem 9], in the notation of the current paper, the slightly
weaker bound

EEh∈[M]r‖ f − f ′‖2D
P1(Eh)[−M,M],...,PD (Eh)[−M,M]

6 ε + o(1)
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was established for any fixed ε > 0 assuming that M = logL N for some
L = L(ε) that was sufficiently large depending on ε. Theorem 11 allows one
to now take L = 1/κ independent of ε. By [28, Remark 4], this allows one to
also take L independent of ε in [28, Theorem 5], which gives Theorem 6.

Morally speaking, Theorem 11 ought to follow from the results in [12, 13]
mentioned above after applying Theorem 9, but we run into the familiar difficulty
that the function Λ′b,W − 1 is not bounded. In the final part of Theorem 11,
the conditions on d0 and M should be dropped, but this requires control on
correlations of Λ with nilsequences on short intervals, and such control is not
currently available in the literature.

We now begin the proof of Theorem 11. As in [12, 27], we envelop Λ′b,W
(and hence f ) by a pseudorandom majorant ν = νb : Z/NZ→ R+, defined as
follows. Let χ : R→ R be a fixed smooth even function that vanishes outside of
[−1, 1], positive at 0, and obeys the normalization∫ 1

0
|χ ′(t)|2 dt = 1.

We allow all implied constants to depend on χ . We then set

ν(x) = νb(x) :=
φ(W )

W
log R

( ∑
m|W x+b

µ(m)χ
(

log m
log R

))2

(36)

for all x ∈ [N ]. Comparing this with (34) and (33) we conclude the pointwise
bound

0 6 f (x) 6 Λ′b,W (x)�κ ν(x) (37)

for all x ∈ Z/NZ, since Λ′b,W (x) is only nonvanishing when x ∈ [R, N ] and
W x + b is prime, in which case the only nonzero summand in (36) comes from
the m = 1 term.

It was observed in [12] that

Ex∈Z/NZν(x) = 1+ o(1). (38)

In fact we have many further ‘pseudorandomness’ properties of ν; roughly
speaking, any ‘nondegenerate’ multilinear correlation of ν with itself (with
reasonable bounds on coefficients) will be 1 + o(1), as long as the complexity
of the correlation is small compared to 1/κ . Here is one specific instance of the
principle we need:
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PROPOSITION 2 (Gowers uniformity of ν − 1). Let K be a natural number
independent of N (but which can depend on d, r, D, D∗, κ). Let q 6 AK D∗ be a
natural number. Then we have

EEh,Eh′∈[M]r‖ν − 1‖2D∗+2D

2
D∗+2D

q[A−3K D∗ Md0 ],...,q[A−3K D∗ Md0 ],(Pi (Eh)[−M,M])i∈[D],(Pi (Eh′)[−M,M])i∈[D]

= o(1). (39)

In particular, by monotonicity (7), permutation symmetry, and Hölder’s
inequality one has the estimates

‖ν − 1‖2D∗
q[A−3K D∗ Md0 ],...,q[A−3K D∗ Md0 ]

= o(1),

EEh∈[M]r‖ν − 1‖2D∗+D

2
D∗+D

q[A−3K D∗ Md0 ],...,q[A−3K D∗ Md0 ],(Pi (Eh)[−M,M])i∈[D]

= o(1),

and
EEh,Eh′∈[M]r‖ν − 1‖22D

22D
(Pi (Eh)[−M,M])i∈[D],(Pi (Eh′)[−M,M])i∈[D]

= o(1).

Proof. See Appendix A.

Next, we give a variant of the estimate in [12, Proposition 6.2].

PROPOSITION 3 (ν − 1 orthogonal to dual functions). Let the notation and
hypotheses be as in Theorem 11. Let K , K ′ be natural numbers independent
of N (but which can depend on d, r, D, D∗, κ). For each j = 1, . . . , K , let
Ef j = ( f j,ω)ω∈{0,1}D∗ \{0}D∗ be a tuple of functions f j,ω : Z/NZ → [−1, 1], and

q j 6 AD∗ be a natural number, and write

F j := DD∗
q j [A−2D∗Md0 ]

( f j).

For each j ′ ∈ [K ′], let Eg j ′ = (g j ′,ω)ω∈{0,1}D\{0}D be a tuple of functions
g j ′,ω : Z/NZ→ [−1, 1], and write

G j ′ := EEh∈[M]rDD
(Pi (Eh)[−M,M])i∈[D]

(Eg j ′).

Then

Ex∈Z/NZ(ν(x)− 1)
( K∏

j=1

F j(x)
)( K ′∏

j ′=1

G j ′(x)
)
= o(1). (40)

A key technical point here (as in [12]) is that the parameters K , K ′ are allowed
to be large compared to 1/κ (though K , K ′ will still be small compared to
W, A, R,M, N ). The potentially large nature of K , K ′ requires one to proceed
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carefully, as the pseudorandomness properties of ν do not allow us to directly
control averages involving a number of forms that are comparable or larger to
1/κ . On the other hand, Proposition 3 is easier to prove in one respect than [12,
Proposition 6.2], because the functions f j,ω, g j ′,ω are assumed to be bounded in
magnitude by 1 rather than ν + 1. We are able to use this stronger hypothesis
due to our use of the Conlon–Fox–Zhao densification machinery (which was not
available at the time that [12] was written) from [4] later in this paper.

Proof. We first prove (40) for small values of K ′, specifically K ′ = 0, 1, 2, and
then use Theorem 10 to conclude the case of general K ′.

We begin with the K ′ = 0 case. In this case, we may adapt the arguments used
to prove [12, Proposition 6.2]. First, we write the left-hand side of (40) as

Ex∈Z/NZ(ν(x)− 1)
K∏

j=1

∏
ω∈{0,1}D∗ \{0}D∗

EEh j∈Q D∗
j

f j,ω(x + ω · Eh j)

where Q j is the multiset

Q j := q j [A−2D∗Md0] − q j [A−2D∗Md0]

and · denotes the usual dot product:

(ω1, . . . , ωD∗) · (h j,1, . . . , h j,D∗) :=

D∗∑
i=1

ωi h j,i .

We now ‘clear denominators’ by writing q :=
∏K

j=1 q j , and introducing the
multiset

Q := q[A−3K D∗Md0] − q[A−3K D∗Md0].

Note that q 6 AK D∗ , which implies that

dTV(Q j , Q j + h) = o(1)

for all h ∈ Q, thus

EEh j∈Q D∗
j

f j,ω(x + ω · Eh j) = E EH j∈Q D∗
j

f j,ω(x + ω · EH j + ω · Eh)+ o(1)

for all 1 6 j 6 K and Eh ∈ Q D∗ . From (38) we have Ex∈Z/NZν(x)+1 = 2+o(1),
so we can write the left-hand side of (40) as

Ex∈Z/NZ(ν(x)− 1)
K∏

j=1

∏
ω∈{0,1}D∗ \{0}D∗

E EH j∈Q D∗
j

f j,ω(x + ω · EH j + ω · Eh)+ o(1);
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averaging over Eh, we can also write this left-hand side as

Ex∈Z/NZEEh∈Q D∗ (ν(x)−1)
K∏

j=1

∏
ω∈{0,1}D∗ \{0}D∗

E EH j∈Q D∗
j

f j,ω(x+ω · EH j+ω · Eh)+o(1).

We can rewrite this as

E EH∈∏K
j=1 Q D∗

j
〈( fω; EH )ω∈{0,1}D∗ 〉U D∗

q[A−3K D∗ Md0 ]
+ o(1)

where
f
{0}D∗ ; EH (x) := ν(x)− 1 (41)

and

fω; EH (x) :=
K∏

j=1

f j,ω(x + ω · EH j) (42)

forω ∈ {0, 1}D∗\{0}D∗ and EH = ( EH1, . . . , EHk). By the Cauchy–Schwarz–Gowers
inequality (6), we can bound this by

E EH∈∏K
j=1 Q D∗

j

∏
ω∈{0,1}D∗

‖ fω; EH‖U D∗
q[A−3K D∗ Md0 ]

+ o(1).

From Proposition 2 we have

‖ f
{0}D∗ ; EH‖U D∗

q[A−3K D∗ Md0 ]
= ‖ν − 1‖U D∗

q[A−3K D∗ Md0 ]
= o(1)

while for ω ∈ {0, 1}D∗\{0}D∗ we have | fω; EH | 6 1 and hence

‖ fω; EH‖U D∗
q[A−3K D∗ Md0 ]

6 1.

The claim follows.
Now we turn to the K ′ = 1 case. This is effectively the same as the K ′ = 0

case, except that ν − 1 is replaced by (ν − 1)G1. Thus, by repeating the above
arguments, we reduce to showing that

‖(ν − 1)G1‖U D∗
q[A−3K D∗ Md0 ]

= o(1).

Expanding out G1 and using the triangle inequality for Gowers norms, it suffices
to show that

EEh∈[M]r‖(ν − 1)DD
(Pi (Eh)[−M,M])i∈[D]

(Eg1)‖U D∗
q[A−3K D∗ Md0 ]

= o(1)
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so by Hölder’s inequality it suffices to show that

EEh∈[M]r‖(ν − 1)DD
(Pi (Eh)[−M,M])i∈[D]

(Eg1)‖
2D∗

U D∗
q[A−3K D∗ Md0 ]

= o(1).

We can expand the left-hand side as

EEh∈[M]r 〈gω,Eh〉2D∗+D

q[A−3K D∗ Md0 ],...,q[A−3K D∗ Md0 ],(Pi (Eh)[−M,M])i∈[D]

where q[A−3K D∗Md0] appears D∗ times in the Gowers norm, and

gω,{0}D := ν − 1

and
gω,ω′ := g1,ω′

for all ω ∈ {0, 1}D∗ and ω′ ∈ {0, 1}D\{0}D. By the Gowers–Cauchy–Schwarz
inequality, we can bound the above expression by

EEh∈[M]r‖ν − 1‖2D∗

2
D∗+D

q[A−3K D∗ Md0 ],...,q[A−3K D∗ Md0 ],(Pi (Eh)[−M,M])i∈D

so by Hölder’s inequality it suffices to show that

EEh∈[M]r‖ν − 1‖2D∗+D

2
D∗+D

q[A−3K D∗ Md0 ],...,q[A−3K D∗ Md0 ],(Pi (Eh)[−M,M])i∈[D]

= o(1).

But this follows from Proposition 2.
Next, we turn to the K ′ = 2 case. Repeating the previous arguments, we reduce

to showing that
‖(ν − 1)G1G2‖U D∗

q[A−3K D∗ Md0 ]
= o(1).

But the product G1G2 can be written as a dual function

G1G2 = D2D
(Pi (Eh)[−M,M])i∈[D],(Pi (Eh)[−M,M])i∈[D]

(Eg12)

where Eg12 = (g12,ω)ω∈{0,1}2D\{0}2D is defined by setting

g12,(ω,{0}D) := g1,ω

and
g12,({0}D ,ω′) := g2,ω′

and
g12,(ω,ω′) := 1
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for ω,ω′ ∈ {0, 1}D\{0}D. One can then repeat the K ′ = 1 arguments (replacing
D with 2D, and duplicating the polynomials P1, . . . , PD) to conclude this case.

Now we turn to the general case when K ′ is allowed to be large. Let ε > 0 be
a parameter (which we initially take to be independent of N ) to be chosen later.
It will suffice to show that the left-hand side of (40) is OK ′(ε) + o(1) for each
fixed ε > 0, since the claim then follows by using a diagonalization argument to
send ε slowly to zero.

Applying Theorem 10 to each G j ′ , we see that for any j ′ = 1, . . . , K ′, one
can find an approximation G̃ j ′ : Z/NZ→ [−2, 2] to G j ′ with

‖G j ′ − G̃ j ′‖L2(Z/NZ) 6 ε

such that G̃ j ′ has a representation of the form (25) for some k, ki = Od,r,D,D∗,ε(1)
(depending on j). We then write

G j ′ = G̃ j ′ + E j ′

and
G1 . . .G K ′ = G̃1 . . . G̃ K ′ + E

for some error functions E j ′, E with

‖E j ′‖L2(Z/NZ) 6 ε (43)

and
E �K ′ |E1| + · · · + |EK ′ |. (44)

We may split the left-hand side of (40) as the sum of

Ex∈Z/NZ(ν(x)− 1)F1 . . . FK (x)G̃1 . . . G̃ K ′(x) (45)

and
Ex∈Z/NZ(ν(x)− 1)F1 . . . FK (x)E(x). (46)

By (25), the expression (45) is a bounded linear combination of Od,r,D,D∗,ε,K (1)
terms, each of which is o(1) by the K ′ = 0 case of this proposition (with K
replaced by various quantities of size Od,r,D,D∗,ε,K (1)). Thus it suffices to show
that the expression (46) is OK ′(ε)+o(1). Since the F j are bounded in magnitude
by 1, we can use (44) to bound (46) in magnitude by

�K ′

K ′∑
j ′=1

Ex∈Z/NZ(ν(x)+ 1)|E j ′(x)|.
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By (38) we have Ex∈Z/NZ(ν(x)+1) = 2+o(1), so by Cauchy–Schwarz it suffices
to show that

Ex∈Z/NZ(ν(x)+ 1)E j ′(x)2 �K ′ ε
2
+ o(1)

for each j ′. From (43) it suffices to show that

Ex∈Z/NZ(ν(x)− 1)E j ′(x)2 = o(1).

From the definition of E , we can expand the left-hand side as a bounded linear
combination of the expressions

Ex∈Z/NZ(ν(x)− 1)G̃ j ′(x)G̃ j ′(x),

Ex∈Z/NZ(ν(x)− 1)G̃ j ′(x)G j ′(x),

and
Ex∈Z/NZ(ν(x)− 1)G j ′(x)G j ′(x).

But these are all equal to o(1) thanks to the K ′ = 0, 1, 2 cases of this proposition
respectively. The claim follows.

To use this proposition, we recall the dense model theorem:

THEOREM 12 (Dense model theorem). Let ν : Z/NZ → R+ be a function
satisfying Ex∈Z/NZν(x) = 1 + o(1), and let F be a collection of functions
g : Z/NZ→ R+ bounded in magnitude by 1+ o(1). Suppose that for any fixed
k (independent of N) and any g1, . . . , gk ∈ F , one has

Ex∈Z/NZg1(x) . . . gk(x)(ν(x)− 1) = o(1)

as N → ∞ uniformly in the choice of g1, . . . , gk . Then for any function
f : Z/NZ → R with 0 6 f (x) 6 ν(x) for all x, there exists a function
f ′ : Z/NZ→ R with 0 6 f ′(x) 6 1+ o(1) for all x such that

Ex∈Z/NZ( f (x)− f ′(x))g(x) = o(1)

as N →∞ uniformly for all g ∈ F .

Proof. See [24, Theorem 1.1], [27, Theorem 7.1], or [10, Theorem 4.8]; the
formulation here is closest to that in [24]. (This theorem also appeared implicitly
in [12].)

PROPOSITION 4 (A dense model for f ). Let the notation and hypotheses be as
in Theorem 11. Then there exists a function f ′ : Z/NZ→ R with the pointwise
bounds 0 6 f ′ �κ 1 such that

Ex∈Z/NZ( f − f ′)(x)DD∗
q[A−2D∗Md0 ]

(Eg)(x) = o(1)
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and
Ex∈Z/NZ( f − f ′)(x)EEh∈[M]rDD

(Pi (Eh)[−M,M])i∈[D]
(Eg′)(x) = o(1)

for any q 6 AD∗ and any tuples Eg = (gω)ω∈{0,1}D∗ \{0}D∗ and Eg′ = (g′ω)ω∈{0,1}D\{0}D
of functions gω, g′ω : Z/NZ→ [−1, 1].

Proof. If we let c > 0 be a sufficiently small quantity depending on κ , then by
(37) we can bound c f pointwise in magnitude by ν. Applying the dense model
theorem with F consisting of those functions of the form

DD∗
q[A−2D∗Md0 ]

(Eg)

or
EEh∈[M]rDD

(Pi (Eh)[−M,M])i∈[D]
(Eg′)

for any q 6 AD∗ and any tuples Eg = (gω)ω∈{0,1}D∗ \{0}D∗ and Eg′ = (g′ω)ω∈{0,1}D\{0}D
of functions gω, g′ω : Z/NZ → [−1, 1], and using Proposition 3, we obtain the
claim with f replaced by c f . Dividing by c, the proposition follows.

The above properties of f − f ′ are not directly useful in applications because
of the requirement that the functions gω, g′ω take values in [−1, 1]. However, we
can use densification argument of Conlon et al. [4] to relax this hypothesis, to a
hypothesis that each gω or g′ω is bounded by either 1 or ν:

PROPOSITION 5 (Densification). Let the notation and hypotheses be as in
Theorem 11. Let f ′ be the function in Proposition 4. Then one has

Ex∈Z/NZ( f − f ′)(x)DD∗
q[A−2D∗Md0 ]

(Eg)(x) = o(1) (47)

and
Ex∈Z/NZ( f − f ′)(x)EEh∈[M]rDD

(Pi (Eh)[−M,M])i∈[D]
(Eg′)(x) = o(1) (48)

for any q 6 AD∗ and any tuples Eg = (gω)ω∈{0,1}D∗ \{0}D∗ and Eg′ = (g′ω)ω∈{0,1}D\{0}D of
functions gω, g′ω : Z/NZ→ R, each of which are bounded in magnitude either
by 1 or by ν. (Thus, for instance, for ω ∈ {0, 1}D∗ , one either has |gω(x)| 6 1 for
all x ∈ Z/NZ, or |gω(x)| 6 ν(x) for all x ∈ Z/NZ.)

Proof. We just establish the claim (48), as the claim (47) is proven by an
essentially identical argument.

Let J denote the number of indices ω′ ∈ {0, 1}D\{0}D for which one is
assuming the bound |g′ω(x)| 6 ν(x) (rather than |g′ω(x)| 6 1), thus 0 6 J 6
2D
−1. We prove the claim by induction on J . For J = 0, the claim is immediate
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from Proposition 4. Now suppose inductively that J > 1, and that the claim has
already been proven for J − 1.

By hypothesis, we have a tuple ω0 in {0, 1}D\{0}D such that g′ω0
is bounded

in magnitude by ν, with gω being bounded by ν for J − 1 of the other indices
{0, 1}D\{0}D and by 1 for all remaining indices. We also adopt the convention
g′
{0}D := f − f ′, so that we may write the left-hand side of (48) as

EEh∈[M]rEx∈Z/NZEEk∈∏D
i=1 Pi (Eh)[−M,M]

∏
ω∈{0,1}D

g′ω(x + ω · Ek).

Making the change of variables x 7→ x − ω0 · Ek, we may write this as

Ex∈Z/NZg′ω0
(x)F(x)

where

F(x) := EEh∈[M]rEEk∈∏D
i=1 Pi (Eh)[−M,M]

∏
ω∈{0,1}D\{ω0}

g′ω(x + (ω − ω0) · Ek).

Since g′ω0
is bounded in magnitude by ν, we see from (38) and Cauchy–Schwarz

that it suffices to show that

Ex∈Z/NZν(x)F(x)2 = o(1).

We split this into two claims

Ex∈Z/NZ(ν(x)− 1)F(x)2 = o(1) (49)

and
Ex∈Z/NZF(x)2 = o(1). (50)

We begin with (49). We can expand the left-hand side as

EEh,Eh′∈[M]rEx∈Z/NZEEk∈∏D
i=1 Pi (Eh)[−M,M]×

∏D
i=1 Pi (Eh′)[−M,M](ν(x)− 1)

×

∏
ω∈{0,1}D\{ω0}

g′ω(x + (ω − ω0, 0) · Ek)g′ω(x + (0, ω − ω0) · Ek).

By the Gowers–Cauchy–Schwarz inequality, we can bound this by

EEh,Eh′∈[M]r‖ν(x)− 1‖22D
(Pi (Eh)[−M,M])i∈[D],(Pi (Eh′)[−M,M])i∈[D]

×

∏
ω∈{0,1}D\{ω0}

‖g′ω‖22D
(Pi (Eh)[−M,M])i∈[D],(Pi (Eh′)[−M,M])i∈[D]

.
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Since g′ω is bounded in magnitude by ν + 1 = (ν − 1) + 2, it thus suffices by
Hölder’s inequality to show that

EEh,Eh′∈[M]r‖ν − 1‖22D

22D
(Pi (Eh)[−M,M])i∈[D],(Pi (Eh′)[−M,M])i∈[D]

= o(1).

But this follows from Proposition 2.
Now we show (50). By Hölder’s inequality, it suffices to show that

Ex∈Z/NZF(x)4 �r,D 1+ o(1) (51)

and
Ex∈Z/NZ|F(x)| = o(1). (52)

To prove (51), we bound g′ω by ν + 1. The estimate then follows from the
following claim, proven in Appendix A:

LEMMA 3. We have

Ex∈Z/NZ

(
EEh∈[M]rEEk∈∏D

i=1 Pi (Eh)[−M,M]

∏
ω∈{0,1}D\{ω0}

(1+ ν(x + (ω − ω0) · Ek))
)4

�r,D 1+ o(1).

Finally, we show (52). It suffices to show that

Ex∈Z/NZg(x)F(x) = o(1)

whenever g : Z/NZ→ [−1, 1] is a function. But this follows from the induction
hypothesis, since the left-hand side is simply (48) with g′ω0

replaced with g. This
proves (48); the estimate (47) is proven similarly and is left to the reader.

COROLLARY 3. Let the notation and hypotheses be as in Theorem 11. Let f ′ be
the function in Proposition 4. Then one has

‖ f − f ′‖U D∗
q[A−2D∗ Md0 ]

= o(1) (53)

for all q 6 AD∗ , and also

EEh∈[M]r‖ f − f ′‖2D
(Pi (Eh)[−M,M])i∈[D]

= o(1). (54)

Proof. By linearity, the bounds (47), (48) continue to hold if the hypotheses
that |gω|, |g′ω| are bounded by 1 or by ν are replaced by |gω|, |g′ω| �κ ν + 1.
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In particular, we can set all of the gω, g′ω equal to f − f ′. The bound (47) then
gives (53), while (48) gives

EEh∈[M]r‖ f − f ′‖2D

2D
(Pi (Eh)[−M,M])i∈[D]

= o(1)

which implies (54) by Hölder’s inequality.

The bound (54) already gives the first claim of Theorem 11. It remains to prove
the second claim. Thus we may now assume that d0 = d , M > (A−1 N )1/d , and
f = Λ′b,W .

We now invoke the following estimates on global uniformity norms of the von
Mangoldt function, arising from the results in [13] (using the inverse Gowers
and Möbius–nilsequences conjectures proven in [16], [14], respectively):

PROPOSITION 6 (Global Gowers uniformity). Let the notation and hypotheses
be as in Theorem 11, with d0 = d, M > (A−1 N )1/d , and f = Λ′b,W . Then one
has

‖Λ′b,W − 1‖U D∗
q[A−2D∗ Md0 ]

= o(1)

for all q 6 AD∗ .

Proof. Raising both sides to the power 2D∗ and expanding, it suffices to show
that

EEh∈[A−2D∗Md0 ]D∗Ex∈Z/NZ
∏
ω∈I

Λ′b,W (x + qω · Eh) = 1+ o(1)

for all I ⊂ {0, 1}D∗ . The contribution of those x for which N −q D∗A−2D∗Md0 6
x 6 N can be easily verified by standard upper bound sieves to be o(1); replacing
Λ′ in (34) by the von Mangoldt function Λ and removing the restriction x > R
also contributes an error of o(1). Thus it suffices to show that

EEh∈[A−2D∗Md0 ]D∗Ex∈[N ]

∏
ω∈I

φ(W )

W
Λ(W (x + qω · Eh)+ b) = 1+ o(1). (55)

Suppose first that w (and hence W and A) is a fixed quantity independent of N .
Since

A−2D∗−1 N 6 A−2D∗Md0 6 A−2D∗+1 N

we see that the quantity A−2D∗Md0 is now comparable to N . The expression
(55) is now of a form that can be handled by the results in [13, Theorem 1.8]
(note that a modification of Example 2 from that paper shows that the linear
forms here have finite complexity). Using that theorem (as well as the results in
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[16, Theorem 1.3], [14, Theorem 1.1] establishing the conditional hypotheses of
that theorem), we see that the left-hand side of (55) is equal to

(1+ O(1/A))
(
φ(W )

W

)|I |∏
p

βp + o(1)

where for each prime p, βp is the quantity

βp := EEh∈(Z/pZ)D∗Ex∈Z/pZ
∏
ω∈I

p
p − 1

1p-W (x+qω·Eh)+b.

For p 6 w, the quantity βp simplifies to (p/(p − 1))|I |, and hence the left-hand
side of (55) simplifies to

(1+ O(1/A))
∏
p>w

βp + o(1).

For p > w not dividing q , the linear forms (x, Eh) 7→ W (x + qω · Eh) are
not scalar multiples of each other over Z/pZ, and one can then easily verify
that βp = 1 + OD∗(1/p2) = exp(OD∗(1/p2)) in these cases, leading to a net
multiplicative contribution of exp(OD∗(1/w)) to the product

∏
p>w βp. For

p > w dividing q , we can crudely estimate βp as 1 + OD∗(1/p) =
exp(OD∗(1/w)); since q 6 AD∗ = W D∗/κ = exp(OD∗,κ(w)), the number of
such primes p is at most OD∗,κ(w/ logw). We conclude that the net contribution
of these primes to

∏
p>w βp is exp(OD∗,κ(1/ logw)). We conclude that the

left-hand side of (55) is

(1+ O(1/A)) exp(OD∗,κ(1/ logw))+ o(1)

for fixed w. Letting w grow sufficiently slowly to infinity, we obtain the claim.

Combining Proposition 6 with Corollary 3 and Theorem 9, we can now finally
establish the second part of Theorem 11. Let f ′ be the function in Proposition 4.
From (53), Proposition 6, and the triangle inequality we have

‖ f ′ − 1‖U D∗
q[A−2D∗ Md0 ]

= o(1)

for all q 6 AD∗ . Since f ′ − 1 = Oκ(1), we can divide by a constant depending
only on κ and invoke Theorem 9 to conclude that

EEh∈[M]r‖ f ′ − 1‖2D
(Pi (Eh)[−M,M])i∈[D]

= o(1).

Combining this with (54) and the triangle inequality, we obtain the second claim
of Theorem 11.
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4. Applying a generalized von Neumann inequality

We continue to use the parameters d, r, d0, D, κ,W, A, R, N from the
previous section. The objective of this section is to establish the following
bound:

THEOREM 13. For each i = 1, . . . , D, let bi ∈ [W ] be coprime to W . Let M0

be a quantity with log1/κ N 6 M0 6 AN 1/d , and set M := A−1 M0. For i = 1,
. . . , D, we set fi to be a function with the pointwise bounds | fi | � Λ′bi ,W + 1.
For each i = 1, . . . , d, let Ri ∈ Z[m1, . . . ,mr ] be a polynomial of degree at
most d, with all coefficients bounded in magnitude by A. Assume also that for
i = 2, . . . , D, Ri − R1 has degree at least d0. Then

Ex∈Z/NZE Em∈[M0]r

D∏
i=1

fi(x + Ri( Em))�d,r,D ‖ f1‖
c
+ o(1) (56)

for some 1�d,r,D c �d,r,D 1, where ‖ f1‖ is short for a norm of the form

‖ f1‖ := EEh∈[M]r‖ f1‖2D′
(Pi (Eh)[−M,M])i∈[D′ ]

(57)

for some natural number D′ = Od,r,D(1), and polynomials P1, . . . , PD′ ∈ Z[h1,

. . . , hr ] of degree between d0 − 1 and d − 1 and coefficients O(AOd,r,D(1)).

The arguments in [27, Section 5] (based on van der Corput’s method, the
Cauchy–Schwarz inequality, PET induction, and a ‘polynomial forms’ condition
on the pseudorandom majorant ν) ‘morally’ permit one to establish Theorem 13.
However, the setup here differs from that in [27] in several minor technical
aspects, most notably the multidimensional nature of the parameter Em, the
nonconstancy of the bi parameter in i , and the much larger value of the scale
parameter M0. As such, we need to adapt the argument from [27] to the current
setting.

For inductive purposes it is convenient to prove a more general form of
Theorem 13. We need the following definitions (inspired by, though not
absolutely identical to, analogous definitions in [27]):

DEFINITION 1 (Polynomial system). A polynomial system S consists of the
following objects:

• an integer DS > 0, which we call the number of fine degrees of freedom;

• a nonempty finite index set A (the elements of which we call the nodes of the
system);
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• a polynomial Rα ∈ Z[m1, . . . ,mr , h1, . . . , hDS ] of degree at most d attached
to each node α ∈ A;

• a distinguished node α0 ∈ A;

• a (possibly empty) collection A′ ⊂ A\{α0} of inactive nodes. The nodes in
A\A′ will be referred to as active, thus for instance the distinguished node α0

is always active.

We say that a node α is linear if Rα − Rα0 is at most linear in m1, . . . ,mr (that
is it has degree at most 1 when viewed as a polynomial in m1, . . . ,mr with
coefficients in Z[h1, . . . , hDS ]), thus for instance the distinguished mode α0 is
always linear. We say that S is linear if all active nodes are linear. We require
polynomial systems to obey three additional axioms:

• if α, β are distinct nodes in A, then Rα − Rβ is not constant in m1, . . . ,mr ,
h1, . . . , hDS (that is it does not lie in Z);

• if α ∈A\{α0}, then Rα−Rα0 has degree at least d0 in m1, . . . ,mr , h1, . . . , hDS ;

• if α, β are distinct linear nodes in A, then Rα − Rβ is not constant in m1, . . . ,

mr (that is it does not lie in Z[h1, . . . , hDS ]).

DEFINITION 2 (Realizations and averages). Let S be a polynomial system. A
realization Ef = ( fα)α∈A of S is an assignment of functions fα : Z/NZ→ R to
each node α with the following properties:

• for any node α, one has the pointwise bound | fα| � νbα+1 for some bα ∈ [W ]
coprime to W ;

• for any inactive node α, one has fα = νbα + 1 for some bα ∈ [W ] coprime to
W .

We define the average ΛES( Ef ) to be the quantity

ΛES(
Ef ) := Ex∈Z/NZE Em∈[M0]rEEh∈[M]DS

∏
α∈A

fα(x + Rα( Em, Eh)). (58)

Theorem 13 is then a special case of the following more general statement.

THEOREM 14. Let C0 be a quantity depending only on d, r, D, and assume κ
sufficiently large depending on C0. Let C1 be a quantity depending only on d, r,
D,C0, κ (in particular, C0,C1 are independent of N). Let S be a system with at
most C0 nodes and at most C0 fine degrees of freedom, with all polynomials Rα
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associated to the system having coefficients bounded in magnitude by AC1 . Let Ef
be a realization of S . Then

ΛES(
Ef )�d,r,D,C0,C1 ‖ fα0‖

c
+ o(1) (59)

for some c > 0 depending on d, r, D,C0,C1, and ‖ f1‖ is a norm of the form (57)
with D′ = Od,r,D,C0,C1(1), and P1, . . . , PD′ ∈ Z[h1, . . . , hr ] of degree between
d0 − 1 and d − 1 with coefficients AOd,r,D,C0,C1 (1).

Indeed, Theorem 13 is the special case in which the system S consists of the
nodes A = {1, . . . , D} with distinguished node α0 = 1 and all nodes active, with
DS = 0, and Ri and bi as indicated by Theorem 13.

It remains to establish Theorem 14. This will follow the same three-step
procedure used in [27].

4.1. Reduction to the linear case. The first step is to use the van der Corput
method and PET induction to reduce matters to the linear case. We need some
further definitions, again essentially from [27].

Given two nodes α, β in a polynomial system S , we define the distance
d(α, β) between the nodes to be the degree in m1, . . . ,mr of the polynomial
Rα−Rβ . This distance is symmetric, reflexive, and obeys the ultrametric triangle
inequality

d(α, γ ) 6 max(d(α, β), d(β, γ )) (60)

for all nodes α, β, γ . We define the diameter diam(S) of the system to be the
maximal value of d(α, β) for α, β ranging over active nodes, and define an
extreme node to be an active node α such that d(α, α0) is equal to the diameter of
S; note from the ultrametric triangle inequality that there is always at least one
such node.

Given a node α, we then call two nodes β, γ equivalent relative to α if
d(β, γ ) < d(β, α); by (60), this is an equivalence relation on nodes, and every
equivalence class has a well-defined distance to α. We then define the weight
Ewα(S) of S relative to α to be the vector (w1, . . . , wd) ∈ Zd

+
, where wi is

the number of equivalence classes relative to α at a distance i from α. Thus
for instance S will be linear if and only if the weight Ewα(S) relative to a
node α takes the form (w1, 0, . . . , 0). We order weights lexicographically, thus
(w1, . . . , wd) < (w′1, . . . , w

′

d) if there is 1 6 i 6 d such that wi < w′i and
w j = w

′

j for all i < j 6 d .
For a given choice of constants C0,C1 and a weight vector Ew, let

P(C0,C1, Ew) denote the assertion that Theorem 14 holds for the given choice
of C0,C1 and for all polynomial systems of weight Ew relative to some extreme
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node α. (The requirement that α be extreme was mistakenly omitted in our
previous paper [27]; it is needed to force the PET induction to terminate at a
linear system.) The key inductive claim is then

PROPOSITION 7 (PET induction step). For any C0,C1, Ew = (w1, . . . , wd)which
is nonlinear in the sense that wi 6= 0 for some i = 2, . . . , d, there exist a finite
collection of triples (C ′0,C ′1, Ew

′) with Ew′ < Ew, such that if P(C ′0,C ′1, Ew
′) holds

for all triples in this collection, then P(C0,C1, Ew) holds.

Since the number of weight vectors Ew that can arise from systems S of at
most C0 nodes is finite, and the collection of all weight vectors is well ordered,
we conclude from Proposition 7 that if P(C0,C1, Ew) holds for all linear Ew, then
it holds for all Ew. This implies that to prove Theorem 14, it suffices to do so in
the case when S is linear.

We now establish Proposition 7. Let S be a polynomial system with at most
C0 nodes and at most C0 fine degrees of freedom, and of weight Ew relative to
some extreme node α, and with all polynomials having coefficients bounded in
magnitude by AC1 . Since Ew is nonlinear, the diameter of S is at least two. By
subtracting Rα from each of the other Rβ (noting that this does not affect the
metric d or the average ΛES( Ef )), we may assume that Rα = 0 (at the cost of
increasing the coefficient bound from AC1 to 2AC1 ). As α was extreme, we now
note that the polynomial Rα0 associated to α0 has maximal m-degree among all
the polynomials associated to active nodes.

We split A = A0 ∪A1, where A0 is the set of nodes β with d(α, β) = 0, and
A1 is the set of nodes β with d(α, β) > 1; note that the distinguished node α0

lies in A1. We can then factor

ΛES(
Ef ) = EEh∈[M]DSEx∈Z/NZFEh(x)E Em∈[M0]r G

Em,Eh(x)

where
FEh(x) :=

∏
β∈A0

fβ(x + Rβ(0, Eh))

and
G
Em,Eh(x) :=

∏
β∈A1

fβ(x + Rβ( Em, Eh)).

By hypothesis, each fβ is bounded in magnitude by νbβ + 1 for some bβ ∈ [W ]
coprime to W . Thus we have the pointwise bound

|FEh(x)| 6 HEh(x)
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where
HEh(x) :=

∏
β∈A0

(νbβ + 1)(x + Rβ(0, Eh)).

We can pointwise bound |G
Em,Eh(x)| 6 K

Em,Eh(x) where

K
Em,Eh(x) :=

∏
β∈A1

(νbβ + 1)(x + Rβ( Em, Eh)).

In Appendix A we establish the following bounds:

LEMMA 4. With the notation as above, we have

EEh∈[M]DSEx∈Z/NZHEh(x) = 2|A0| + o(1) (61)

and

EEh∈[M]DSEx∈Z/NZHEh(x)(E Em∈[M]r+Ea K
Em,Eh(x))

2
= 2|A0|+2|A1| + o(1) (62)

uniformly for all Ea ∈ Zr .

By (61) and the Cauchy–Schwarz inequality, we see that to show (59), it
suffices to show that

EEh∈[M]DSEx∈Z/NZHEh(x)(E Em∈[M0]r G
Em,Eh(x))

2
�d,r,D,C0,C1 ‖ fα0‖

2c
+ o(1). (63)

We now apply the van der Corput method. By covering the boundary of
[M0]

r by about Or (Ar−1) translates of [M]r , and using the pointwise bound
|G
Em,Eh(x)| 6 K

Em,Eh(x), we see that there is a collection Σ of Or (Ar−1) elements
Ea of Zr such that

|E Em∈[M0]r+[M]r G
Em,Eh(x)− E Em∈[M0]r G

Em,Eh(x)| �r A−r
∑
Ea∈Σ

E Em∈[M]r+Ea K
Em,Eh(x)

and hence by (62) and the triangle inequality (and noting that A−r
×Ar−1

= o(1))

EEh∈[M]DSEx∈Z/NZHEh(x)(E Em∈[M0]r+[M]r G
Em,Eh(x)− E Em∈[M0]r G

Em,Eh(x))
2
= o(1)

for any Eh ∈ [M]r . Using this bound and the triangle inequality in L2 (with respect
to the measure implied by the averaging EEh∈[M]DSEx∈Z/NZHEh(x) . . . ), we see that
the bound (63) is equivalent to the bound

EEh∈[M]DSEx∈Z/NZHEh(x)(E Em∈[M0]r+[M]r G
Em,Eh(x))

2
�d,r,D,C0,C1 ‖ fα0‖

2c
+ o(1).
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By Cauchy–Schwarz, we can bound the left-hand side by

EEh∈[M]DSEx∈Z/NZHEh(x)E Em∈[M0]r (EEh′∈[M]r G
Em+Eh′,Eh(x))

2

which we may expand as

EEh∈[M]DSEh′,h′′∈[M]rEx∈Z/NZE Em∈[M0]r HEh(x)G Em+Eh′,Eh(x)G Em+Eh′′,Eh(x).

Comparing this with (58), we see that this expression can be written as

ΛS ′( Ef ′)

where the polynomial system S ′ and the realization Ef ′ = ( f ′β)β∈A′ are defined as
follows.

• The number of fine degrees of freedom is DS ′ := DS + 2r .

• The set of nodes A′ consists of the disjoint union of A0, A1, and another copy
A′1 of A1.

• The polynomials

R′β ∈ Z[m1, . . . ,mr .h1, . . . , hDS , h′1, . . . , h′r , h′′1, . . . , h′′r ] = Z[ Em, Eh, Eh′, Eh′′]

for β ∈ A′ = A0 ∪A1 ∪A′1 are defined by setting

R′β := Rβ(0, Eh)

for β ∈ A0,
R′β := Rβ( Em+ Eh′, Eh)

for β ∈ A1, and
R′β ′ := Rβ( Em+ Eh′′, Eh)

for β ′ ∈ A′1 the copy of an element β ∈ A1.

• The distinguished node stays at α0.

• The inactive nodes consist of all the nodes in A0, together with all the
previously inactive nodes β of A1, as well as their copies β ′ in A′1.

• The realizations f ′β for β ∈ A′ = A0 ∪A1 ∪A′1 are defined by setting

f ′β := νbβ + 1

for β ∈ A0, and
f ′β = f ′β ′ = fβ

for β ∈ A1, where β ′ is the copy of β in A′1.
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It is a routine matter to check that S ′ obeys the axioms required for a
polynomial system; its number of nodes and fine degrees of freedom are bounded
by a constant C ′0 depending only on C0, r , and the polynomials have coefficients
bounded by AC ′1 for some C ′1 depending only on C1. Similarly one verifies that
Ef ′ is indeed a realization of S ′.

Let d∗ be the minimal distance of an active node of A1 ∪ A′1 to α (or
equivalently, the minimal m-degree of R′β as β ranges over active nodes in
A1 ∪ A′1); this is well defined since α0 ∈ A1 is active. Among all the active
nodes in A1 ∪ A′1 at distance d∗ from α, let α̃ be a node that maximizes its
distance from α0. We claim that α̃ is an extreme node of S ′, or in other words
that

d(β, α0) 6 d(α̃, α0)

for all active nodes β in A1 ∪ A′1. By construction, this already holds when
d(β, α) = d∗, and it is not possible for d(β, α) to be less than d∗, so it remains
to handle the case when d(β, α) > d∗. But as α was extreme, this implies that

d(α, α̃) = d∗ < d(β, α) 6 diam(S) = d(α, α0)

and hence by (60)
d(α̃, α0) = diam(S) > d(β, α0)

giving the claim in this case also. Thus α̃ is an extreme node in S ′.
Observe that if β is a node in A1 and β ′ its copy in A′1, then R′β − R′β ′ has

m-degree strictly less than that of R′β , thus the distance between β and β ′ is less
than that between β and α, and hence β and β ′ are equivalent relative to α. From
this we see that for i > d∗, the number of equivalence classes in S ′ relative to
α̃ at distance i is equal to the number of equivalence classes in S relative to α,
while for i = d∗, S ′ has one fewer equivalence class relative to α̃ at distance d∗
than S relative to α (since α̃ contributes a class to the latter but not the former).
Thus the weight vector Ew′ of S ′ relative to α̃ is less than the weight vector Ew of
S relative to α. Furthermore, given the bounds on the number of nodes and fine
degrees of freedom, the weight vector Ew′ ranges in a finite set that depends on
d, r,C0,C1, Ew. Applying the hypothesis P(C0,C1, Ew

′), we obtain the claim.

4.2. Parallelopipedization. It remains to establish the linear case of
Theorem 14. As in [27], the next step is ‘parallelopipedization’, in which one
repeatedly uses the Cauchy–Schwarz inequality to reduce matters to controlling
a weighted averaged local Gowers norm.

Let the notation be as in Theorem 14, with S linear. We abbreviate
(h1, . . . , hDS ) as Eh. By subtracting Rα0 from all of the other polynomials
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Rα, we may assume that Rα0 = 0, so that all the active Rα have degree at most
one in m. We write Al for those nodes at distance one from α0, and Anl for all
nodes at distance greater than one, thus A is partitioned into {α0}, Al , Anl , with
Anl consisting entirely of inactive nodes, so that for each α ∈ Anl , fα is equal
to νbα + 1 for some bα ∈ [W ] coprime to W . By the triangle inequality we may
replace each of the fα with either νbα or 1; by deleting all nodes with fα = 1 we
can assume that only the latter case fα = νbα occurs for α ∈ Anl .

For each α ∈ Al one has

Rα = Eaα · Em+ cα

for some nonzero Eaα ∈ Z[Eh]r and some cα ∈ Z[Eh], with · denoting the usual dot
product; furthermore from the axioms of a linear system we see that the Eaα are
distinct as α varies. We can then write ΛES( Ef ) as

EEh∈[M]DS , Em∈[M0]r
Ex∈Z/NZ fα0(x)

( ∏
α∈Anl

νbα (x + Rα( Em, Eh))
)

×

(∏
α∈Al

fα(x + Eaα(Eh) · Em+ cα(Eh))
)
.

We need to show that this expression is o(1). Arguing as in the previous section,
we may replace the set [M0]

r that Em is being averaged over by the multiset

[M0]
r
+

∑
α∈Al

[M]r

(that is to say, the sum of [M0]
r and |Al | copies of [M]r , counting multiplicity).

Thus it suffices to show that the expression

EEh∈[M]DSE Em∈[M0]rEEkα∈[M]r∀α∈Al
Ex∈Z/NZ fα0(x)

×

( ∏
α∈Anl

νbα

(
x + Rα( Em +

∑
β∈Al

Ekβ), Eh
))

×

(∏
α∈Al

fα

(
x + Eaα(Eh) · Em+

∑
β∈Al

Eaα(Eh) · Ekβ + cα(Eh)
))

(64)

is �r,D,C0,C1 ‖ fα0‖
c
+ o(1). We shift x by −

∑
β∈Al
Eaβ(Eh) · Ekβ to write this

expression as

EEh∈[M]DSE Em∈[M0]rEEkα∈[M]r∀α∈Al
Ex∈Z/NZ fα0, Em,Eh,Ek(x)

∏
α∈Al

fα, Em,Eh,Ek(x)
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where Ek := (Ekα)α∈Al , with

fα0, Em,Eh,Ek(x) := fα0

(
x −

∑
β∈Al

Eaβ(Eh) · Ekβ

)

×

∏
α∈Anl

νbα

(
x + Rα

(
Em +

∑
β∈Al

Ekβ, Eh
)
−

∑
β∈Al

Eaβ(Eh) · Ekβ

)
and

fα, Em,Eh,Ek(x) := fα

(
x + Eaα(Eh) · Em +

∑
β∈Al

(Eaα(Eh)− Eaβ(Eh)) · Ekβ + cα(Eh)
)

for α ∈ Al . The key point here is that fα, Em,Eh,Ek does not depend on the α
component Ekα of Ek. We also have the pointwise bound

| fα, Em,Eh,Ek(x)| 6 να, Em,Eh,Ek(x)

for all α ∈ Al , where να, Em,Eh,Ek(x) is either identically equal to 1, or is given by the
formula

να, Em,Eh,Ek(x) = νbα

(
x + Eaα(Eh) · Em+

∑
β∈Al

(Eaα(Eh)− Eaβ(Eh)) · Ekβ + cα(Eh)
)
.

For sake of exposition we assume that the latter holds for all α, as this is the most
difficult case. As with fα, Em,Eh,Ek , the quantity να, Em,Eh,Ek(x) does not depend on the α
component of Ek.

Applying the weighted Cauchy–Schwarz–Gowers inequality (see [27,
Proposition A.2] or [13, Corollary B.4]), we can thus bound upper bound
the absolute value of (64) by

EEh∈[M]DSE Em∈[M0]rEx∈Z/NZ‖ fα0, Em,Eh,·(x)‖2Al (ν)

∏
α∈Al

‖να, Em,Eh,·(x)‖
1/2
2Al \α

where

‖ fα0, Em,Eh,·(x)‖
2|Al |

2Al (ν)
:= EEk(0),Ek(1)∈([M]r )Al

[ ∏
ω∈{0,1}Al

fα0, Em,Eh,Ek(ω)(x)
]

×

∏
α∈Al

∏
ω∈{0,1}Al \{α}

να, Em,Eh,Ek(ω)(x)

and

‖να, Em,Eh,·(x)‖
2|Al |−1

2Al \α := EEk(0),Ek(1)∈([M]r )Al \{α}

∏
ω∈{0,1}Al \{α}

να, Em,Eh,Ek(ω)(x),
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where for Ek(0) = (Ek(0)β )β∈Al , Ek
(1)
= (Ek(1)β )β∈Al , and ω = (ωβ)β∈Al one has

Ek(ω) := (Ek(ωβ )β )β∈Al ;

if Ek(0), Ek(1) is only given in ([M]r )Al\{α}, we extend it arbitrarily to ([M]r )Al for
the purposes of defining Ek(ω), and similarly if ω is only given in {0, 1}Al\{α}

instead of {0, 1}Al . This leaves the α component of Ek(ω) undefined, but this
is irrelevant for the purposes of evaluating να, Em,Eh,Ek(ω)(x) because (as mentioned
previously) this quantity does not depend on the α component of Ek(ω).

In Appendix A we establish the following estimate:

LEMMA 5. With the notation as above, we have

EEh∈[M]DSE Em∈[M0]rEx∈Z/NZ‖να, Em,Eh,·(x)‖
2|Al |−1

2Al \α = 1+ o(1). (65)

Thus, by Hölder’s inequality (and modifying c as necessary), to show that the
expression in (64) is o(1), it suffices to establish the bound

EEh∈[M]DSE Em∈[M0]rEx∈Z/NZ‖ fα0, Em,Eh,·(x)‖
2|Al |

2Al (ν)
� ‖ fα0‖

c
+ o(1). (66)

This is a weighted version of (a special case of) the Cauchy–Schwarz–Gowers
inequality (6), and will be deduced from that inequality by one final application
of the polynomial forms condition.

4.3. Final Cauchy–Schwarz. We now finish the proof of (66). By definition,
the left-hand side of this estimate expands as

EEh∈[M]DSEx∈Z/NZEEk(0),Ek(1)∈([M]r )Alw(Eh, Ek(0), Ek(1), x)

×

∏
ω∈{0,1}Al

fα0

(
x −

∑
β∈Al

Eaβ(Eh) · Ek
(ωβ )

β

)

where

w(Eh, Ek(0), Ek(1), x)

:= E Em∈[M0]r

(∏
α∈Al

∏
ω∈{0,1}Al \{α}

να, Em,Eh,Ek(ω)(x)
)

×

( ∏
α∈Anl

∏
ω∈{0,1}Al

νbα

(
x + Rα

(
Em +

∑
β∈Al

Ek(ωβ )β , Eh
))
−

∑
β∈Al

Eaβ(Eh) · Ekβ

))
.
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(In the analogous expansion in [27, Section 5.19], the terms arising from α ∈ Al

were mistakenly omitted.) On the other hand, if we identify Al with {1, . . . , D},
then D 6 C0 and the expression

EEh∈[M]DSEx∈Z/NZEEk(0),Ek(1)∈([M]r )Al

∏
ω∈{0,1}Al

fα0

(
x −

∑
β∈Al

Eaβ(Eh) · Ek
(ωβ )

β

)
can be bounded in magnitude using the Cauchy–Schwarz–Gowers inequality (6)
by

EEh∈[M]DS ‖ fα0‖
2r D

2r D
(ai j (Eh)[M])16i6D;16 j6r

(67)

where ai1, . . . , air ∈ Z[Eh] are the components of ai . From Proposition 2 (and the
monotonicity properties of the Gowers norms) we have

EEh∈[M]DS ‖ν − 1‖2r D+1

2r D
(ai j (Eh)[M])16i6D;16 j6r

= o(1)

which by the triangle inequality implies that

EEh∈[M]DS ‖ν + 1‖2r D+1

2r D
(ai j (Eh)[M])16i6D;16 j6r

�r,D 1+ o(1)

and hence
EEh∈[M]DS ‖ fα0‖

2r D+1

2r D
(ai j (Eh)[M])16i6D;16 j6r

�r,D 1.

Thus by Hölder’s inequality, the quantity (67) is bounded by

�r,D
(
EEh∈[M]DS ‖ fα0‖2r D

(ai j (Eh)[M])16i6D;16 j6r

)c

for some c > 0 depending on r, D. This is an expression of the form ‖ fα‖c. Thus,
by the triangle inequality, it suffices to show that

EEh∈[M]DSEx∈Z/NZEEk(0),Ek(1)∈([M]r )Al (w(Eh, Ek(0), Ek(1), x)− 1)

×

∏
ω∈{0,1}Al

fα0

(
x −

∑
β∈Al

Eaβ(Eh) · Ek
(ωβ )

β

)
= o(1).

Bounding fα0 in magnitude by νbα0
+1 and using Cauchy–Schwarz, it suffices to

show that

EEh∈[M]DSEx∈Z/NZEEk(0),Ek(1)∈([M]r )Al (w(Eh, Ek(0), Ek(1), x)− 1)2

×

∏
ω∈{0,1}Al

(
νbα0

(
x −

∑
β∈Al

Eaβ(Eh) · Ek
(ωβ )

β

)
+ 1

)
= o(1).
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Expanding out the square, it suffices to show that

EEh∈[M]DSEx∈Z/NZEEk(0),Ek(1)∈([M]r )Alw(Eh, Ek(0), Ek(1), x) j

×

∏
ω∈{0,1}Al

(
νbα0

(
x −

∑
β∈Al

Eaβ(Eh) · Ek
(ωβ )

β

)
+ 1

)
= 2|Al | + o(1)

for j = 0, 1, 2.
We just treat the most difficult case j = 2, as the other cases j = 0, 1 are

similar (with fewer ν-type factors). Expanding out the second product, it suffices
to show that

EEh∈[M]DSEx∈Z/NZEEk(0),Ek(1)∈([M]r )Alw(Eh, Ek(0), Ek(1), x)2

×

∏
ω∈Ω

νbα0

(
x −

∑
β∈Al

Eaβ(Eh) · Ek
(ωβ )

β

)
= 1+ o(1)

for any Ω ⊂ {0, 1}Al . The left-hand side may be expanded as

EEh∈[M]DSEx∈Z/NZEEk(0),Ek(1)∈([M]r )Al E Em(0), Em(1)∈[M0]r

1∏
i=0

×

( ∏
α∈Anl

∏
ω∈{0,1}Al

νbα

(
x + Rα

(
Em(i)
+

∑
β∈Al

Em(i)
β ,
Eh
)
−

∑
β∈Al

Eaβ(Eh) · Ekβ

))

×

∏
α∈Al

∏
ω∈{0,1}Al \{α}

νbα

(
x + Eaα(Eh) · Em(i)

+

∑
β∈Al

(Eaα(Eh)− Eaβ(Eh)) · Ek
(ωβ )

β + cα(Eh)
)
. (68)

But this is 1 + o(1) thanks to the polynomial forms property of the measures
νb (see Appendix A). This completes the proof of Theorem 14 and hence
Theorem 13.

5. The W -trick

Theorem 13 has a particularly pleasant consequence in the setting where all
polynomials involved are distinct to top order.

COROLLARY 4. Let d, r, D,W, A, N be as in previous sections. For each
i = 1, . . . , D, let bi ∈ [W ] be coprime to W . For each i = 1, . . . , d, let
Ri ∈ Z[m1, . . . ,mr ] be a polynomial of degree at most d, with all coefficients
bounded in magnitude by A. Assume also that for 1 6 i < j 6 D, Ri − R j has
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degree exactly d. Let M0 be a quantity with A−1 N 1/d 6 M0 6 AN 1/d . Then

Ex∈Z/NZE Em∈[M0]r

D∏
i=1

Λ′bi ,W (x + Ri( Em)) = 1+ o(1).

Proof. The claim is equivalent to

Ex∈Z/NZE Em∈[M0]r

( D∏
i=1

Λ′bi ,W (x + Ri( Em))
)
− 1 = o(1).

By writingΛ′bi ,W = 1+(Λ′bi ,W−1), one can expand the left-hand side as the sum
of 2D

− 1 terms, each of which is bounded in magnitude by O(‖Λ′bi ,W − 1‖c)

+ o(1) for some i and some fixed c > 0 by Theorem 13 (after permuting the
indices), where the norm is of the form (57) with d0 = d . On the other hand,
from Theorem 11 we have ‖Λ′bi ,W − 1‖ = o(1). The claim follows.

With this corollary and the ‘W -trick’ (as in [13, Section 5]), we can now prove
Theorem 4. Let d, r, k, P1, . . . , Pr ,M() be as in Theorem 4. We let d, r, D,W,
A, R, N , N ′ be as in previous sections, with d, r as previously chosen and D
set equal to k. By replacing N by N ′, and using the convergence of the infinite
product

∏
p βp and the fact that w goes to infinity, it suffices to show that

En′∈[N ′]Em′∈[M ′]rΛ(n′ + P1(m ′)) . . . Λ(n′ + Pk(m ′)) =
∏
p6w

βp + o(1)

where M ′ := M(N ′).
The contribution to the left-hand side of the case when one of the n′ + Pi(m ′)

is a prime power (rather than a prime) can easily be seen to be o(1) (in fact one
obtains a power savings in N ′), so we may replace Λ by its restriction Λ′ to the
primes without loss of generality.

We split n′ and m ′ into residue classes n′ = b (W ) and m ′ = c (W ) for b ∈ [W ]
and c ∈ [W ]r . Call a pair (b, c) admissible if b + Pi(c) is coprime to W for
all i = 1, . . . , k. From the Chinese remainder theorem, we see that the number
of admissible pairs is W r+1(φ(W )/W )k

∏
p6w βp. For inadmissible (b, c), the

quantity Λ′(n′ + P1(m ′)) . . . Λ′(n′ + Pk(m ′)) is only nonvanishing when one of
the n′+Pi(m ′) is a prime p 6 w. It is not difficult to see that the total contribution
of such a case is o(1) if w is sufficiently slowly growing with respect to N ′.
Thus we may restrict attention to admissible pairs (b, c). Approximating the
arithmetic progression {n′ ∈ [N ′] : n′ = b (W )} by {W n + b : n ∈ [N ]}, and
similarly approximating {m ′ ∈ [M ′]r : m ′ = c (W )} by {W m + c : m ∈ [M]r }
with M := bM ′/Wc (using crude estimates to bound the error in this
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approximation by multiplicative and additive errors of o(1), assuming w

sufficiently slowly growing), it will thus suffice to show that

En∈[N ]Em∈[M]rΛ
′(W n + b + P1(W m + c)) . . . Λ′(W n + b + Pk(W m + c))

=

(
W

φ(W )

)k

(1+ o(1)) (69)

uniformly for all admissible pairs (b, c).
As (b, c) is admissible, we can write

W n + b + Pi(W m + c) = W (n + Ri(m))+ bi

for some bi ∈ [W ] coprime to W , and some polynomial Ri ∈ Z[m1, . . . ,mr ]

of degree d with all coefficients bounded in magnitude by A. Since the Pi − Pj

all had degree d , the Ri − R j do also. Recalling that M = o(N 1/d), we see
that the quantities n + Ri(m) will lie in the interval [R, N ] unless n = o(N )
or n = N − o(N ). The contribution of these latter cases to (69) can easily be
verified to be o((W/φ(W ))k) by any standard upper bound sieve (for example
the Selberg sieve, or the ‘fundamental lemma of sieve theory’, see for example
[7, Theorem 6.12]). Using (34), we thus see that (69) is equivalent to the estimate

En∈Z/NZEm∈[M]rΛ
′

b1,W (n + R1(m)) . . . Λ′bk ,W (n + Rk(m)) = 1+ o(1).

But this follows from Corollary 4 (noting that the lower bound on M ′ will imply
that M > A−1 N 1/d if ω is going to zero sufficiently slowly). This concludes the
proof of Theorem 4.

We now adapt the above arguments to prove Theorem 5. Repeating the above
arguments all the way up to (69), we arrive at the task of showing that

En∈[N ],m∈[M]Λ
′(W n + b)Λ′(W n + b + (W m + c))Λ′(W n + b + P3(W m + c))

=

(
W

φ(W )

)3

(1+ o(1))

uniformly for (b, c) ∈ [W ]2 with b, b + c, b + P3(c) coprime to W , with M =
o(
√

N ) and M > ω(N )N for some function ω(N ) that goes to zero sufficiently
slowly. Continuing the above arguments, we then reduce to showing that

En∈Z/NZEm∈[M]Λ
′

b1,W (n)Λ
′

b2,W (n + R2(m))Λ′b3,W (n + R3(m)) = 1+ o(1)

where b1, b2, b3 ∈ [W ] are given by the congruences

b1 = b(W )

b2 = b + c(W )

b3 = b + P3(c)(W )
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and R2, R3 are the polynomials

R2 := m+
b + c − b2

W

R3 :=
P3(W m+ c)− b3

W
.

Using Theorem 13, we see that

En∈Z/NZEm∈[M]Λ
′

b1,W (n)Λ
′

b2,W (n + R2(m))(Λ′b3,W (n + R3(m))− 1) = o(1)

so it suffices to show that

En∈Z/NZEm∈[M]Λ
′

b1,W (n)Λ
′

b2,W (n + R2(m)) = 1+ o(1)

which on reversing some of the arguments following (69) is equivalent to

En∈[N ]Em∈[M]Λ
′(W n + b)Λ′(W n + b + (W m + c)) =

(
W

φ(W )

)2

(1+ o(1)).

Set M0 := bM log−10 Nc. Using crude bounds onΛ′, we may replace the average
[M] by [M] − [M0] with negligible error, and then by shifting n by an element
of M0 and incurring a further negligible error, we may reduce to showing that

En∈[N ]Eh∈[M0]Em∈[M]Λ
′(W (n + h)+ b)Λ′(W n + b + (W m + c))

=

(
W

φ(W )

)2

(1+ o(1)).

The left-hand side factors as

En∈[N ](Eh∈[M0]Λ
′(W (n + h)+ b))(Em∈[M]Λ

′(W n + b + (W m + c))).

From the prime number theorem in arithmetic progressions we have

En∈[N ]Em∈[M]Λ
′(W n + b + (W m + c)) =

(
W

φ(W )

)
(1+ o(1))

if w is sufficiently slowly growing, so it suffices to show that

En∈[N ]

(
Eh∈[M0]

φ(W )

W
Λ′(W (n + h)+ b)− 1

)
×

(
φ(W )

W
Em∈[M]Λ

′(W n + b + (W m + c))
)
= o(1).
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From the Brun–Titchmarsh inequality, the expression (φ(W )/W )Em∈[M]Λ
′

(W n + b + (W m + c)) is bounded by O(1), so by the Cauchy–Schwarz
inequality it suffices to show that

En∈[N ]

(
Eh∈[M0]

φ(W )

W
Λ′(W (n + h)+ b)− 1

)2

= o(1).

Since d 6 5, we have M0 > N 1/6+ε, and the above claim then follows from
standard zero-density estimates (see for example [19, Theorem 1.1]). On the
generalized Riemann hypothesis, one can obtain this claim for M0 as low as N ε,
and then no restriction on d is necessary; again, see [19, Theorem 1.1]. (In fact
it suffices to assume the generalized density hypothesis.)

REMARK 2. The same method lets us handle a triplet of polynomials P1, P2,

P3 ∈ Z[m] in which P3 − P1 has degree d and P2 − P1 has degree k for some
1 6 k < d with k/d > 1/6 (and the hypothesis k/d > 1/6 can be omitted on the
generalized Riemann or density hypothesis). Indeed, the above arguments let us
reduce to showing an estimate of the form

En∈[N ]Em∈[M]Λ
′(W n+b)Λ′(W n+b+(P2−P1)(W m+c))=

(
W

φ(W )

)2

(1+o(1)),

and a standard application of the circle method (using some Fourier restriction
theorem for the von Mangoldt function on short intervals) lets us control this
expression in turn by averages of Λ on arithmetic progressions of spacing
O(W O(1)) and length roughly N k/d , which can again be controlled by zero-
density estimates as before. We leave the details to the interested reader.

One may in principle be able to handle some higher complexity patterns of
this type, for example P1 = 0, P2 = mk, P3 = 2mk, P4 = md when 1 6 k < d
with k/d sufficiently close to 1. Morally speaking, after using some suitable
adaptation of the arguments in this paper and the (nontrivial) fact that the pattern
n, n+mk, n+2mk has ‘true complexity’ 1 in the sense of Gowers and Wolf [11],
the average corresponding to this set of polynomials should be controlled by an
expression roughly of the form

En∈[N ] sup
α∈R/Z
|Em∈[Mk ](Λ

′(W (n + m)+ b)− 1)e(αm)|

and one would expect to be able to control this quantity when k/d is large from
existing analytic number theory methods; the best result in this direction we
currently know of is by Zhan [30], who used moment bounds on L-functions to
treat the case k/d > 5/8. Again, we will not pursue the details of these arguments
further here.
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Appendix A. The polynomial forms condition

Throughout this appendix, the parameters d, r, D, κ,W, A, R, N are as in
Section 3, with all quantities below allowed to depend on d, r . We now prove the
various polynomial forms conditions required on the functions νb, specifically
Proposition 2, Lemmas 3–5, and showing that the quantity (68) is 1+ o(1).

Our starting point is the following estimate on the νb from [27, 28]:

THEOREM 15 (Polynomial forms condition). Let k, s,C be natural numbers not
depending on N, let b1, . . . , bs ∈ [W ] be coprime to W , and let P1, . . . , Pk ∈

Z[m1, . . . ,ms] be distinct polynomials of degree at most d, with all nonconstant
coefficients of size at most AC in magnitude. Assume that κ is sufficiently small
depending on k, s. Assume also that the Pi − Pj are nonconstant for all 1 6
i < j 6 s. Let M1, . . . ,Ms be quantities with log1/κ N 6 M1, . . . ,Ms 6 N.
Then

Ex∈Z/NZEm1∈[M1],...,ms∈[Ms ]

k∏
i=1

νbi (x + Pi(m1, . . . ,ms)) = 1+ o(1).

Proof. In the case b1 = · · · = bs (and when the constant coefficients of the Pi

are also bounded in magnitude by AC ), this follows directly from [27, Corollary
11.2] in the case when the M1, . . . ,Ms are bounded below by (say) N κ , and from
[28, Proposition 3] in the general case. (Strictly speaking, [28, Proposition 3]
only claims the case when M1 = · · · = Ms = logL N for some sufficiently large
L depending on k, s, but the arguments easily extend to larger values of M1, . . . ,

MS .) The arguments in [27, Sections 10, 11] used to prove [27, Corollary 11.2]
or [28, Proposition 3] can be easily modified to handle the case when the more
general case when the bi are permitted to be distinct and the constant coefficients
are permitted to be large, after replacing every occurrence of W Pj + b with
W Pj + b j in these arguments. (The notion of a ‘terrible’ prime has to then
be modified to be a prime p > w that divides (W Pi + bi) − (W Pj + b j)

for some 1 6 i < j 6 s, rather than just dividing Pi − Pj ; however, these
polynomials (W Pi + bi) − (W Pj + b j) are nonconstant with all nonconstant
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coefficients O(W AC), and the arguments used to prove [27, Corollary 11.2] or
[28, Proposition 3] still show that the total contribution of the terrible primes
only contributes a multiplicative factor of O(1) to the error.)

Lemma 3 then follows from this theorem (in the b1 = · · · = bs = b case),
as after expanding out the fourth power one obtains a sum of 42D

−1 expressions,
all of which are 1 + o(1) thanks to Theorem 15 (with s = 4(r + D), and k
at most 4(2D

− 1)). Proposition 2 similarly follows from this theorem (in the
b1 = · · · = bs = b case), since on expanding out the left-hand side of (39), one
obtains an alternating sum of 22D∗+2D terms, all of which are 1 + o(1) thanks to
Theorem 15 (with s = 2r + D∗ + 2D, and k at most 2D∗+2D). In both of these
cases, a direct inspection reveals that the polynomials Pi used in the invocation
of Theorem 15 have nonconstant differences Pi − Pj .

In a similar vein, Lemma 5 follows from Theorem 15 (now with the bi all
distinct), as the left-hand side of (5) expands as an expression of the form
considered by Theorem 15 (with s = DS + r + 2r(|Al | − 1) and k = 2|Al |−1).
Similarly, for Lemma 4, the left-hand side of (61) expands as 2|A0| terms, all of
which are 1 + o(1) by Theorem 15 (with s = DS and k at most |A0|), and the
left-hand side of (62) similarly expands as the sum of 2|A0|+2|A1| terms, which are
again 1+ o(1) by Theorem 15 (with s = DS + 2r and k at most |A0| + 2|A1|);
it is in this latter case that we need to permit the nonconstant coefficients of the
polynomials Pi in Theorem 15 to be larger than AC in magnitude. As before,
an inspection of the polynomials involved (using the fact that the Rα − Rβ are
nonconstant) shows that the Pi − Pj are nonconstant.

Finally, the expression (68) is 1+ o(1) by an application of Theorem 15 with
s = DS + 2r |Al | + 2r and k = |Anl |2|Al | + |Al |2|Al |−1. (Again, by focusing on
the behavior with respect to the Em(i) variables, setting all other variables to zero,
one can use the hypotheses on the Rα− Rβ to show that the polynomials Pi − Pj

are nonconstant.)
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[22] K. Matomäki and M. Radziwiłł, ‘Multiplicative functions in short intervals’, Ann. of Math.

(2) 183(3) (2016), 1015–1056.
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